
Hypermodal
Dynamic Media Synchronization and Coordination between WebRTC Browsers

Li Li1, Wen Chen2, Zhe Wang3 and Wu Chou1
1Shannon Lab, Huawei Technologies, Bridgewater, New Jersey, U.S.A.
2Contractor, Global Infotech Corporation, Kearny, New Jersey, U.S.A.

3CS Dept., Rutgers University, Piscataway, New Jersey, U.S.A.

Keywords: Temporal Linkage, Synchronization Tree, RDF, Media Fragments URI, WebRTC, REST API.

Abstract: This paper describes a Web based real-time collaboration system, Hypermodal, based on the concept of
temporal linkage between resources. The system allows the users to construct, manipulate and exchange
temporal linkages organized as synchronization trees. The temporal linkage is defined by RDF <sync>
predicate based on a novel use of Media Fragments URI and permits on-the-fly tree updates while the
resources in the tree are playing. We propose RDF <mirror> predicate and a new protocol to correlate and
initialize distributed synchronization trees without requiring clock synchronization. Moreover, we develop a
new REST API optimized for efficient tree updates and navigations based on super nodes. The preliminary
test results on a prototype system show the approach is feasible and promising.

1 INTRODUCTION

The true power of the Web is to organize distributed
information in an unconstrained way through
hypertext (Berners-Lee, 2000). With the vast amount
of multimedia resources on the Web and the advent
of WebRTC, there is an acute need to be able to link
these real-time multimedia resources in an accurate
and meaningful way.

The continuous nature of multimedia resources
makes it insufficient to link them the way we link
discrete documents or images. What we need is a
new type of temporal linkage that can link intervals,
regions or objects within multimedia resources. The
application domains of such technology are wide
open. We can link a person in a video stream to his
home page so that the conference participants can
find more about him without asking. When
discussing a trip to Barcelona Spain, we can link the
conversation to a Google map, a Wikipedia page,
and a public transportation page about the city.
Users of MOOCS websites can link part of an online
video lecture to relevant segments of another video
during a live discussion such that students can learn
the same concepts from different professors. The
agents that link the resources can also be machine
programs, such as Speech Recognition, Machine
Translation, or Face Tracking and Detection

engines. For example, a moderator can schedule
conference topics and a topic search engine can link
resources relevant to the topics on time into the
conference.

Temporal linkages can even link discrete
resources without a temporal dimension, by treating
them as continuous resources whose content does
not change in small time scale. They can also link
abstract resources that have a temporal dimension
but no intrinsic content, such as a session. This
generalization gives us the ability to temporarily link
any types of resources in anywhere in a uniform
way.

This paper describes a real-time collaboration
system Hypermodal based on the concept of
temporal linkage. The system allows the users to
construct, manipulate and exchange temporal
linkages in a meaningful way in real-time. Our goal
is to create a mutual feedback loop between the
system and the Web: any Web resources can be
linked to the system and the links created by the
system become part of the Web. To achieve this
goal, we use as many standards as possible such that
the components processing the temporal linkages
can be developed independently but fully
interoperate. Under this guideline, we address the
following research issues in this paper.

If not constrained, the temporal linkages can

74 Li L., Chen W., Wang Z. and Chou W..
Hypermodal - Dynamic Media Synchronization and Coordination between WebRTC Browsers.
DOI: 10.5220/0004856100740081
In Proceedings of the 10th International Conference on Web Information Systems and Technologies (WEBIST-2014), pages 74-81
ISBN: 978-989-758-024-6
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

 form an arbitrary directed graph which is difficult to
manage for both users and machines. To solve this
problem, we propose RDF <sync> predicate to
define a generic temporal linkage based on a novel
use of W3C Media Fragments URI standard
(Troncy, 2012), such that we can construct
synchronization trees, instead of directed graphs, to
represent temporal linkages.

During a collaboration session, the
synchronization trees are not static but are
constructed incrementally and may change at any
time when the resources in the tree are playing. To
support on-the-fly updates, we develop a mechanism
to play individual <sync> linkages without
interrupting the resources in play.

In our system, whenever a user modifies a
synchronization tree, the modification may
propagate to other remote trees so all users have the
same view. However, WebRTC Web browsers
assign different URIs to the same multimedia
resource, making it impossible to exchange <sync>
linkages between synchronization trees that share
the same resource. To address this problem, we
propose RDF <mirror> predicate and a new protocol
to correlate and initialize distributed synchronization
trees without requiring clock synchronization
between browsers and servers.

The components in our system need a protocol to
communicate their updates to the synchronization
trees. However, current RDF query and update
languages are not designed for efficient updates to
synchronization trees. To address this problem, we
develop a novel REST API to navigate and update
synchronization trees based on the concept of super
node.

The rest of this paper is organized as follows.
Section 2 surveys the related work. Section 3 defines
the synchronization tree based on the <sync> and
<mirror> relations. Section 4 describes how to
initialize synchronization trees using WebRTC call
control protocol. Section 5 introduces the REST API
for managing the synchronization. Section 6
describes our prototype implementation and
experimental results, and we conclude the paper
with Section 7.

2 RELATED WORK

The approach described in this paper is different
from the screen/application sharing offered by many
Web conference systems. In screen sharing, shared
content is read-only to all users except the owner,
whereas in our approach, shared resources are

interactive to all users. Screen sharing requires more
network bandwidth to send the encoded video than
the REST API to coordinate distributed
synchronization trees. For example, Skype (Skype,
2013) requires at least 128 kbits/s for screen sharing,
whereas we estimate the bandwidth required by our
REST API is lower than 5 kbits/s. Furthermore,
screen sharing creates a loophole for the Same
Origin Policy (Rescorla, 2013), whereas our
approach enforces this policy.

WebRTC (Bergkvist, 2013) is an ongoing joint
effort between W3C and IETF to develop Web
(JavaScript) and Internet (codec and protocol)
standards to enable P2P real-time communication
between Web browsers without any external plug-
ins. Several open source Web browsers, including
Chrome (WebRTC Chrome) and Firefox (WebRTC
Firefox), already support some WebRTC functions
and demonstrate certain degree of interoperability.

SMIL (Bulterman, 2008) is a XML dialect to
express temporal synchronization between
multimedia resources. However, SMIL does not
support dynamic media synchronization. Once a
SMIL document begins to play, we cannot modify
the document to add new media or change the
synchronization relations between existing media.

Nixon (Nixon, 2013) describes a research agenda
for Linked Media, inspired by the Linked Data
initiative, where the main approach is to link
multimedia based on the conceptual relations
between the fragments of the multimedia. Li et al
(Li, 2012) describes Synote, a system to interlink
multimedia fragments based on RDF and Media
Fragments URI. Oehme et al (Oehme, 2013)
describes a system to link a video to Web resources
and overlay the resources on top of the video.
Mozilla Popcorn Maker (Popcorn Maker) is an open
source JavaScript library that allows a user to create
multimedia presentations by layering Web
information, e.g. Google map or Wikipedia page, at
different intervals and regions of an online video.

However, all these approaches are for single user
presentations or based on ad-hoc languages, not for
multi-user and on-the-fly resource synchronization
based on temporal linkage.

3 SYNCHRONIZATION TREE

Figure 1 illustrates the smallest Hypermodal system
with two Web browsers connected by a Web server,
where the synchronization trees are stored in the
browsers and the <mirror> linkages are stored on the
server.

Hypermodal�-�Dynamic�Media�Synchronization�and�Coordination�between�WebRTC�Browsers

75

Figure 1: Basic Hypermodal system architecture.

A synchronization tree consists of nodes that define
the intervals of resources based on Media Fragments
URI, and edges that define temporal linkages
between the nodes based on our RDF <sync>
predicate, as illustrated in Figure 2, where the nodes
are rendered as horizontal lines, whose lengths
indicate the intervals, and the edges as vertical
arrows whose positions indicate synchronization
points. Both trees are rooted at the same session
resource identified by URI0. The <mirror> linkages
that link the same resources shared between the trees
are rendered as the curved arrows.

Figure 2: Correlations between tree A (top) and tree B
(bottom).

Synchronization tree does not constrain the
resources in any way as long as they can be
identified by Media Fragments URI. For example,

we can even synchronize two different intervals of
the same video. If we treat the unique resources, not
the intervals of the resources, as nodes, they can
form a directed graph linked by the <sync> linkage.
However, a tree is a more accurate representation of
<sync> linkages, because different intervals of the
same resource can be updated independently as
distinct resources. For instance in Figure 2, the same
Wikipedia page (URI6) occurs as two nodes in two
<sync> linkages (A4 and A7). When one linkage is
changed, the other one is not affected. But if the
page is changed, it will be reflected on both
linkages.

Synchronization trees are constructed
dynamically when the resources in the tree are
playing: 1) new edges can be added anywhere by
inserting RDF <sync> triples (edges); 2) the
intervals and synchronization points of a resource
can be changed by modifying the Media Fragments
URI (nodes). This process is detailed in Sections 4
and 5.

3.1 The <Sync> Predicate

We propose <sync> RDF predicate whose subject
and object are Media Fragments URIs. If
xs,xe,ys,ye are nonnegative integers that denote
the start and end time of a resource in second, then
the canonical triple:

<URI_X#t=xs,xe> <sync> <URI_Y#t=ys,ye>
instructs the user agent to play the interval [sy,ey)
of resource URI_Y within the interval [sx,ex) of
resource URI_X. For example, the following triple:

<A_URI1#t=50> <sync> <URI5#t=30,120>

plays the interval [30, 120) of resource URI5 when
resource A_URI1 reaches the 50th second and before
it ends.

The <sync> linkage assigns different meanings
to Media Fragments URI based its role in a <sync>
triple: the subject interval [xs,xe) defines
synchronization points on URI_X, not a new
resource extracted from URI_X, whereas the object
interval [ys,ye) defines a new resource extracted
from URI_Y. This is why we can simultaneously
attach many resources to intervals of URI_X while
URI_X is playing, but at the same time maintain the
tree structure by breaking URI_Y into independent
portions.

The canonical <sync> triple requires the user
agents to know the absolute play time of resources.
This is difficult in distributed system when the
machine clocks are not synchronized. To address
this problem, we introduce two extensions to Media
Fragments URI: relative delay and event

Web Server
<mirror> triples

Translation

Page A
Tree A
<sync>

Page B
Tree B
<sync>

Browser A
Web RTC

Browser B
Web RTC

Web

RTP media

REST API REST API

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

76

synchronizations. If d and r are positive numbers,
then the relative delay triple:

<URI_X#t=+d,+r> <sync> <URI_Y#t=ys,ye>

plays an interval of URI_Y within the interval
[now+d, now+d+r) of resource URI_X, where now
denotes the normal play time of resource URI_X
when the triple is to be played.

Event synchronization is borrowed from SMIL
(Bulterman 2008). If E1 and E2 denote events
generated by resource URI_X, then the triple:
<URI_X#t=E1+d,E2+r> <sync> <URI_Y#t=ys,ye>

defines the resource play interval based on the time
of the events. For example, to automatically display
the PowerPoint at URI_Y when topic t1 is being
discussed in the session that generates event t1_s
when t1 starts and event t1_e when the topic ends,
we could use the following triple:

<session#t=t1_s,t1_e> <sync> <URI_Y>

To play a canonical <sync> triple while the
subject resource is playing, we use the process
depicted in Figure 3, which takes the current subject
play time and a <sync> triple as input, calculates the
actual play time of the object resource, and produces
a task as output. A <sync> triple can specify any
start and end times, and it can be played at any time,
but the process makes sure the actual play interval of
the object resource is always within the current play
time and the specified end time of the subject
resource. If this is impossible, the object resource
will not be played.

Figure 3: Process to play a <sync> triple.

To play a relative delay triple, the process
translates +d to absolute play time now+d. To play an
event triple, the process translates E+d to absolute
play time time(E)+d. For example, if event t1_s
happens at the 600th second, and t1_e happens at the
1200th second, then <session#t=t1_s,t1_e> is
translated to <session#t=600,1200>.

The play process automatically compensates the
network delay by adjusting the play interval. To
illustrate this effect, suppose browser B sends
browser A the <sync> triple: <URI5#t=20,30>

<sync> <URI6> when the current play time of URI5
at browser A is 19. When browser A receives the
triple in 2 seconds, the current play time of URI5 has
advanced to 21=19+2. Browser A will then play
URI6 only for 9 seconds. This approach never
rewinds a subject resource in play although it may
abbreviate the play intervals of object resources. It is
a reasonable approach if the network delay is
relatively small compared to the play intervals. An
alternative approach outlined in (Pan, 2012) is to
“rewind” URI5 back to 20 to play URI6 for 10
seconds. However, such approach will not work if
there are multiple conflicting “rewind” actions.

3.2 The <Mirror> Predicate

We propose <mirror> RDF predicate whose subject
and object identify resources from the same source,
as illustrated in Figure 4.

Figure 4: Resource model for <mirror> linkage.

For example, <A_URI1> <mirror> <B_URI1>
indicates the two URIs in Figure 2 identify two
resources whose streams come from the same video
camera. The <mirror> linkage is not equivalent to
RTP SSRC (Perkins, 2008), because two resources
in the <mirror> linkage can have different SSRC
values. For example, a media device may mix a
video stream1 with an advertisement stream2 to
create a picture-in-picture stream3. Although
stream1 and stream3 have different SSRC, they are
still regarded as the same by users because their
main contents are the same.

The <mirror> closures can be computed based on
the following properties:

1. Commutative: X <mirror> Y => Y
<mirror> X

2. Transitive: X <mirror> Y, Y <mirror> Z
=> X <mirror> Z

With these closures, the translation between <sync>
triples is straightforward as shown in Figure 5.

Hypermodal�-�Dynamic�Media�Synchronization�and�Coordination�between�WebRTC�Browsers

77

Figure 5: translation based on <mirror> closures.

4 TREE INITIALIZATION

When a user joins a collaboration session, the
synchronization tree is initialized automatically by
the system with the session and whatever media
streams the user chooses to send and receive. To
avoid performance overhead, the best approach is to
embed the tree initialization protocol within the
regular session establishment protocol. Figure 6
illustrates this technique using WebRTC
offer/answer protocol (Rosenberg, 2002) with two
additional messages ack and ok. The server sends
the browsers the session URI and play time in
regular answer (t1 at step 6) and ack (t2 at step 8)
messages so that browsers can attach local media
resources to the session at the correct time. The
browsers send the server the correlation relations in
ack (step 7) and ok (step 11) messages so that the
server can derive the <mirror> relations between
local URIs from the correlations. The correlation is
established from media stream identifier (msid)
maintained by WebRTC API.

When a browser wants to attach a resource to the
session, it must know the current session time.
However, the session time is maintained by the
server clock, whose rate is unknown to the browser.
One solution is to synchronize the clocks of the
browsers and the server. But this requires additional
protocol stack (e.g. NTP), which is often not
available on the browsers and servers. This paper
proposes two alternative approaches without
requiring any dedicated time synchronization
protocol.

In the server-based approach, the browsers use
relative delay URI and let the server to figure out the
session play time. For example, browser A can send
<URI0#t=+0> <sync> <A_URI1> to the server,
which calculates the session play time tx by:
tx=now–d(S,X) according to the current session

time now and the network delay d(S,X)≥0 between
the browser and the server. The advantage of this
approach is that the browser does not need to know
the session time maintained by the server. The
constraint is that the server needs to store the
synchronization trees for the browsers.

Figure 6: Tree initialization and correlation process.

In the client-based approach, each browser estimates
the current session play time using its own clock.
When a browser first receives the session time t0 at
its local time t1, it records these numbers. When it
sends a <sync> triple at time t2≥t1, it estimates the
current session time tx by: tx=t0+t2‐t1 and uses
tx in the <sync> triple. The advantage of this
approach is that server does have to store the
synchronization trees. The disadvantage is that the
estimated session time may be inaccurate when the
client clock differs from the server clock.

5 SYNCHRONIZATION TREE
REST API

In our system, users can frequently add <sync>
triples, update the triples, or delete a triple. Users
may also navigate and explore synchronization trees.
Different user agents may accept different formats of
a synchronization tree, e.g. XML, JSON or RDF
Turtle (Manola, 2007). Servers and user agents need
to cache and store the trees at different locations and
formats. These use cases led us to choose REST API
to encapsulate the synchronization trees.

There are several approaches (Gearon, 2013,
Sesame REST API, Berners-Lee 2001, Tummarello
2007) to update RDF graphs using REST API (ref).

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

78

However, these approaches treat the entire RDF
repository (i.e. a synchronization tree in our case) as
a resource. To locate a RDF triple in the repository,
a client must specify the subject, predicate and
object of the triple. However, in a concurrent
system, a client’s knowledge about a triple will be
out of date if other clients have changed the triple.

To address this problem and to reduce message
size, our REST API treats each <sync> triple as a
resource and assigns it a unique URI that does not
change, which can be easily achieved because many
RDF packages such as Jena (Jena) assigns unique
internal identifiers to RDF triples. With this URI, a
client can locate any <sync> triple without
specifying its current state. This idea is illustrated in
Figure 7 where each rectangle enclosing a <sync>
triple represents a REST resource with a unique
URI. For example, the triple: <URI_0#T01> <sync>
<URI_X#TX0> is a REST resource identified by
URI_triple1.

Figure 7: Resource model of synchronization tree.

However, these REST resources are not
connected as the rectangles do not intersect. To
address this problem, we introduce the concept of
super node, represented by ovals that enclose the
objects and subjects of different <sync> triples
which share the same base URI (URI without
fragment). For example, the super node URI_X
contains URI_X#TX0 of URI_triple1, URI_X#TX1 of
URI_triple2, and URI_X#TX2 of URI_triple3.
Because URI_X#TX1 and URI_X#TX2 are the
children of URI_X#TX0, we map these relations to
the corresponding REST resources to connect them
as follows:

<URI_triple1> <child> <URI_triple2>
<URI_triple1> <child> <URI_triple3>

At the top of Figure 7 is a root super node that
contains a set of “sibling” URIs: URI_0#T01 of

URI_triple1 and URI_0#T02 of URI_triple4.
Similarly, we map this relation to the REST
resources to connect them:

<URI_triple1> <sibling> <URI_triple4>

The members of a super node are updated
whenever a new <sync> triple X is attached to an
existing <sync> triple Y by the following rule: assert
relation: <Y> <child> <X> if the subject of X has
the same base URI as the object of Y. For new triple
without parents, the REST API attaches them to an
internal subject, so they can be checked for
<sibling> relations.

5.1 Create Triple

Figure 8 shows POST request and response to add
new triples to a tree resource identified by
URI_tree, or to attach new <sync> triples to an
existing one, by replacing URI_tree with the URI to
the triple.

Figure 8: create a <sync> triple.

5.2 Retrieve Triple

Figure 9 shows the GET request and response that
returns the requested triple and its neighbors
connected by super nodes.

Figure 9: retrieve a <sync> triple.

5.3 Update and Delete Triple

Figure 10 shows three ways to update a <sync>
triple: 1) subject interval; 2) object interval; or 3)
both subject and object intervals.

We use DELETE message to a <sync> resource
to delete it, which will stop its playback and remove
all its child <sync> triples.

Hypermodal�-�Dynamic�Media�Synchronization�and�Coordination�between�WebRTC�Browsers

79

Figure 10: 3 update a <sync> triple.

6 PROTOTYPE SYSTEM

A prototype Hypermodal system was implemented
based on the open source Mozilla Popcorn Maker
engine (Popcorn Maker) and Jena RDF package
(Jena).

Mozilla Popcorn Maker engine is implemented
in JavaScript and runs in Web browsers. The engine
allows a user to layer multimedia resources, such as
YouTube video, Google map and Twitter stream, on
a time axis. Users can change the start time and
duration of the layered media during playback, and
control the playback of these media with start, stop,
seek, pause and resume actions.

We integrated a WebRTC call control module
into Popcorn Maker so that users can make
audio/video calls through the Web server. During
the call negotiation, the Web server and the Web
browsers initialize the synchronization trees as
described in Section 4. We modified the Popcorn
Maker to detect relevant events at one Popcorn
Maker instance, translate these events to the REST
API messages, and send these messages over
WebSocket to the Web server as described in
Section 5. The Web server will translate the
messages based on <mirror> relations and broadcast
them to the Popcorn Maker instances in other
browsers.

Two screenshots of the modified Popcorn Maker
interface are shown in Figure 11 for Alice (top) and
Bob (bottom). Here Alice added a Google map
beneath her video and the map is displayed on Bob’s
screen under Alice’s video. Similarly, Bob added a
recorded video to his video, and this video is shown
on Alice’s screen below Bob. Other Web resources,
including Wikipedia page, Twitter page, chat
window and images, can be added to the
synchronization trees by the users as well.

We tested the performance of the system at the
Web browsers (Lenovo Thinkpad 420 with Intel
Core i5 2520M 2.50GHz (Dual Core) and 4.0GB
RAM, 32-bit Windows 7 Professional) and the Web

server (Dell OptiPlex 990 Mini Tower with Intel®
Core™ i7 2600 Processor (3.4GHz, 8M), 16GB
RAM, 64-bit Windows® 7 Professional) in a LAN
environment, when users add new <sync> triples or
modify them. For each operation, the following 4
time measurements were recorded.

1. BT: browser translates UI action to RDF
triples and sends them in REST API request.

2. SP: the server parses the triples in request
and stores them in Jena RDF models.

3. ST: the server translates the request triples
and broadcasts them to other browsers.

4. BR: round-trip time at the browser from
sending REST API request to receiving
response.

Figure 11: Screenshots of Hypermodal prototype system.

The following tables summarize the results (in
millisecond) for adding the triples (top) and updating
the triples (bottom) respectively, each averaged over
20 runs.

Table 1: Task time for adding and updating triples.

Time/task BT SP ST BR
mean 47.55 0.66 0.10 18.45
std 7.98 0.34 0.01 1.93

Time/task BT SP ST BR
mean 14.05 0.21 0.24 6.9
std 1.93 0.04 0.05 0.85

These experimental results indicated that the
proposed approach is feasible and promising since
the total server processing time is less than 1 ms and

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

80

the total round-trip delay at browsers is 66 ms for
adding triples and 21 ms for updating triples.

7 CONCLUSIONS

The contributions of this paper are summarized as
follows.
1. A synchronization tree model based on

temporal linkage defined by RDF <sync>
predicate to allow dynamic modifications to the
tree while the resources in the tree are playing.

2. A RDF <mirror> predicate and a new protocol
to correlate and initialize distributed
synchronization trees so that updates to one
tree can be correctly translated to another tree
without clock synchronization.

3. A novel REST API to support efficient updates
on synchronization trees by treating <sync>
triples as REST resources and connect them
through super nodes.

For future work, we plan to extend the temporal
linkage to spatial regions and objects in resources,
study multimedia resource cache mechanisms for
efficient constructions of synchronization trees, and
security mechanisms to prevent unauthorized and
malicious updates to synchronization trees, and
apply the described Hypermodal system to more
complex real-time collaboration applications.

REFERENCES

Bergkvist, A. et al (ed): WebRTC 1.0: Real-time
Communication Between Browsers, W3C Editor's
Draft 30 August 2013, http://dev.w3.org/2011/
webrtc/editor/webrtc.html, Last Access: October 10,
2013.

Berners-Lee, T.: Weaving the Web, Harper, 2000.
Berners-Lee, T. et al: Delta: an ontology for the

distribution of differences between RDF graphs, 2001,
http://www.w3.org/DesignIssues/Diff, Last Access:
October 10, 2013.

Bulterman D. et al (ed): Synchronized Multimedia
Integration Language (SMIL 3.0), W3C
Recommendation 01 December 2008, http://
www.w3.org/TR/SMIL3/, Last Access: October 10,
2013.

Gearon, P. et al (ed): SPARQL 1.1 Update, W3C
Recommendation 21 March 2013, http://www.w3.
org/TR/sparql11-update/, Last Access: October 10,
2013.

Jena: http://jena.apache.org/, Last Access: October 10,
2013.

Li, Y. et al: Synote: Weaving Media Fragments and
Linked Data, LDOW2012, April 16, 2012, Lyon,
France, http://events.linkeddata.org/ldow2012/papers/
ldow2012-paper-01.pdf, Last Access: October 10,
2013.

Manola, F. et al (ed): RDF Primer — Turtle version,
http://www.w3.org/2007/02/turtle/primer/, Last
Access: October 10, 2013.

Nixon, L. J. B.: The Importance of Linked Media to the
Future Web, WWW 2013 Companion, May 13–17,
2013, Rio de Janeiro, Brazil, http://www2013.
wwwconference.org/companion/p455.pdf, Last
Access: October 10, 2013.

Oehme, P. et al: The Chrooma+ Approach to Enrich Video
Content using HTML5, WWW 2013 Companion, May
13–17, 2013, Rio de Janeiro, Brazil. pages 479-480.

Pan, J., Li, L., Chou, W.: Real-Time Collaborative Video
Watching on Mobile Devices with REST Services,
2012 Third FTRA International Conference on
Mobile, Ubiquitous, and Intelligent Computing, pages
29-34, Vancouver, Canada, June 26-28, 2012.

Perkins, P.: RTP, Audio and Video for the Internet,
Addison-Wesley, 2008.

Popcorn Maker: https://popcorn.webmaker.org/, Last
Access: October 10, 2013.

Rescorla, E.: Notes on security for browser-based
screen/application sharing, March 11, 2013, http://
lists.w3.org/Archives/Public/public-webrtc/2013Mar/
0024.html, Last Access: October 10, 2013.

Rosenberg, J. et al: RFC3264: An Offer/Answer Model
with the Session Description Protocol (SDP), June
2002, http://www.ietf.org/rfc/rfc3264.txt, Last Access:
October 10, 2013.

Sesame REST API: http://openrdf.callimachus.net/
sesame/2.7/docs/users.docbook?view, Last Access:
October 10, 2013.

Skype: https://support.skype.com/en/faq/FA1417/how-
much-bandwidth-does-skype-need, Last Access:
October 10, 2013.

Troncy, R. et al (ed): Media Fragments URI 1.0 (basic),
W3C Recommendation 25 September 2012,
http://www.w3.org/TR/media-frags/, Last Access:
October 10, 2013.

Tummarello, G. et al: RDFSync: efficient remote
synchronization of RDF models, The Semantic Web,
Lecture Notes in Computer Science, Volume 4825.
ISBN 978-3-540-76297-3. Springer-Verlag Berlin
Heidelberg, 2007, p. 537, http://iswc2007.
semanticweb.org/papers/533.pdf, Last Access:
October 10, 2013.

WebRTC Chrome: http://www.webrtc.org/chrome, Last
Access: October 10, 2013.

WebRTC Firefox: http://www.webrtc.org/firefox, Last
Access: October 10, 2013.

Hypermodal�-�Dynamic�Media�Synchronization�and�Coordination�between�WebRTC�Browsers

81

