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Abstract: Network design of the supply chain is an important and strategic aspect of logistics management. In this 
paper, we address the network design problem specific to packaged gases (e.g., cylinder) supply chain. We 
propose an integrated framework that allows for the determination of the optimal facility locations, the 
filling plant production capacities, the inventory at plants and hubs, and the number of packages to be routed 
in primary and secondary transportation. We formulate the problem as a mixed integer program and then 
develop a decomposition approach to solve it. We illustrate the proposed framework with numerical 
examples from real-life packaged gases supply chain. The results show that the decomposition approach is 
effective in solving a broad range of problem sizes. We also benchmark the results from the decomposition 
approach by solving the complete packaged gases network design model for smaller test cases. 

1 INTRODUCTION 

Supply chain networks are essential within the world 
wide economic activities. They are fundamental to 
stay competitive in today’s markets through efficient 
delivery of products (e.g., energy, food, 
pharmaceutics, and clothing). The optimal supply 
chain network design is the basis for its efficiency. 
Moreover, the network design is a complex topic as 
it needs to take into account and integrate many 
aspects of real life problems. 

In this paper we consider the packaged gases 
supply chain with its specific characteristics. 
Network configuration in packaged gases (also 
referred as cylinder distribution) is a strategic 
decision that impacts the tactical delivery planning 
and daily scheduling and transportation operations. 
A typical cylinder supply chain network consists of 
filling plants, hubs/distribution centres, and 
customers. Filling plants supply cylinders to hubs 
which distribute them to customers. It is also 
possible for filling plants to directly supply the 
customers. Filling plants and hubs manage cylinder 
stocks in order to enable the supply chain to 
maintain an adequate service level. The agility of the 
supply chain and the operational efficiency are 
constrained by the structure of the network 

determining the flow of material.  
Optimizing the network design problem for 

cylinder distribution consists of determining the 
locations for filling plants/hubs, the production tools 
to be installed at the plants, the primary and the 
secondary flows, as well as the inventory at plants 
and customer locations. The framework based on a 
mixed-integer linear programming (MILP) model is 
developed to capture a real-life packaged gases 
business model. The mathematical model contains 
constraints on network structure, primary 
transportation, i.e., flow of cylinders among 
different supplier locations, secondary 
transportation, i.e., flow of cylinders from supplier 
locations to customers, stock management and assets 
management. The proposed framework has been 
developed by leveraging the best practices and 
knowledge of logistics experts within packaged 
gases supply chain. Therefore, the framework can be 
used to determine a new cylinder supply 
chain/logistics network for a new market or to study 
the impact of change in different elements of the 
supply chain, e.g., when new customer accounts are 
opened or old accounts are closed, change in 
customer demand, impact of new filling centres/hubs 
and assets like filling tools and manpower. We show 
the efficiency of the proposed framework for real-
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life test cases provided by the packaged gases supply 
chain managers. 

The paper is organized as follows. Section 2 
outline the state of the art related to integrated 
supply chain decision models. In Section 3, we 
provide the problem description and in Section 4 we 
represent the mathematical model with the objective 
function and the business constraints. In Section 5, 
we discuss the solution approaches used to solve the 
integrated model. Section 6 presents the obtained 
results and Section 7 concludes the paper with 
possible future research directions. 

2 LITERATURE REVIEW 

The network design problem in packaged gases 
consists of three main sub-problems:  
 Facility location:  It involves the improvement of 

the existing network and the determination of the 
best configuration. 

 Inventory management: It consists of 
determining the best inventory levels at 
hubs/plants.  

 Routing: Optimization of flows determining the 
optimal flows of goods through the network. 
 

The network design problems are complex as they 
involve strategic decisions which influence tactical 
and operational decisions (Crainic and Laporte, 
1997). The strategic decisions are mainly related to 
facility locations, their capacities and what products 
need to be produced at each plant, etc. The tactical 
decisions are related to inventory management and 
manpower, and depend on the strategic decisions 
whereas operational decisions like routing are 
directly related to tactical and strategic decisions 
made earlier. In other words, it means that if facility 
location decisions are sub-optimal, even if 
production, inventory and distribution plans are fully 
optimized, the supply chain may still be operating 
inefficiently. Therefore, for determining the best 
network configuration, all the costs at the three 
levels need to be taken into account to optimize the 
system-wide production, inventory and distribution 
costs. One of the challenges in the network 
configuration is that customer demands and cost 
parameters may change over time and it is very hard 
to change the facility location decisions once a 
supply chain network is configured. Thus, it is 
critical to design a supply chain network that is 
optimal and is not sensitive to changes in the 
operational parameters. The integrated network 
design problem has been usually solved by 

considering the integration of two sub-problems 
while approximating the third one. We provide 
following few approaches in the literature for 
solving the integrated network design problem. 

The facility location problem integrated with 
routing is proved to be NP-complete by Krarup and 
Pruzan (1983). The objective function and the 
constraints of the models they propose are linear. 
The reader is referred to the reviews provided by 
Klose and Drexl (2005) and ReVelle and Eislet 
(2005). The facility location problem and its variants 
have been widely researched on theoretical models 
but the problem is rarely approached from a supply 
chain management and real-life perspective (Melo et 
al., 2009). 

Most of the papers in the literature study the 
integration of two of the above three important 
decisions: location-routing models (LR), inventory-
routing models, and location-inventory (LI) models. 
For reviews on location-routing models, readers can 
refer to Balakrishnan et al. (1987) and Min et al. 
(1998). In LR models, both the location problem and 
the vehicle routing problem (VRP) are typically NP-
hard, which makes the integrated model even more 
complex. In this paper, the VRP problem is solved 
by approximating the routes based on either a 
heuristic approach or historical data. The resulting 
routing costs are then fed as an input to the location 
model. For inventory-routing models, please refer to 
Kleywegt et al. (2002) and Adelman (2003). LI 
models also study the location, inventory and 
distribution coordination issues by either ignoring 
the inventory costs or approximating the non-linear 
costs with linear functions. In this paper, inventory 
costs are considered but assumed to be linear similar 
to some papers that consider inventory costs. Refer 
to the papers Daskin (1999), Shen (2000), and 
Erlebacher (2000) for a better understanding of LI 
models. 

The case that motivated this research deals with 
the network design for packaged gases distribution. 
The problem addressed in the current paper 
combines some elements of LR and LI models to 
determine an optimal network design by minimizing 
the sum of the production costs, the transportation 
costs and the inventory costs. Our mathematical 
model can be classified as a deterministic single-
period MILP model with multiple products applied 
to a three-level network. The main contribution of 
our work is that it integrates supply chain network 
design decisions without fixing the fillings plant 
locations with inventory and resource allocation 
decisions required at the plants. We also consider the 
transportation costs for the entire supply chain 
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including the transhipment costs among different 
facilities by deciding the replenishment frequency. 

3 PROBLEM DESCRIPTION 

We address the network design problem specific to 
packaged gases supply chain occurring in real-life. 
The problem consists of determining the number and 
the location of the production plants and the 
distribution centres, the allocation of customer 
demands to distribution centres, and the allocation of 
distribution centres to production plants. The main 
goal is to identify the optimal configuration for 
producing and delivering packaged gas products to 
customers at the lowest cost while satisfying the 
network constraints. 

More specifically, this network design problem 
aims in helping the decision making on locations for 
building plants, the production tools to be installed 
at the filling plants, the primary and the secondary 
flows, as well as the inventory at plants and hubs. A 
diagram of the packaged gases distribution network 
is shown in the Figure 1. The nodes of the network 
are classified in four categories: filling plants, hubs, 
agent distributors, and end users (or reseller). Each 
location has a certain inventory capacity to satisfy 
customer demand. Customers manage their own 
inventories by placing orders at the right time. 
Therefore, in the current problem we consider the 
inventory decisions only at filling plants and hub 
locations. 

 

 

Figure 1: Diagram of the Distribution Network. 

The arrows in Figure 1 represent the transport of 
packaged gases which is classified as: 
 Primary transport which occurs between filling 

plants and hub locations. 

 Secondary transport which represents the 
transport between hub/filling plants and 
client/agent/reseller locations. 

 Tertiary transport which happens between 
agent/reseller and client locations. 

This paper will not handle the whole distribution 
network but rather will focus on the primary and 
secondary transport. Agents/distributors, resellers 
and end users will all be called customers without 
distinction in the rest of the paper. Since tertiary 
flows happen between customers of different types, 
they are not considered in this problem. The word 
“plant” by itself is referring to both hubs and filling 
plants. In this paper we also assume that the vendor 
who supplies cylinders to the customers owns the 
whole packaged gases supply chain network. 
Therefore, we do not consider any ordering costs 
between different plants. We do consider the 
transportation cost of transhipments among different 
plants which is a function of replenishment periods 
for the primary flows. 

The main goals of the proposed methodology are 
related to the location decisions of plants, 
production, and to the hubs/filling plants transport 
and inventory. The primary goals of the network 
design problem for packaged gases are as follows, 
see also Figure 2: 
 Determine the number and the locations of the 

hubs and the filling plants. 
 Determine the production of different products at 

the filling plants. 
 Determine the primary and the secondary 

transportation cylinder flows, i.e. the customer-
plant allocation decisions. 

 Determine the inventory levels at plants 
consisting of working stock & the safety stocks 
at the plants. 

These four issues are fundamental in the structure of 
a supply chain. Nevertheless, these issues are 
interrelated by the cylinders flows and it is clear that 
it would be a source of improvement to treat them 
all at the same time. A general description of all the 
key aspects of the problem as well as the hypotheses 
assumed at this stage is presented in the following 
sub-sections. 

3.1 Multi-products Network 

We assume that different products may be 
considered while designing the distribution network. 
This means that different products are filled at a 
plant, and transported to others plants and 
customers. Therefore, each product has to be  
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Figure 2: Network design problem. 

characterized depending on its package, its 
composition and the filling tools that are compatible 
with it. 

3.2 Plant Locations and Filling Tools 

The network design problem considers as input a set 
of potential locations already identified. A hub or a 
filling plant may be built on a location if selected by 
the optimizer. The total amount of cylinders 
distributed to the customers are filled on the filling 
plants and delivered from the hubs (or the plants). 
The maximum numbers of plants in the network is a 
function of the number of the potential locations 
provided in the input. 

A product is defined as a cylinder of a given size 
filled with different gases in various percentages. 
The products are filled with gases using filling tools. 
Several different tools may be used at a filling plant; 
each of them allows filling a given set of products 
and has its own production capacity and cost. 

3.3 Cylinder Flows 

Two categories of cylinder flows are considered in 
this problem: primary and secondary. These two 
categories find their differences on two levels: 
 Primary flows are an internal choice of 

optimization of the distribution without direct 
income. They usually go from one vendor site to 
another and require handling during the round 

trip: a tractor pulls a trailer of full products from 
site A to site B, leaves the trailer on site B and 
takes back a trailer of empty products from site B 
to site A. 

 Secondary flows are a direct source of income 
for the vendor as customers have to pay for the 
delivered cylinders. A secondary round trip is 
usually composed with several drops on different 
customers’ sites where full products have to be 
unloaded before empty products are loaded on 
the trailer. 

The transport cost is usually composed of a fixed 
cost and a variable cost. The fixed cost consists of 
truck costs, driver costs, and extra fees and the 
variable cost is dependent on the distance and the 
duration of the round trips. However, we model the 
cost of a round trip with an average variable cost per 
driver distance taking every cost into consideration. 

The handling cost of the cylinders on plants is 
taken into consideration independently. In this 
paper, we are approximating the routing costs to 
serve each customer and therefore, do not consider 
the routing decisions in the model. 

3.4 Primary Transport Cost 

The primary transport cost is quite straightforward to 
estimate. As primary trips are defined as full trailer 
load deliveries in the model, the cost of primary 
round trips between two identified plants can be 
known before solving the network design. 
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3.5 Secondary Transport Cost 

Contrary to the primary transport, secondary 
transport cost is difficult to estimate precisely. In the 
network design model, we do not consider day-to-
day demand data which implies that it is impossible 
to build actual secondary round trips. In the model, 
each customer has a global demand over a year and 
it is not possible to know which customers will order 
on the same day. Also, secondary unit transport 
costs are provided as an input to the problem and 
therefore, the actual costs can not be calculated until 
the plant-customer allocation decisions are made. 
Therefore, we determine the cost to deliver a unit 
cylinder to a customer from each potential location 
by modelling the average round trips during which 
the customer will be delivered. The round trip does 
not consist of a single delivery but multiple 
deliveries and this makes the secondary transport 
cost approximation realistic. For a given customer, 
an average round trip starting from a given plant is 
modelled by: 
 The driven route split in one dispersion ring 

which represents the zone where the delivered 
customers are located and an approach distance 
to go from the plant to the dispersion ring. 

 The average number of customers visited during 
such a round trip. 

 The average number of cylinders delivered 
during such a round trip. 

 

The radius of the dispersion ring (see Figure 3) is set 
for every customer to a value determined 
experimentally from real round trips or from round 
trips generated from a heuristic approach used 
during the pre-processing of data. The heuristic 
approach used is not discussed in this paper. The 
dispersion ring has its centre on the customer under 
consideration. The approach distance is the shortest 
distance from the plant to the dispersion ring. 
Another value found experimentally determines the 
percentage of customers included in the same 
dispersion ring which can be delivered in the same 
round trip. This coefficient aims at correcting the 
fact that one dispersion ring could withhold several 
round trips. The secondary round trips have to 
respect the following constraints: 
 The average number of cylinders delivered 

during the round trip can not exceed the capacity 
of the trailer used. 

 The duration of the round trip can not overcome 
the maximum driver work time. The round trip 
duration is mainly a function of the number of 
customers visited during the trip. 

 

Figure 3: Secondary round trip model. 

3.6 Trucks 

Only two standard trucks are considered in the 
problem. One truck type is dedicated to primary 
transport and the other one to the secondary 
transport. Each type of truck is characterized by its 
capacity, speed and cost per distance travelled. We 
assume no limit on the number of trucks of each 
type that are available for distribution in the model. 

3.7 Inventory Management 

It is important for the cost evaluation of a plant to 
determine the investment cost necessary for the 
stocks on its site. The required stock at a plant is 
composed of: 
 Replenishment stock which includes the products 
filled on the plant everyday and the products 
delivered from other plants at each primary round 
trip. 
 Delivery stock which represents all the products 
which are being delivered to customers and other 
plants every day. When calculating the size of this 
stock, we assume that the same number of products 
is delivered every day for this plant. 

 

The stocks take into consideration the variation of 
demands over a year through a variance of the 
cylinder flows. The variance of the flows is 
supposed to be directly proportional to the average 
volume delivered per day. 

4 MATHEMATICAL MODEL  

To solve the integrated network design problem we 
propose a mixed integer programming model. In this 
section we present the main parameters, decision 
variables and the corresponding mathematical 
model. We consider the design of a three-tiered 
supply chain consisting of filling plants, hubs, and 
customers as described in Section 3. Each customer 
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has deterministic demand. The proposed model 
provides the needed decisions on how many filling 
plants and hubs to locate, where to locate them 
among the list of potential locations, how often to 
replenish the products at the hubs from the filling 
plants, what level of working and safety stocks to 
maintain at the plants, so as to minimize the total 
system costs consisting of total location, 
transportation and inventory costs. In other words, 
the objective is to find the optimal trade-off between 
transportation costs and all the other costs, mainly 
the location costs. Inventory costs are a function of 
the replenishment periods and the demand allocation 
to the plants.  

To simplify the mathematical model, we define 
two units of measure. We define Equivalent 
Cylinder (EqCyl) as the unit of area occupied by a 
50-litre water capacity compressed gas cylinder for 
transportation on a truck. As the model deals with 
more than one product, and a truck is allowed to 
transport many products together, to quantify the 
capacity of the trucks and also to define the demands 
of different customers, EqCyl would be used. We 
also introduce a measure of time called Work Unit 
(WU). A WU is a unit of time to a physical activity 
for which time is the main factor to represent work 
e.g. filling and handling of cylinders. All parameters 
and variables that denote time are expressed in terms 
of WU. 
 
Inputs & Parameters 
 

I: Set of customers 
J: Set of potential locations 
P: Set of products 
T: Set of filling tools 
R: Set of replenishment periods between plants 
fj: Fixed cost (yearly) of locating a filling plant at 
location j, for each j  J 
gj: Fixed cost (yearly) of locating a hub at 
location j, for each j  J 
hj: Fixed inventory holding cost per EqCyl per 
year at location j, for each j  J 
: Fixed cost of a full time employee per year 
: Primary handling productivity at any plant 
(WU/year/employee) 
: Secondary handling productivity at any plant 
(WU/year/employee) 
p: Work time (in WU) needed to handle one 
package of product p at a plant for primary 
transport, for each p  P 
p: Work time (in WU) needed to handle one 
package of product p at a plant for secondary 
transport, for each p  P 

wpt: Work time (in WU) necessary to fill one 
package of product p using tool t, for each p  P 
and t  T 
ap: Area (in EqCyl) occupied by one package of 
product p, for each p  P 
mt: Filling productivity (WU/employee/year) of a 
filling tool t, for each t  T 
bt: Fixed cost of using a tool t per year, for each 
tool t  T 
zt: Maximum time (in WU) available to fill 
packages with tool t per year, for each tool t  T 
spt: Binary parameter, 1 if a filling tool t can fill a 
package of product p, for each p  P and t  T, 0 
otherwise 
ip: Average number of packages consumed 
(yearly) at customer i for product p, for each i  
I and p  P 
p: Variance of demand (yearly) for product p, 
for each p  P 
: Constant representing number of working 
days per year (e.g. 250) 
: Truck capacity for primary transportation 
cr: Average cost per distance travelled during 
primary transport for a replenishment period r, 
for each r  R 
ji: Average cost per EqCyl from location j to 
serve customer i, for each j  J and i  I 
M: Maximum number of tools at any filling plant 
 

Decision Variables 
 

pj: Binary variable, 1 if a filling plant is build on 
location j, for each j  J, 0 otherwise 
qj: Binary variable, 1 if a hub is build on location 
j, for each j  J, 0 otherwise 
ej: Total number of employees working on 
location j, for each j  J 
xjpt: Number of packages of product p filled per 
year at location j by tool t, for each j  J, p  P, 
and t  T, a discrete variable 
jt: Number of filling tools of type t required at 
the location j, for each j  J, and t  T, a discrete 
variable 
ujkr: Binary variable, 1 if primary trips are used 
between locations j & k after replenish period r 
such that j  k, for each j  J, k  J and r  R, 0 
otherwise 
vjkpr: Number of EqCyl of product p delivered 
from location j to location k during primary trips 
undergone every replenish period r such that j  
k, for each j  J, k  J, p  P, and r  R 
ji: Binary variable, 1 if customer i can be 
delivered products from location j , for each j  
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J, i  I, 0 otherwise 
jip: Number of EqCyl of product p delivered 
from location j to customer i during secondary 
trips, for each j  J, i  I, p  P 
jp: Stock at location j of packages of product p, 
for each j  J, p  P 
 

The objective function is composed of five main 
parts as shown below: 
 Fixed costs of hubs and filling plants. 
 Fixed costs of filling tools. 
 Manpower cost dedicated to filling and handling 

packages. 
 Total inventory cost. 
 Transport cost, excluding the handling cost at the 

filling plants and hubs. 
 

Location costs are strategic costs that are incurred 
when configuring the network. The first two terms in 
the objective function ensure that fixed costs for 
either a hub or a filling plant are applied to each 
selected location. Filling tool costs, manpower costs, 
and inventory costs are the costs associated with the 
tactical decisions whereas transport costs are the 
operational costs. The mathematical formulation of 
the objective function is given below in equation (1). 

Minimize	 ∑ ൭൫ݍ௝ െ ௝൯݃௝݌ ൅ ௝݌ ௝݂ ൅௝௃

	 ௝݁ ൅ ∑ 
୰௞௃

௥ோ
௝௞௥ܿ௥ݑ ൅ ∑ ௝௜௝௜௣௜ூ

௣௉
൅

∑ ܽ௣௝௣ ௝݄௣ఢ௉ ൅ ∑ ܾ௧௝௧௧் ൱  

(1)

The business constraints which are related to the 
network structure and flow, primary and secondary 
transport, and inventory management are given 
below, (2) – (11): 

 

௝݌ ൑ ,௝ݍ ∀	݆ ∈ (2) ܬ

௝݁ ൑

∑
		௪೛೟௫ೕ೛೟

௠೟
௣௉
௧்

൅ ∑ ∑
೛
௔೛
൫ݒ௝௞௣௥ ൅௣௉

௥ோ
௞௃

௞௝௣௥൯ݒ ൅ ∑
ఉఏ೛
௔೛

௝௜௣, ∀ ݆ ∈ ௜ூܬ
௣௉

  

(3)

∑ ݎ
൫௩ೕೖ೛ೝା௩ೖೕ೛ೝ൯

௣௉ ൑  ujkr, 

																																												∀ ݆ ∈ ,ܬ ݇ ∈ ,ܬ ݎ ∈
ܴ 

(4)

∑ ௝௝௥௥ோݑ ൑ 0, ∀	݆ ∈ (5) ܬ

∑ ௝௞௥௥ோݑ ൑ 1, ∀	݆ ∈ ,ܬ ݇ ∈ (6) ܬ

∑ ௝௜௣௣௉ ൑ ௝௜ ∑ ܽ௣௣௉ ௜௣,  ∀	݆ ∈ ,ܬ ݅ ∈ (7) ܫ

∑ ௝௧௧் ൑ ∀  ,௝݌ ݆ ∈ (8) ܬ

∑ ௝௣௧௝௃ݔ௣௧ݓ ൑ ௣௧ݏ௧ݖ ∑ ௝௧௝௃ ,  
݌	∀			 ∈ ܲ, ݐ ∈ ܶ  

(9)

∑ ௝௣௧௣௉ݔ௣௧ݓ ൑ ∀ ,௧௝௧ݖ ݆ ∈ ,ܬ ݐ ∈ ܶ (10)

௝௣ ൌ
∑

௫ೕ೛೟

൫1 ൅ ௣൯௧் ൅

ଵା೛
௔೛

൬∑
௩ೖೕ೛ೝ
௔೛

max ሺ1, ሻ௞௃ݎ
௥ோ

൅

∑ ௝௞௣௥௞௃ݒ
௥ோ

൅ ∑ ௝௜௣௜ூ ൰,  

										∀	݆ ∈ ,ܬ ݌
∈ ܲ

(11)

5 SOLUTION APPROACH 

The mathematical formulation of network design is a 
MILP problem. As the traditional facility location 
problem is NP-complete (Krarup and Pruzan, 1983), 
we simplify the model by approximating the routing 
costs. Moreover, in this paper we are dealing with a 
real-life large-scale problem occurring in packaged 
gases supply chain. Therefore, we analysed various 
solving techniques: from near-optimal methods up to 
approximate ones. The near-optimal approach can be 
used for small problem instances whereas 
approximate methods can be applied in the context 
of large-scale problems. Moreover, we can compare 
the near-optimal solutions to the approximate ones 
to benchmark the approximate solutions. In this 
paper, we provide details about the approximate 
approaches in order to achieve a reasonable 
computation time.  

5.1 Mono-product Approximation 

As the number of products occurring in the 
packaged gases network design problem implies 
high complexity, the first approximate approach 
considered consists of grouping the multi-products 
into a single product which we call a mono-product 
problem. To that aim, each product is treated 
relatively to its volume of equivalent cylinder 
(EqCyl) and its type is ignored. Converting multiple 
product constraints into single product constraints 
may cause solution infeasibility; the constraints are 
modified carefully to minimize the likelihood of 
such infeasibility. As the modified model becomes a 
single-product model, variables are no longer 
depending on the number of products available. For 
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example, consider the variable xjpt representing the 
number of packages of product p filled per year at 
location j by tool t, for each j  J, p  P, and t  T. 
In the mono-product approximation, xjpt is changed 
to xjt defining the number of EqCyl of the single 
product filled per year by tool t at location j. 
Similarly, constraints (3), (4), (7), (9), (10), and (11) 
are modified along with the objective function to 
represent a single product network design problem. 

The resulting problem is also a MILP problem 
but we do not show the modified model in this 
paper. The network design problem becomes a 
unique flow problem and thus, it is easier to solve. 
We compare the results of this approach with the 
results obtained by solving the complete model in 
Section 6. It is shown that this approach gives good 
solutions especially for placing the hubs’ locations 
and satisfactory results for secondary transport 
decisions. As this approach does not treat different 
types of products, the number of filling tools 
installed at the filling plants is underestimated 
compared to the optimal solutions. This approach 
can be used when the problem size is very large and 
the main interest is to find the network configuration 
i.e. location of hubs and allocation of customers to 
hubs whereas resource/inventory optimization can 
be done separately. Figure 4 shows the physical 
representation of the mono-product approach.  
 

 

Figure 4: Scheme of Mono-product Approximation. 

5.2 Two-steps Decomposition 

In order to reduce the computation time, a typical 
approach for large-scale problems is based on 
problem decomposition. We consider a two-step 
decomposition approach to generate an approximate 
solution. In the first step of the decomposition 
approach, the hubs’ locations and the hub-customer 
allocation decisions are determined by solving the 
mono-product flow problem with minimization of 
the secondary transportation costs and the hub costs. 

Secondary transportation cost is more a function 
of number of cylinders transported between hubs 

and customers and independent of different 
products. Therefore it is a safe approximation to 
determine hubs through optimization of mono-
product flow problem. In the second-step, the 
residual problem is solved based on the multi-
product model. The second step optimization 
determines if the hub built on a given location is a 
filling plant or not and decides the tools associated 
with this given filling plant by minimizing the 
production and the primary transportation costs 
(tools, sourcing, manpower). Moreover, it optimizes 
the inventory management by defining the frequency 
of trips between plants and the flow quantities for 
the primary transportation. Figure 5 shows the two-
step decomposition decisions graphically.  
 

 

Figure 5: Two-step decomposition decisions. 

The size of the residual problem in the second 
step can be further reduced by grouping the products 
into families of products. The product families are 
created by selecting the products among the most 
requested customer’s products. Thus, the whole set 
of products is aggregated into families of products. 
A family essentially is a set of products that can be 
produced by the same tools. This further reduces the 
problem size and helps to obtain good results in a 
reasonable time compared to the complete problem. 
The grouping does not change the model as it is 
done in the input data. The second-step model is also 
an MILP problem and is still hard to be solved to 
optimality for large-scale network problems. One of 
the reasons of the complexity to solve the second-
step model optimally is that a significant number of 
binary variables still remain to be optimized for 
primary transportation. 

The MILP mathematical models in our testing 
are solved on a 2.66 GHz, 16 GB RAM server using 
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CPLEX®. By tuning the CPLEX parameters, the 
performance of the CPLEX has been improved on 
the test cases used. The upper limit on the number of 
cutting plane passes CPLEX performs when solving 
the root node of a MILP model is set to 1. The 
number of rows in the problem with cuts added is set 
to 30 times the original number of rows. Relaxation 
Induced Neighbourhood Search (RINS) heuristic 
explores the neighbourhood of the current 
incumbent solution to try to find a new, improved 
incumbent after every 70 nodes are visited. It is also 
important to manage the memory problems that 
occur on a server when solving a large-scale 
problem. Therefore, the number of stored solutions 
kept in the solution pool on the server is set to 10. If 
the node file parameter in CPLEX is set to 0, when 
the tree memory limit is reached, optimization is 
terminated. By setting the node file parameter to 3, 
the node files are transferred to disk in compressed 
form and CPLEX actively manages which nodes 
remain in memory for processing. An optimality gap 
has been used for test cases as it is hard to solve the 
test cases for full optimization. The optimality gap 
represents the maximum ratio between the optimal 
solution of the MILP program and its Linear 
Programming (LP) relaxation. In other words, 
optimality gap represents how far the current 
solution is from its lower bound. 

6 NUMERICAL RESULTS 

In this section our objective is to assess the 
performance of the solution approaches considered 
in this paper. The proposed solution approaches 
have been applied to 3 real-life test cases 
(summarized in Table 1) characterizing the network 
design problems occurring within the packaged 
gases distribution networks in different geographical 
zones. The problem size of a test case is determined 
mainly by the number of customers, potential 
locations, types of tools available, and the number of 
products to be distributed. The given test cases are 
very different in terms of problem structure and size. 
This provides a good opportunity to test the 
approaches for different problem settings and 
evaluate their scalability.  

Table 1: Real-life network design test cases. 

Test 
Case 

Customers 
Potential 
Locations 

Tools Products 

1 520 4 3 5 
2 1,964 14 6 4 
3 12,036 26 3 43 

Each test case in Table 1 has been solved by 
different approaches providing near-optimal and 
approximate solutions. It has been observed for the 
small test cases (e.g. containing up to 2000 
customers), a near-optimal solution can be reached 
in a reasonable computation time (e.g. 60 min for 
test case 2). For test cases 1 and 2, the facility 
location decisions i.e. the number and the set of 
locations to be opened as filling plants/hubs from the 
mono-product and the two-steps approaches are 
exactly the same as from the near-optimal solution. 
This shows that both the approximate approaches are 
successful in determining optimal strategic 
decisions. In the test results, mono-product approach 
underestimates the total network cost which is 
expected due to the simplification of the model. 
Therefore, we do not consider mono-approach for 
tactical and operational decisions as it solves an 
approximate model. For test case 1, two-steps 
approach provides the same network cost as from 
the near-optimal method with the same optimality 
gap. 

 

 
Figure 6: Network Design Costs for 3 test cases. 

For test case 2, the two-steps approach provides 
a solution with 1.19% higher network cost than the 
near-optimal solution. For test case 3, the near-
optimal solution was not generated as we could not 
solve the complete problem within an acceptable 
optimality gap. For real-life network design, we 
believe that the computation time in a few hours is 
acceptable due to the fact that the opportunities to 
setup a new supply chain network or completing 
overhauling an existing one are not very frequent. 
The computation time for test cases 1 and 2 with the 
two-steps is relatively small but test case 3 takes 
more than 15 hours to obtain a solution within the 
optimality gap of 0.43%. It is also possible to 
achieve a solution in few hours by increasing the 
optimality gap to 5% as shown in the Table 2. For 
test case 3, the benchmarking of two-steps 
decomposition solution is done by comparing the 
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Table 2: Performance Test Results. 

Test Case Gap (%) Solution Approach 
Solver 

Time (min) 
Total cost 

(Є) 
# Filling Plants # Hubs 

1 
 

0.5 
 

Mono-product 2 561,891 2 3 
Two-steps 6 782,070 2 3 

Near-optimal 4 782,070 2 3 

2 
 

0.5 
 

Mono-product 11 2,147,515 6 11 
Two-steps 593 2,276,267 6 12 

Near-optimal 63 2,303,703 6 12 

3 
0.5 Mono-product 121 19,289,480 11 18 
5.0 Two-steps 332 24,125,572 11 18 
0.43 Two-steps 948 23,160,386 11 18 

 
facility location decisions with a manual solution 
based on the network designer’s experience. The gap 
analysis with the manual solution shows that the 
two-steps solution for test case 3 provides a solution 
with total network cost which is 6.4% less than the 
manual solution. 

Figure 6 shows the different cost components as 
percentages of the total network design cost for test 
case 3 with optimality gap of 0.43%. Figure 6 shows 
that the facility location costs and the secondary 
transportation costs are the highest cost components 
of the total network cost and therefore, have more 
influence on the network design decisions. Since the 
network design model studied in this paper is 
deterministic, we also perform sensitivity analysis to 
check the impact of different parameters on the 
facility location and other network decisions. The 
parameters which are more likely to change over 
time are demand, unit transportation cost, and 
manpower cost.  

 

 

Figure 7: Demand sensitivity analysis. 

Figure 7 shows the location decisions of 
scenarios obtained by changing the demand at each 
customer equally for test case 2 which is solved with 
near-optimal approach. The results show that the 
facility location decisions i.e. the number and the set 
of opened facilities do not change even with more 
than 5% increase or decrease in demand at each 

customer location. The main reason for such 
stability is that we increased the product demand 
equally for all the customers to perform sensitivity 
analysis. In reality, the demand of different 
customers does not homogenously increase or 
decrease over time. Also, the impact of demand 
change on inventory and transportation costs (both 
primary and secondary) is more compared to the 
other costs. When facility location decisions don’t 
change with modified demand, the change in 
inventory and transportation costs is nearly linear 
with demand change.  Table 3 provides similar 
sensitivity analysis results for unit transportation 
cost and manpower cost for test case 2. Manpower is 
mainly a function of demand and therefore, does not 
influence facility location decisions significantly as 
evident from the results. For test case 2, manpower 
costs have to increase or decrease at least 20% to 
make a change in the facility location decisions. 
Since the primary and the secondary transportation 
costs represent a significant portion of network 
design costs, the facility location decisions are 
sensitive to the unit transportation cost. An increase 
in the unit transportation cost causes more hubs to 
open along with filling plants which is expected to 
minimize the secondary transportation costs. 

Table 3: Cost sensitivity analysis. 

Unit Transportation Cost Manpower Cost 

% Change Filling plants Hubs Filling plants Hubs

-20.0% 4 10 7 13 

-15.0% 4 11 6 12 

-10.0% 5 11 6 12 

-5.0% 6 12 6 12 

0.0% 6 12 6 12 

5.0% 6 13 6 12 

10.0% 7 14 6 12 

15.0% 7 14 6 12 

20.0% 7 14 5 11 

ICORES�2014�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

380



 

7 CONCLUSIONS 

In practice supply chain network configuration 
typically involves optimizing strategic decisions 
without considering their impact on all the tactical 
delivery planning and daily scheduling decisions. In 
this paper we optimize not only strategic decisions 
but also consider all tactical and operational 
decisions in the mathematical model for the network 
configuration. We specifically consider the 
integrated network design problem dedicated to the 
packaged gases distribution. The main goals for 
solving the integrated network design problem 
include determining the locations of the hubs and the 
filling plants, the production capacity of the filling 
plants, the primary and the secondary cylinders 
flows and the inventory of both the filling plants and 
the hubs. To solve it, we propose a mathematical 
model which combines both the location-routing and 
the location-inventory integrated models and 
approximates the routing cost used in both the 
integrated models. In order to solve real large-scale 
problems, we propose approximate decomposition 
based approach. We applied near-optimal and 
approximate approaches on 3 real-life test cases 
from packaged gases cylinder distribution. The 
obtained solutions are within an acceptable 
optimality gap from the optimal solutions. The 
results indicate that mono-approach and two-steps 
approaches are capable to generate good facility 
location solutions in a reasonable time and are 
comparable to near-optimal solutions on smaller test 
cases. The difference between mono-product and 
two-steps is that two-steps method provides a better 
estimate of tactical and operational costs. For large-
scale test cases, it is hard to obtain near-optimal 
solutions whereas two-steps approximation can 
generate good solutions in an acceptable time. 
Therefore, near-optimal approach is suitable for 
smaller test cases and approximation approaches for 
large-scale test cases. 

In the future, further studies on improvements 
relative to the computation time to solve the 
complete model without using decomposition 
approach can be envisioned. Also, further research 
can be done to benchmark the approximate 
approaches considered in this paper for large-scale 
test cases. Even though we performed sensitivity 
analysis for few input parameters, future work can 
be focussed on developing and solving a robust 
model for packaged gases network design. 
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