
Dynamic Scheduling for Batch Data Processing in Parallel Systems

Mojahid Saeed Osman, Malick Ndiaye and Abdulrahim Shamayleh
Systems Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia

Keywords: Data Processing, Dynamic Scheduling, Batch Processing.

Abstract: In many operations time factor is a main constraint. Being able to optimally execute them while minimizing
the amount of resources used remain a challenge in many business areas. In this paper we propose a model
to optimally schedule processing a set of tasks which are part of network of operations on processors that
are all capable of handling these tasks. The objective is to process these tasks and operations within a cut-off
time while satisfying all the precedence constraints using the minimum number of resources, i.e. processors.

1 INTRODUCTION

Batch processing and its applications are critical in
most organizations because many common business
processes are amenable to batch processing. It is a
popular problem in both manufacturing and service
industries with a wide range of application such as
chemical plants, virus scanning, banks, etc.

The focus of this work is on batch processing
optimization in financial institutions where end of
day activities and data such as updating information
at the end of the day, generating reports, printing
documents, and other non-interactive tasks must be
completed reliably within a certain business
deadlines. Usually processing start after business
hours at night for a certain number of hours till the
deadline is reached.

Several benefits can be achieved from batch
processing which include shifting the time of the job
processing to when the computing resources are less
busy, it allows the system to use
different priorities for batch and interactive work,
and sharing of computer resources among many
users and programs which will translate into keeping
high overall rate of utilization for resources
especially the expensive ones.

The optimization model developed in this paper
attempts to optimally schedule processing a set of
tasks which are part of network of operations on
processors that are all capable of handling these
tasks. The objective is to process these tasks and
operations within a cut-off time while satisfying all
the precedence constraints using the minimum
number of resources, i.e. processors.

2 LITERATURE SURVEY

In many operations time factor is a main constraint.
Being able to optimally execute them while
minimizing the amount of resources used remain a
challenge in many business areas. Extended
literature is available about various strategies on
scheduling and processing jobs using parallel
systems. These strategies usually depend on the
areas of applications.

In the context of Data Processing, conventional
job scheduling strategies, e.g. FCFS (First Come
First Served), Longest Job First (LJF) Algorithm,
Backfilling, etc., have been studied and their
performance assessed. One can find detailed
classification and a review of optimization methods
in (Mendez et al., 2006). In (Aida, 2000) the author
discusses scheduling performance based on the job
sizes. Most of the algorithms performances are not
sensitive to job sizes while some like the LJF might
be affected.

Beside the conventional approaches, some
authors have introduced heuristic techniques to
manage the allocation of jobs to servers. In (Page et
al, 2010), a Genetic Algorithm are combined with
other heuristic algorithms is efficiently used to
dynamically schedule the tasks minimizing potential
idleness in the context of heterogeneous distrusted
systems. A wide review of heuristics and meta-
heuristics methods for Grid Scheduling problems is
presented in (Xhafa and Abraham, 2010). Different
scheduling criteria are presented to discuss the
complexity and difficulty of achieving efficient Grid
Schedulers.

221Saeed Osman M., Ndiaye M. and Shamayleh A..
Dynamic Scheduling for Batch Data Processing in Parallel Systems.
DOI: 10.5220/0004833002210225
In Proceedings of the 3rd International Conference on Operations Research and Enterprise Systems (ICORES-2014), pages 221-225
ISBN: 978-989-758-017-8
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Other category of studies attempt to minimize
the total makespan without a particular focus on the
allocation rule of jobs to servers. They used different
criteria such as total completion time, total weighted
completion time and makespan, in heuristics
solutions approaches. In (Damodaran and Vélez-
Gallego, 2012), they compare the performance of a
Simulated Annealing (SA) approach, a Modified
Delay (MD) heuristic and a Greedy Randomized
Adaptive Search Procedure (GRASP) in minimizing
the makespan of parallel batch processing machines.
In (Lim and Cho, 2007), the authors propose a CPU
process scheduling algorithm using fuzzy inference
with user models. They classify tasks into three
categories, batch, interactive and real-time
processes, and models user's preferences to each
process class. The algorithm assigns the scheduling
priority of each process according to the class of the
process and user’s preference through the fuzzy
inference. Another important area of application is
in database management systems when queries are
to be addressed. Single query optimization has been
well studied with various strategies depending on the
architecture of the database system, (Mehta et al.,
1993). However the use of batch queries scheduling
in multi-user environment is still to be properly
tackled.

3 BATCH DATA PROCESSES
SCHEDULING PROBLEM

The problem deals with the scheduling and
allocation of a set of data files to a set of processors
for maximizing some performance measures while
satisfying all the priority and precedence constraints.

Data files cannot pre-assign to processors,
however, only data files that are identified available
for IC processing are to be scheduled and allocated
to processors based on the precedence weight and
predetermined scheduling priority. The processing
time of a data file is a function of file size/number of
records, and sizes of data files change after
performing each IC processing task; it can be
assumed that the size of a data file changes
proportionally with the original file size.

Each file may require performing a number of
computing instruction (CI) processing and I/O
reading. CI processing and I/O readings can be
executed in parallel operating systems. CI
processing tasks can split into two or more
processors. CI processing tasks can be processed in
processors until it get interrupted by an I/O reading

task or reaches “end of processing”.
In the processor set, there are several processors

running concurrently (multiprocessing), each
processor is assigned to ONLY one CI processing
task at a time; we cannot perform more than one task
at a time in a single processor. The reservation or
pre-allocation processor is banned.

The notion of interruption must be taken into
account. It is essential to the functioning of the
operating system: a data file A is allocated to a
processor to perform CI processing task, if the
program reaches a reading input-output (I/O) task,
then the data file A is interrupted in order to allow
the processor to run another data file that was
waiting, say B for instance. At the end of the I/O
instruction task, data file A will return in the queue
in a position which depends on an updated
precedence weight and a predefined scheduling
priority (dispatching priority DP) and expect to
benefit again from the processor when its turn
comes. As a result, a task has a total duration that
varies according to the number of concurrent tasks
and multiprocessing – we use these rules to set
priorities among the data files.

4 PROPOSED APPROACH –
BATCH DATA PROCESSES
SCHEDULING (BDPS)
ALGORITHM

We present a dynamic optimization framework for
the batch data processes scheduling based on a
dynamic algorithm. The batch data processes
scheduling (BDPS) algorithm is an iterative process
optimizing the allocation several processors to
different tasks and scheduling batch data processes.

The BDPS uses an iterative approach, Step 1
reflects a preparatory stage where the initial data is
set up and BDPS algorithm begins, then BDPS
enters a loop that includes repetitive steps. The first
task in this loop, Step 2, is to update and increment
the iteration clock by one time unit (estimated by the
time it takes to process the smallest size unit of data
file). At each time T the BDPS algorithm considers
allocating data files available for IC processing to
several processors so Step 3 involves setting up data
files subset; only data files that are not immediately
preceded by other data files can be IC processed at
current time T and, therefore, belong to the data file
subset ('I). In step 3 we also set the data file weight
based precedence/dependency matrix. Next, in Step
4 BDPS solves an integer network optimization

ICORES�2014�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

222

model to determine the allocation of data file, that
are available for IC processing at current time T, to
different processors. This optimization model
requires input parameters that are predetermined
using the precedence matrix and scheduling priority.
In Step 5, BDPS updates the availability of files and
processors. Then in Step 6 the termination condition
is checked and the algorithm continues to repeat
Steps 2-6 as long as there are data files left in queue
using one time unit increment until the termination
condition is satisfied. The steps in the BDPS
algorithm are defined formally next after the
notation is presented. Prior to presenting the steps of
BDPS algorithm in greater detail, we introduce the
notation shown in Table 1.

Table 1: BDPS notations.

 Description
I is the set of all data files at any time t

I 

is a subset of data file that are available for CI processing at
any time t

K is the set of all processors

K 

is a subset of processors to be allocated at any discrete time t

f ti is equal to 1 if data file i is available for CI processing at
discrete time t, and 0 otherwise

lij is equal to 1 if data file j immediately precedes data file i, and
0 otherwise (parameters of precedence/dependency matrix).

qi is equal to the number of times data file i been CI processed;
is incremented by 1 every time data file i being CI processed

ni is equal to the number IC processing tasks required for data
file i

pk is equal 1 if processor/server k is available to receive data file,
and 0 otherwise.

T Clock discrete time
xik is 1 if data file i allocated to processor k, and 0 otherwise
ui The total CPU time required to process data file i
αi The data file weight based precedence/dependency matrix
βi The data file scheduling priority
ei The multiprocessing of data file i
si The data file size at T=0

The main steps of the BDPS algorithm are

detailed as follows.

Given: lij , ni  i and j(i≠j)

Step 1: Initialization
– Set qi

 = 0, pk = 1  i I, kK

Step 2: Update clock
– Set T = 0

Step 3: Setup I  subset

– Set T
if = 1 if 



J

j

T
ijl

1
= 1  i

– if T
if = 1 then set Ii 

– Update data file weight

Set 



J

j
iji l

1
  i

Step 4: Solve the optimization model to allocate data
files to processors
Objective Function:

- Max ik

I

Ii

K

k
ii x 



 1
 (1)

Subject to:

- T

i

K

k
iki Mfxe 

1
 i I  and M≤|K| (2)

- T

k

I

Ii
ik px 




  kK (3)

- 



K

k
jkjj

K

k
ikii xx

11
  i,j I  and i ≠j (4)

- 10 orxik   i I and kK (5)

The objective function (1) maximizes the
performance measures, sum of importance weight
and scheduling priority of individual data files.
Constraint (2) ensures that a data file i must be
available for allocation to a processor. Constraint (3)
ensures that exactly one data file is allocated to a
single processor. Constraint (4) imposes the
precedence rule. Constraint (5) declares that the
decision variable xik is binary.

Step 5: Update T
if Matrix

– If xik = 1 then T
if =0, T

kp =0, T
kp =1, and

 qi = qi + 1  i I  , kK

– If qi = ni then
T

ijl = 0  j else

T
if =1  i & j I  , i ≠j

Step 6: Check termination condition

If  
 


I

i

I

i
ii nq

1 1
 then Stop else Go to Step 2

5 ILLUSTRATIVE EXAMPLE

We illustrate our BDPS approach by solving the
batch data processes scheduling problem shown in
Figure 1. In this problem, 6 data files are to be
scheduled for processing in 2 available processors.

The initial precedence matrix, and data file
weights and sizes at T=0 are given in Tables 2 and 3,
while the required IC processing times, scheduling
priority and multiprocessing of each data file i are
shown in Table 4.

Dynamic�Scheduling�for�Batch�Data�Processing�in�Parallel�Systems

223

Figure 1: Illustrative example problem representation.

Table 2: Precedence Matrix for lij at T=0.

 j
i 1 2 3 4 5 6
1 1 - - - - -
2 - 1 - - - -
3 - - 1 - - -
4 1 1 - 1 - -
5 1 1 1 - 1 -
6 - 1 - 1 1 1

Table 3: Data File Initial Weight and Size at T=0.

 i
 1 2 3 4 5 6
αi 1 1 1 3 4 4
si 2 2 2 2 2 2

Table 4: Required IC processing times, Scheduling
priority and Multiprocessing of Data File i.

 i
 1 2 3 4 5 6

ni 1 2 1 1 1 1
βi 5 1 1 1 1 1
ei 1 2 1 1 1 1

For each discrete time T, we summarize the data

file subsets (I ), weights (αi) based precedence
matrix, and availability (fi) for CI processing in
Table 5. In Table we show the availability of
processors (pk) for CI processing at discrete time T.

Table 5: Data File Weights (αi), subset (I ) and
Availability (fi) for CI processing.

 i
T 1 2 3 4 5 6
0 3| 4| 2| 2 2 1
1 4| 2| 2 2 1
2 4| 2| 2 2 1
3 4| 2| 2 2 1
4 2| 2| 2 1
5 2| 1
6 2| 1
7 1|
8 1|

Files with check marks () are available for IC processing at
that time and, therefore, belong to data file subsets (I’)

The optimal schedule obtained as results of

solving the integer optimization model are reported

in Table 6. Each data file i is allocated to processor k
precisely at time T.

Table 6: BDPS solution for illustrative example.

 i
T 1 2 3 4 5 6
0 k:1 k:2
1 k:2
2 k:1&2
3 k:1&2
4 k:1 k:2
5 ***** Processors are not available****
6 k:1
7 ***** Processors are not available****
8 k:1

The above illustrative example was solved using
GAMS 22.6 using the CPLEX solver. The system
used to solve the BDPS algorithm is a HP PC with
32-bit Windows 7 and Intel(R) Core(TM)2 Duo
CPU 2.80 GHz processor, 4GB of RAM, and a
150GB hard drive. The allocation and dynamic
schedule obtained as final solution reflect the
accuracy of the BDPS model formulations. BDPS
model solved the illustrative example in
approximately 25 CPU milliseconds. It is anticipated
that even if for too large number of data files, BDPS
can still yield optimal solutions in reasonable
computer CPU time and memory.

6 CONCLUSIONS

In this paper, we proposed a dynamic scheduling
algorithm for batch data processing (BDPS) based
on a hybrid approach, heuristic approach with
optimization model. The objective is to schedule and
allocate data files with different sizes, importance
weights, and priorities to the minimum number of
processors for maximizing some performance
measures while satisfying all the precedence
constraints.

The BDPS is a novel approach provides
competitive solutions; the results reveal the
effectiveness of the proposed BDPS approach for
solving dynamic scheduling problem. The
scheduling for batch data in parallel systems is only
one example of a problem that can be modeled as a
dynamic scheduling problem with scheduling
priority and precedence constraints; it is anticipated
that other problems of this type can benefit from the
proposed BDPS algorithm. This effort has the
potential to lead to more improvements to the
dynamic scheduling.

ICORES�2014�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

224

ACKNOWLEDGEMENTS

The authors would like to acknowledge the support
provided by King Fahd University of Petroleum &
Minerals (KFUPM).

REFERENCES

Aida K., 2000. Effect of job size characteristics on Job
scheduling performance. Lecture Notes in Computer
Science Volume 1911, pp 1-17

Damodaran P., Vélez-Gallego M., 2012. A simulated
annealing algorithm to minimize makespan of parallel
batch processing machines with unequal job ready
times. Expert Systems with Applications 39:1451-
1458.

Lim S., Cho S., 2007. Intelligent os process scheduling
using fuzzy inference with user models. Lecture Notes
in Computer Science 4570:725-734

Mehta M., Soloviev V., DeWitt D., 1993. Batch
scheduling in parallel database systems. 9th
International Conference on Data Engineering 400-
410

Mendez C., Cerda J., Grossmann I., 2006. State-of-the-art
review of optimization methods for short-term
scheduling of batch processes. Computers and
Chemical Engineering 30:913-946

Page A., Keane T., Naughton T., 2010. Multi-heuristic
dynamic task allocation using genetic algorithms in a
heterogeneous distributed system. Journal of Parallel
and Distributed Computing 70:758-766

Xhafa F., Abraham A., 2010. Computational models and
heuristic methods for Grid scheduling problems.
Future Generation Computer Systems 26:608-621.

Dynamic�Scheduling�for�Batch�Data�Processing�in�Parallel�Systems

225

