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Abstract: This paper describes a Web based real-time collaboration system, Hypermodal, based on the concept of 
temporal linkage between resources. The system allows the users to construct, manipulate and exchange 
temporal linkages organized as synchronization trees. The temporal linkage is defined by RDF <sync> 
predicate based on a novel use of Media Fragments URI and permits on-the-fly tree updates while the 
resources in the tree are playing. We propose RDF <mirror> predicate and a new protocol to correlate and 
initialize distributed synchronization trees without requiring clock synchronization. Moreover, we develop a 
new REST API optimized for efficient tree updates and navigations based on super nodes. The preliminary 
test results on a prototype system show the approach is feasible and promising.  

1 INTRODUCTION 

The true power of the Web is to organize distributed 
information in an unconstrained way through 
hypertext (Berners-Lee, 2000). With the vast amount 
of multimedia resources on the Web and the advent 
of WebRTC, there is an acute need to be able to link 
these real-time multimedia resources in an accurate 
and meaningful way.  

The continuous nature of multimedia resources 
makes it insufficient to link them the way we link 
discrete documents or images. What we need is a 
new type of temporal linkage that can link intervals, 
regions or objects within multimedia resources. The 
application domains of such technology are wide 
open. We can link a person in a video stream to his 
home page so that the conference participants can 
find more about him without asking. When 
discussing a trip to Barcelona Spain, we can link the 
conversation to a Google map, a Wikipedia page, 
and a public transportation page about the city. 
Users of MOOCS websites can link part of an online 
video lecture to relevant segments of another video 
during a live discussion such that students can learn 
the same concepts from different professors. The 
agents that link the resources can also be machine 
programs, such as Speech Recognition, Machine 
Translation, or Face Tracking and Detection 

engines. For example, a moderator can schedule 
conference topics and a topic search engine can link 
resources relevant to the topics on time into the 
conference.  

Temporal linkages can even link discrete 
resources without a temporal dimension, by treating 
them as continuous resources whose content does 
not change in small time scale. They can also link 
abstract resources that have a temporal dimension 
but no intrinsic content, such as a session. This 
generalization gives us the ability to temporarily link 
any types of resources in anywhere in a uniform 
way. 

This paper describes a real-time collaboration 
system Hypermodal based on the concept of 
temporal linkage. The system allows the users to 
construct, manipulate and exchange temporal 
linkages in a meaningful way in real-time. Our goal 
is to create a mutual feedback loop between the 
system and the Web: any Web resources can be 
linked to the system and the links created by the 
system become part of the Web. To achieve this 
goal, we use as many standards as possible such that 
the components processing the temporal linkages 
can be developed independently but fully 
interoperate. Under this guideline, we address the 
following research issues in this paper. 

If not constrained, the temporal linkages can
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 form an arbitrary directed graph which is difficult to 
manage for both users and machines. To solve this 
problem, we propose RDF <sync> predicate to 
define a generic temporal linkage based on a novel 
use of W3C Media Fragments URI standard 
(Troncy, 2012), such that we can construct 
synchronization trees, instead of directed graphs, to 
represent temporal linkages.  

During a collaboration session, the 
synchronization trees are not static but are 
constructed incrementally and may change at any 
time when the resources in the tree are playing. To 
support on-the-fly updates, we develop a mechanism 
to play individual <sync> linkages without 
interrupting the resources in play. 

In our system, whenever a user modifies a 
synchronization tree, the modification may 
propagate to other remote trees so all users have the 
same view. However, WebRTC Web browsers 
assign different URIs to the same multimedia 
resource, making it impossible to exchange <sync> 
linkages between synchronization trees that share 
the same resource. To address this problem, we 
propose RDF <mirror> predicate and a new protocol 
to correlate and initialize distributed synchronization 
trees without requiring clock synchronization 
between browsers and servers. 

The components in our system need a protocol to 
communicate their updates to the synchronization 
trees. However, current RDF query and update 
languages are not designed for efficient updates to 
synchronization trees. To address this problem, we 
develop a novel REST API to navigate and update 
synchronization trees based on the concept of super 
node. 

The rest of this paper is organized as follows. 
Section 2 surveys the related work. Section 3 defines 
the synchronization tree based on the <sync> and 
<mirror> relations. Section 4 describes how to 
initialize synchronization trees using WebRTC call 
control protocol. Section 5 introduces the REST API 
for managing the synchronization. Section 6 
describes our prototype implementation and 
experimental results, and we conclude the paper 
with Section 7.  

2 RELATED WORK 

The approach described in this paper is different 
from the screen/application sharing offered by many 
Web conference systems. In screen sharing, shared 
content is read-only to all users except the owner, 
whereas in our approach, shared resources are 

interactive to all users. Screen sharing requires more 
network bandwidth to send the encoded video than 
the REST API to coordinate distributed 
synchronization trees. For example, Skype (Skype, 
2013) requires at least 128 kbits/s for screen sharing, 
whereas we estimate the bandwidth required by our 
REST API is lower than 5 kbits/s. Furthermore, 
screen sharing creates a loophole for the Same 
Origin Policy (Rescorla, 2013), whereas our 
approach enforces this policy. 

WebRTC (Bergkvist, 2013) is an ongoing joint 
effort between W3C and IETF to develop Web 
(JavaScript) and Internet (codec and protocol) 
standards to enable P2P real-time communication 
between Web browsers without any external plug-
ins. Several open source Web browsers, including 
Chrome (WebRTC Chrome) and Firefox (WebRTC 
Firefox), already support some WebRTC functions 
and demonstrate certain degree of interoperability.  

SMIL (Bulterman, 2008) is a XML dialect to 
express temporal synchronization between 
multimedia resources. However, SMIL does not 
support dynamic media synchronization. Once a 
SMIL document begins to play, we cannot modify 
the document to add new media or change the 
synchronization relations between existing media. 

Nixon (Nixon, 2013) describes a research agenda 
for Linked Media, inspired by the Linked Data 
initiative, where the main approach is to link 
multimedia based on the conceptual relations 
between the fragments of the multimedia. Li et al 
(Li, 2012) describes Synote, a system to interlink 
multimedia fragments based on RDF and Media 
Fragments URI. Oehme et al (Oehme, 2013) 
describes a system to link a video to Web resources 
and overlay the resources on top of the video. 
Mozilla Popcorn Maker (Popcorn Maker) is an open 
source JavaScript library that allows a user to create 
multimedia presentations by layering Web 
information, e.g. Google map or Wikipedia page, at 
different intervals and regions of an online video.  

However, all these approaches are for single user 
presentations or based on ad-hoc languages, not for 
multi-user and on-the-fly resource synchronization 
based on temporal linkage. 

3 SYNCHRONIZATION TREE 

Figure 1 illustrates the smallest Hypermodal system 
with two Web browsers connected by a Web server, 
where the synchronization trees are stored in the 
browsers and the <mirror> linkages are stored on the 
server.  
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Figure 1: Basic Hypermodal system architecture. 

A synchronization tree consists of nodes that define 
the intervals of resources based on Media Fragments 
URI, and edges that define temporal linkages 
between the nodes based on our RDF <sync> 
predicate, as illustrated in Figure 2, where the nodes 
are rendered as horizontal lines, whose lengths 
indicate the intervals, and the edges as vertical 
arrows whose positions indicate synchronization 
points. Both trees are rooted at the same session 
resource identified by URI0. The <mirror> linkages 
that link the same resources shared between the trees 
are rendered as the curved arrows. 

 

 

Figure 2: Correlations between tree A (top) and tree B 
(bottom). 

Synchronization tree does not constrain the 
resources in any way as long as they can be 
identified by Media Fragments URI. For example, 

we can even synchronize two different intervals of 
the same video.  If we treat the unique resources, not 
the intervals of the resources, as nodes, they can 
form a directed graph linked by the <sync> linkage. 
However, a tree is a more accurate representation of 
<sync> linkages, because different intervals of the 
same resource can be updated independently as 
distinct resources. For instance in Figure 2, the same 
Wikipedia page (URI6) occurs as two nodes in two 
<sync> linkages (A4 and A7).  When one linkage is 
changed, the other one is not affected. But if the 
page is changed, it will be reflected on both 
linkages. 

Synchronization trees are constructed 
dynamically when the resources in the tree are 
playing: 1) new edges can be added anywhere by 
inserting RDF <sync> triples (edges); 2) the 
intervals and synchronization points of a resource 
can be changed by modifying the Media Fragments 
URI (nodes). This process is detailed in Sections 4 
and 5. 

3.1 The <Sync> Predicate 

We propose <sync> RDF predicate whose subject 
and object are Media Fragments URIs. If 
xs,xe,ys,ye are nonnegative integers that denote 
the start and end time of a resource in second, then 
the canonical triple: 

<URI_X#t=xs,xe> <sync> <URI_Y#t=ys,ye> 
instructs the user agent to play the interval [sy,ey) 
of resource URI_Y within the interval [sx,ex) of 
resource URI_X. For example, the following triple: 

<A_URI1#t=50> <sync> <URI5#t=30,120>  

plays the interval [30, 120) of resource URI5 when 
resource A_URI1 reaches the 50th second and before 
it ends.  

The <sync> linkage assigns different meanings 
to Media Fragments URI based its role in a <sync> 
triple: the subject interval [xs,xe) defines 
synchronization points on URI_X,  not a new 
resource extracted from URI_X, whereas the object 
interval [ys,ye)  defines a new resource extracted 
from URI_Y. This is why we can simultaneously 
attach many resources to intervals of URI_X while 
URI_X is playing, but at the same time maintain the 
tree structure by breaking URI_Y into independent 
portions.  

The canonical <sync> triple requires the user 
agents to know the absolute play time of resources. 
This is difficult in distributed system when the 
machine clocks are not synchronized. To address 
this problem, we introduce two extensions to Media 
Fragments URI: relative delay and event 

Web Server 
<mirror> triples 

Translation 

Page A 
Tree A  
<sync> 

Page B 
Tree B 
<sync> 

Browser A 
Web RTC  

Browser B 
Web RTC  

Web 

RTP media 

REST API REST API 
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synchronizations. If d and r are positive numbers, 
then the relative delay triple: 

<URI_X#t=+d,+r> <sync> <URI_Y#t=ys,ye> 

plays an interval of URI_Y within the interval 
[now+d,  now+d+r) of resource URI_X, where now 
denotes the normal play time of resource URI_X 
when the triple is to be played. 

Event synchronization is borrowed from SMIL 
(Bulterman 2008). If E1  and  E2 denote events 
generated by resource URI_X, then the triple: 
<URI_X#t=E1+d,E2+r> <sync> <URI_Y#t=ys,ye> 

defines the resource play interval based on the time 
of the events. For example, to automatically display 
the PowerPoint at URI_Y when topic t1  is being 
discussed in the session that generates event t1_s 
when t1 starts and event t1_e when the topic ends, 
we could use the following triple: 

<session#t=t1_s,t1_e> <sync> <URI_Y> 

To play a canonical <sync> triple while the 
subject resource is playing, we use the process 
depicted in Figure 3, which takes the current subject 
play time and a <sync> triple as input, calculates the 
actual play time of the object resource, and produces 
a task as output. A <sync> triple can specify any 
start and end times, and it can be played at any time, 
but the process makes sure the actual play interval of 
the object resource is always within the current play 
time and the specified end time of the subject 
resource. If this is impossible, the object resource 
will not be played. 

 

Figure 3: Process to play a <sync> triple. 

To play a relative delay triple, the process 
translates +d to absolute play time now+d. To play an 
event triple, the process translates E+d to absolute 
play time time(E)+d. For example, if event t1_s 
happens at the 600th second, and t1_e happens at the 
1200th second, then <session#t=t1_s,t1_e>  is 
translated to <session#t=600,1200>.  

The play process automatically compensates the 
network delay by adjusting the play interval. To 
illustrate this effect, suppose browser B sends 
browser A the <sync> triple: <URI5#t=20,30> 

<sync> <URI6> when the current play time of URI5 
at browser A is 19. When browser A receives the 
triple in 2 seconds, the current play time of URI5 has 
advanced to 21=19+2. Browser A will then play 
URI6 only for 9 seconds. This approach never 
rewinds a subject resource in play although it may 
abbreviate the play intervals of object resources. It is 
a reasonable approach if the network delay is 
relatively small compared to the play intervals. An 
alternative approach outlined in (Pan, 2012) is to 
“rewind” URI5 back to 20 to play URI6 for 10 
seconds. However, such approach will not work if 
there are multiple conflicting “rewind” actions. 

3.2 The <Mirror> Predicate 

We propose <mirror> RDF predicate whose subject 
and object identify resources from the same source, 
as illustrated in Figure 4.  

 

Figure 4: Resource model for <mirror> linkage. 

For example, <A_URI1>  <mirror>  <B_URI1> 
indicates the two URIs in Figure 2 identify two 
resources whose streams come from the same video 
camera. The <mirror> linkage is not equivalent to 
RTP SSRC (Perkins, 2008), because two resources 
in the <mirror> linkage can have different SSRC 
values. For example, a media device may mix a 
video stream1 with an advertisement stream2 to 
create a picture-in-picture stream3. Although 
stream1 and stream3 have different SSRC, they are 
still regarded as the same by users because their 
main contents are the same. 

The <mirror> closures can be computed based on 
the following properties: 

1. Commutative: X  <mirror>  Y  =>  Y 
<mirror> X 

2. Transitive: X  <mirror>  Y,  Y  <mirror>  Z 
=> X <mirror> Z 

With these closures, the translation between <sync> 
triples is straightforward as shown in Figure 5. 
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Figure 5: translation based on <mirror> closures. 

4 TREE INITIALIZATION 

When a user joins a collaboration session, the 
synchronization tree is initialized automatically by 
the system with the session and whatever media 
streams the user chooses to send and receive. To 
avoid performance overhead, the best approach is to 
embed the tree initialization protocol within the 
regular session establishment protocol. Figure 6 
illustrates this technique using WebRTC 
offer/answer protocol (Rosenberg, 2002) with two 
additional messages ack and ok. The server sends 
the browsers the session URI and play time in 
regular answer (t1 at step 6) and ack (t2 at step 8) 
messages so that browsers can attach local media 
resources to the session at the correct time. The 
browsers send the server the correlation relations in 
ack (step 7) and ok (step 11) messages so that the 
server can derive the <mirror> relations between 
local URIs from the correlations. The correlation is 
established from media stream identifier (msid) 
maintained by WebRTC API.  

When a browser wants to attach a resource to the 
session, it must know the current session time. 
However, the session time is maintained by the 
server clock, whose rate is unknown to the browser. 
One solution is to synchronize the clocks of the 
browsers and the server. But this requires additional 
protocol stack (e.g. NTP), which is often not 
available on the browsers and servers. This paper 
proposes two alternative approaches without 
requiring any dedicated time synchronization 
protocol. 

In the server-based approach, the browsers use 
relative delay URI and let the server to figure out the 
session play time. For example, browser A can send 
<URI0#t=+0>  <sync>  <A_URI1>  to the server, 
which calculates the session play time tx by: 
tx=now–d(S,X)  according to the current session 

time now and the network delay d(S,X)≥0 between 
the browser and the server. The advantage of this 
approach is that the browser does not need to know 
the session time maintained by the server. The 
constraint is that the server needs to store the 
synchronization trees for the browsers. 

 
Figure 6: Tree initialization and correlation process. 

In the client-based approach, each browser estimates 
the current session play time using its own clock. 
When a browser first receives the session time t0 at 
its local time t1, it records these numbers. When it 
sends a <sync> triple at time t2≥t1, it estimates the 
current session time tx by: tx=t0+t2‐t1 and uses 
tx in the <sync> triple. The advantage of this 
approach is that server does have to store the 
synchronization trees. The disadvantage is that the 
estimated session time may be inaccurate when the 
client clock differs from the server clock. 

5 SYNCHRONIZATION TREE 
REST API 

In our system, users can frequently add <sync> 
triples, update the triples, or delete a triple.  Users 
may also navigate and explore synchronization trees. 
Different user agents may accept different formats of 
a synchronization tree, e.g. XML, JSON or RDF 
Turtle (Manola, 2007). Servers and user agents need 
to cache and store the trees at different locations and 
formats. These use cases led us to choose REST API 
to encapsulate the synchronization trees.  

There are several approaches (Gearon, 2013, 
Sesame REST API, Berners-Lee 2001, Tummarello 
2007)   to update RDF graphs using REST API (ref). 
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However, these approaches treat the entire RDF 
repository (i.e. a synchronization tree in our case) as 
a resource. To locate a RDF triple in the repository, 
a client must specify the subject, predicate and 
object of the triple. However, in a concurrent 
system, a client’s knowledge about a triple will be 
out of date if other clients have changed the triple.  

To address this problem and to reduce message 
size, our REST API treats each <sync> triple as a 
resource and assigns it a unique URI that does not 
change, which can be easily achieved because many 
RDF packages such as Jena (Jena) assigns unique 
internal identifiers to RDF triples. With this URI, a 
client can locate any <sync> triple without 
specifying its current state. This idea is illustrated in 
Figure 7 where each rectangle enclosing a <sync> 
triple represents a REST resource with a unique 
URI. For example, the triple: <URI_0#T01> <sync> 
<URI_X#TX0>  is a REST resource identified by 
URI_triple1.  

 

Figure 7: Resource model of synchronization tree. 

However, these REST resources are not 
connected as the rectangles do not intersect. To 
address this problem, we introduce the concept of 
super node, represented by ovals that enclose the 
objects and subjects of different <sync> triples 
which share the same base URI (URI without 
fragment). For example, the super node URI_X 
contains URI_X#TX0 of URI_triple1, URI_X#TX1 of 
URI_triple2, and URI_X#TX2  of URI_triple3. 
Because URI_X#TX1  and URI_X#TX2  are the 
children of  URI_X#TX0, we map these relations to 
the corresponding REST resources to connect them 
as follows: 

<URI_triple1> <child> <URI_triple2> 
<URI_triple1> <child> <URI_triple3> 

At the top of Figure 7 is a root super node that 
contains a set of  “sibling” URIs: URI_0#T01 of 

URI_triple1 and URI_0#T02  of URI_triple4. 
Similarly, we map this relation to the REST 
resources to connect them: 

<URI_triple1> <sibling> <URI_triple4> 

The members of a super node are updated 
whenever a new <sync> triple X is attached to an 
existing <sync> triple Y by the following rule: assert 
relation: <Y> <child> <X> if the subject of X has 
the same base URI as the object of Y.  For new triple 
without parents, the REST API attaches them to an 
internal subject, so they can be checked for 
<sibling> relations. 

5.1 Create Triple 

Figure 8 shows POST request and response to add 
new triples to a tree resource identified by 
URI_tree, or to attach new <sync> triples to an 
existing one, by replacing URI_tree with the URI to 
the triple.  

 

Figure 8: create a <sync> triple. 

5.2 Retrieve Triple 

Figure 9 shows the GET request and response that 
returns the requested triple and its neighbors 
connected by super nodes. 

 

Figure 9: retrieve a <sync> triple. 

5.3 Update and Delete Triple 

Figure 10 shows three ways to update a <sync> 
triple: 1) subject interval; 2) object interval; or 3) 
both subject and object intervals. 

We use DELETE message to a <sync> resource 
to delete it, which will stop its playback and remove 
all its child <sync> triples. 
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Figure 10: 3 update a <sync> triple. 

6 PROTOTYPE SYSTEM 

A prototype Hypermodal system was implemented 
based on the open source Mozilla Popcorn Maker 
engine (Popcorn Maker) and Jena RDF package 
(Jena).  

Mozilla Popcorn Maker engine is implemented 
in JavaScript and runs in Web browsers. The engine 
allows a user to layer multimedia resources, such as 
YouTube video, Google map and Twitter stream, on 
a time axis. Users can change the start time and 
duration of the layered media during playback, and 
control the playback of these media with start, stop, 
seek, pause and resume actions.  

We integrated a WebRTC call control module 
into Popcorn Maker so that users can make 
audio/video calls through the Web server.  During 
the call negotiation, the Web server and the Web 
browsers initialize the synchronization trees as 
described in Section 4. We modified the Popcorn 
Maker to detect relevant events at one Popcorn 
Maker instance, translate these events to the REST 
API messages, and send these messages over 
WebSocket to the Web server as described in 
Section 5. The Web server will translate the 
messages based on <mirror> relations and broadcast 
them to the Popcorn Maker instances in other 
browsers.  

Two screenshots of the modified Popcorn Maker 
interface are shown in Figure 11 for Alice (top) and 
Bob (bottom). Here Alice added a Google map 
beneath her video and the map is displayed on Bob’s 
screen under Alice’s video. Similarly, Bob added a 
recorded video to his video, and this video is shown 
on Alice’s screen below Bob. Other Web resources, 
including Wikipedia page, Twitter page, chat 
window and images, can be added to the 
synchronization trees by the users as well. 

We tested the performance of the system at the 
Web browsers (Lenovo Thinkpad 420 with Intel 
Core i5 2520M 2.50GHz (Dual Core) and 4.0GB 
RAM, 32-bit Windows 7 Professional) and the Web 

server (Dell OptiPlex 990 Mini Tower with Intel® 
Core™ i7 2600 Processor (3.4GHz, 8M), 16GB 
RAM, 64-bit Windows® 7 Professional) in a LAN 
environment, when users add new <sync> triples or 
modify them. For each operation, the following 4 
time measurements were recorded. 

1. BT: browser translates UI action to RDF 
triples and sends them in REST API request. 

2. SP: the server parses the triples in request 
and stores them in Jena RDF models. 

3. ST: the server translates the request triples 
and broadcasts them to other browsers. 

4. BR: round-trip time at the browser from 
sending REST API request to receiving 
response. 

  

  

Figure 11: Screenshots of Hypermodal prototype system. 

The following tables summarize the results (in 
millisecond) for adding the triples (top) and updating 
the triples (bottom) respectively, each averaged over 
20 runs. 

Table 1: Task time for adding and updating triples. 

Time/task BT SP ST BR 
mean 47.55 0.66 0.10 18.45
std 7.98 0.34 0.01 1.93

 

Time/task BT SP ST BR 
mean 14.05 0.21 0.24 6.9
std 1.93 0.04 0.05 0.85

 

These experimental results indicated that the 
proposed approach is feasible and promising since 
the total server processing time is less than 1 ms and 
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the total round-trip delay at browsers is 66 ms for 
adding triples and 21 ms for updating triples.  

7 CONCLUSIONS 

The contributions of this paper are summarized as 
follows. 
1. A synchronization tree model based on 

temporal linkage defined by RDF <sync> 
predicate to allow dynamic modifications to the 
tree while the resources in the tree are playing. 

2. A RDF <mirror> predicate and a new protocol 
to correlate and initialize distributed 
synchronization trees so that updates to one 
tree can be correctly translated to another tree 
without clock synchronization. 

3. A novel REST API to support efficient updates 
on synchronization trees by treating <sync> 
triples as REST resources and connect them 
through super nodes. 

For future work, we plan to extend the temporal 
linkage to spatial regions and objects in resources, 
study multimedia resource cache mechanisms for 
efficient constructions of synchronization trees, and 
security mechanisms to prevent unauthorized and 
malicious updates to synchronization trees, and 
apply the described Hypermodal system to more 
complex real-time collaboration applications. 
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