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Abstract: Detecting overlapping groups is an important challenge in clustering offering relevant solutions for many
applications domains. Recently, Parametrized R-OKM method was defined as an extension of OKM to control
overlapping boundaries between clusters. However, the performance of both, OKM and Parametrized R-OKM

is considerably reduced when data contain outliers. The presence of outliers affects the resulting clusters and

yields to clusters which do not fit the true structure of data. In order to improve the existing methods, we
propose a robust method able to detect relevant overlapping clusters with outliers identification. Experiments

performed on artificial and real multi-labeled data sets showed the effectiveness of the proposed method to

produce relevant non disjoint groups.

1 INTRODUCTION new clustering method referred to as Parametrized R-
OKM (Ben N'Cir et al., 2013), generalizes k-means
Data mining aims at modeling relationships and dis- approach to detect non disjoint clusters. This method
covering hidden patterns in large databases. Clus-extends OKM (Cleuziou, 2008) to control the sizes of
tering is an important task in data mining. It aims overlaps and offers for users the possibility to regu-
to find groups from unlabeled data by organizing a larize the overlaps. Although the ability of OKM and
given set of data into coherent clusters, such that Parametrized R-OKM to produce non-disjoint clus-
all data within the same cluster are similar to each ters, their performance could be considerably reduced
other, while data from different clusters are dissimi- in presence of outliers. Known that these methods are
lar. However, this definition of clustering could be a based on centroids as representatives of each cluster,
crucial issue in many applications of clustering where the noisy observations lead to produce clusters which
data need to be assigned to more than one cluster. Fodo not fit the true structure of data.
example, in social network analysis, community ex- In order to deal with this issue, we propose a
traction algorithms should be able to detect overlap- robust method referred to Robust Parametrized R-
ping clusters because an actor can belong to multiple OKM, taking into account the presence of outliers.
communities (Wang et al., 2010). In video classifi- When performing the learning of data, the proposed
cation, overlapping clustering is a necessary require- method identifies on each step observations which
ment while video can potentially have multiple genres will be classified as outliers to improve the quality of
(Yang et al., 2007). In emotion detection, overlapping obtained non-disjoint groups.
clustering methods should be able to detect several The remainder of this paper is organized as fol-
emotions for a specific piece of music (Trohidis et al., lows: Section 2 presents related works on overlapping
2008). In biology, many genes are multi-functional clustering. Then, Section 3 describes the motivation
and need to be assigned to multiple overlapping clus- of this work by presenting the importance of detect-
ters (Battle et al., 2005) (Eran et al., 2003). In infor- ing outliers. Section 4 describes the proposed Ro-
mation retrieval and text mining, documents can dis- bust Parametrized R-OKM while Section 5 describes
cuss several themes (Sahami et al., 1996). experiments performed on artificial and real overlap-
The possibility that an observation belongs to ping data sets to check the effectiveness of the pro-
more than one cluster is usually ignored. How- posed method. Finally Section 6 gives conclusions
ever, some researchers have focused on this prob-and some future improvements of this work.
lem known as "overlapping clustering”. Recently, a
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2 OVERLAPPING CLUSTERING

Many methods were proposed to solve the issue
of overlapping clustering. Two classes of methods
have been led: Heuristic and Theoretical. Heuristic
methods are based on proposing new clustering
processes based on intuitive learning for example
CBC (Pantel and Dekang, 2002), POBOC (Cleuziou
et al., 2004) or the extension of results of well

known methods (Bezdek, 1981) (Krishnapuram and
Keller, 1993) (Dempster et al., 1977) to have non
disjoint clusters. These heuristic methods can lead
to non disjoint partitioning, but good results are not

ensured because they are not based on theoretical

model to introduce overlaps. However, this issue
is solved for theoretical methods where overlaps
are introduced in their optimized criteria. Example
of these Methods are OKM (Cleuziou, 2008) and
Parametrized R-OKM (Ben N'Cir et al., 2013).

e Parametrized R-OKM

In order to detect overlapping clusters with control of
overlaps, Parametrized R-OKM method generalizes
OKM and allows the user to parameterize the size of
the overlaps according to his expectations. Given a
data setX with N data and a numbé¢ of expected
clusters, the aim of Parametrized R-OKM is to find
the binary assignment matriX (N x K) and the clus-
ter representative8= {Cq,...,Cx } such that the fol-
lowing objective criterion is minimized:

J(N,C) = Mm“d(x,imnc (%)%, (1)
(n,C) ygxl " d(x,imnc (%))

with imp ¢ (%) is the combination of clusters’ repre-

sentatives which represents the gravity center of clus-

ters prototypes to which observatigrbelongs and is
defined by:

i oy &
el 2 M

where T the set of objects which belongs to the
K cluster,Cy the prototype of clustery, |M;|* the
weight assigned to observatiapn M; the set of clus-
ters to whichx; belongs to,|M;| its cardinality and

o a positive parameter to control the size of the over-
laps. The parameteris considered as a penalty term:
the penalization is more important when- +c and

)

then overlaps are reduced. However the penalization

is reduced wheo — 0 and the method produces large
overlaps. Particularly wheno = 0 Parametrized R-
OKM coincides with OKM.

The objective function of Parametrized R-OKM
J(M,C) is minimized by alternating two independent
steps:
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1. Assignment of observations to one or several clus-
ters: This step orders the clusters from the nearest
cluster to farthest one then assigns the observation
to several clusters while the objective function is
minimized.

2. Update of clusters’ representatives: This step up-

date the clusters’ representatives after each as-

signment step. By using the lagrange multipliers
method, by differentiating with respect @ and
setting derivative to zero, optimal clusters’ rep-
resentative€; to made the objective function of

Parametrized R-OK minimized are defined by:

1
A T

> g

x&m M|

Ci= 3)

whereC = [MMi|.x — (|i| = 1).imp ¢ x,)-

3 PROBLEM DESCRIPTION

In real life applications of overlapping clustering, data
are usually complex and contain outliers. Outliers,
also referred to as noise, are observations which are
grossly different from the remaining set of data. In-
tuitively, an outlier can be defined by an observation
that deviates so much from other observations.

The presence of outliers in data affects the clus-
tering algorithm by biasing the structure of obtained
clusters as the case of Parametrized R-OKM. Figure
1 shows patterns obtained with parametrized R-OKM
in two artificial data sets: the first example is free of
outliers while the second contains a noisy observa-
tion. The application of Parametrized R-OKM with 2
clusters using Euclidean distance in the first data set
leads to non disjoint clusters. However, in the sec-
ond data set the application of Parametrized R-OKM
results in two disjoint groups where the outlier itself
forms one cluster and all remaining observations are
grouped in the other cluster..

4 ROBUST PARAMETRIZED
R-OKM

In order to make robust the identification of over-
lapping clusters in presence of outliers, we propose
a new method denoted by Robust Parametrized
R-OKM. This proposed method takes into account
that data may contain noise. Therefore, it can detect
more relevant clusters by giving the possibility to
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Figure 1: Clusters obtained using Parametrized R-OKM ( Kr2) two dimensional artificial data sets: (a) tow non digjoin
clusters obtained in a data set free of outliers and (b) twjoidit clusters obtained in a data set containing a noisgreasion.

user to control the size of overlaps: Based on the 4.2 Algorithm Resolution and

Noise Clustering approach (Dave, 1991), we propose Optimization

to add a newfictive cluster in which outliers will be

assigned to. All the observations whose distances-l—he main-algorithm of the Robust Parametrized R-
from the set of prototypes exceed a fixed threshold g\ is described by Algorithm 1.

are considered as outliers and assigned to the fictive

cluster. Algorithm 1: Robust Parametrized R-OKM.

Require: X :a set of input data.
K : a number of clusters.
4.1 Objective Function of Robust € : a minimum improvement in the objective function.
Parametrized R-OKM tmax :a Maximum number of iterations.
5%: the distance noise

.. . . Ensure: T: assignment of observations over K clusters.
The Objective function of Robust Parametrized R- 1: Initialize representatives of clusteZ8 randomly over X

OKM aims to model the local error on each obser- 2. |nitialize the distance noise?

vation x; defined by the squared Euclidean distance 3: initialize ~ clusters ~ memberships M?  using
betweenx; and its representative denoted as image Robust.Multi. ASSIGN¥;, C%)

im(x). Given a data seX with N data overR® and : Compute the objective functiond{(1°,C°,3) ).

a numbeiK’ = K + 1 of expected clusters, the aim of ~ 5: while J(N*"*,C""1,5) —J(M",C',8) > & andt < tmaxdo
Robust Parametrized R-OKM is to find the binary as- Sett=t+1 _

signment matrix1(N x K') and the cluster represen- Update clusters’ representathe’s

tativesC = {Cy,...,Cx } UC: such that the following Update distance nois¥

objective function is minimized: compute new assignments ' using
| : Robust.Multi. ASSIGN§,C', [1t)

10:  Compute objective functiod(Mt,Ct, )
11: end while
_ e i \\2
J(N,C,3) = Z IMi[" d(x;,imn ¢ (%)) 12: return ' the final cluster memberships matrix.
% EX % ¢Ct

CoNOOR

+ ; IM*&%, (4) The optimization of the objective function is realized
%€ by iterating 3 steps:

where |I1;|* the weight of observatios;, |I;| the 1. computation of cluster representatives ;
number of clusters to whick belongs to,a a pos- 2. computation of distance noi$é ;

itive parameter used to control Fhe size of ovgrlaps, 3. multi-assignment) of observations.
imn c (X)) the image of observatior, Cy the noise ] . i o
cluster and the distance between the cluster noise TN€ above steps are iterated until a stopping criterion

and each observation denoted by noise distance. is reached. The stopping rule of Robust Parametrized
R-OKM algorithm is characterized by two criteria:

the maximum number of iterations or the minimum
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improvement of the objective function between two Algorithm 2 Robust.Multi ASSIGN.
iterations.

We present in the next, a detailed description
of the optimisation steps of Robust Parametrized R-

Require: X :Vector inR9,
{Cy,...,Ck} : Kclusters’ representatives.
ne'd : Old assignment of observation

OKM. y : Parameter to control outliers.
. Ensure: TM;: New assignment fox;.
4.3 Computation of Cluster 1: Search C' the nearest cluster whereC' =
. H a
Representatives arg“cl'”k; [Tl [% — G
2: Compute the distance between the observation and the
Given a clustert, and a set oK clusters’ represen- nearest cluster

tatives{Ci}X_; \ {Cn} the problem of finding;: that 3:if M| |x —C*[|* > & then
minimize the objective functiod(I,C,y) can be ex- 4 X isanoutlier; = {C;}
pressed as a convex optimization problem which is 2 elsgetur””i

solved using the lagrange multipliers method. By dif- - e . .
ferentiatingd(M,C,y) with respect tcCy and setting ' L;'t'?n“.ze nril-:“ {c }Cihg nearest cluster whe@" =
derivative to zero, optimal clusters’ representa@je 9 c!“M 1 IPe=G o _
which minimize the objective function are computed 8: Lookmg for the next nearest clustéf which is not in-
as the following: cluded inrl;

9:  Computemp ¢ (%) with assignment§l; = ; U{C*}
4.9 100 i (M [ —impe ()7 < M flx —imn e (6)2
P then
o XiETTLA#Cy |r|i| 11: M; + M{ and go to step 9
i 1 ’ (5) 12: else
' W 13: _compgteim"'f’(xi) with 2ssignrr;enﬂi‘"d_ ,
Xy i 140 I imnc 06) 2 < [T g % — imnc (06)]
whereCK is defined by : then
15: ReturnlT;
16: else
k .
Ci = |r|| | 'Xi - (||_||| - 1)'Im|_|,c(Xi) (6) 17: Returnnimd
The computation of the new clusters’ prototypes en- 18: end if

sures that the objective function is decreased afterlgf end if
each update of clusters’ prototypes. 20: end if

. . N K
4.4 Multi-assignment Zl d2
62: i=1k=1 (7)
Based on the assignment heuristic used for NxK ’

Parametrized R-OKM, we derive a new heuris- whereyis the value of the parameter used to obgain
tic taking into account the possibility that an from the average of distances. A proper selection of
observation be assigned to the noise cluster. It the parametey will control the classification result
looks for the nearest cluster of observation If the and the proportion of observations that are considered
distance between this observation and the nearestas outliers. The specification of the paramates
cluster exceeds the distance noise, this observatiorfixed by the user.

is identified as outlier. Conversely, it scrolls through According to this definition, the noise distance
the list of centers from the nearest to the farthest, depends generally on the non-weighted distances
and assigns the observatignto the nearest cluster.  of all feature vectors to all prototype vectors. Thus
The new assignment is kept only if it is better than this distance is not fixed but it is modified in each
the old one. This assignment heuristic is detailed in iteration of the algorithm after the update of clusters’
Algorithm 2. representatives.

4.5 Computation of Distance Noise
In order to determine the noise distance, we assume5 EXPERIMENTS AND RESULTS
that this distance depend on the variation of obser-

vations with respect to clusters prototypes which is To check the effectiveness of Robust Parametrized R-
defined by: OKM to produce suitable overlapping clusters within
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Figure 2: Experiments on artificial data set: (a) the artfidata set, (b)two clusters obtained using Parametriz&KRt
with a = 1 and (c)two clusters obtained using Robut Parametrized Rt @ith a = 1 andy = 0.5.

noisy data, we perform experiments on artificial and 5.2 Experiments on Real Data Set

real overlapping data sets using a standard desktop

computer. Running times of each method are not re- In order to evaluate the performance of Robust

ported while all the methods need less than one 1 sec-Parametrized R-OKM, results are compared through

ond to return results. external validation measures which are Precision, Re-
call, F-measure and Rand Index. The reported scores

5.1 Experiments on Artificial Data Sets are averages and standard deviations obtained over

ten runs.
The examples included in Figure 2(b) and Figure LetX = {Xi,...,Xn} be the set of observatiorns,=
2(c) show the ability of Robust Parametrized R-OKM {c1,...,ck} a partition of X into K classesR =
method lead to clusters which fit the true structures in {ru,...,ry, } a partition of X intoK; clusters specified

data.

by the clustering algorithm.

To check the effectiveness of Robust Parametrized Given the notations:

R-OKM, , we generate an artificial data set over two
dimensions as described in Figure 2(a). This data set
is characterized by two apparent groups in data and
some observations which have different characteris-
tics than the remaining data. We report obtained par-
titioning using Parametrized R-OKM withh = 1 and
Robut Parametrized R-OKM witth = 1 andy = 0.5

as described in Figure 2(b) and Figure 2(c). These
figures show that Parametrized R-OKM leads to clus-
ters with large overlaps and does not identify the two
apparent groups. This problem is solved when using
the proposed Robust Parametrized R-OKM.

To illustrate sensitivity of Robust Parametrized R-
OKM to the parametey, we report obtained clusters
with different values ofy using a fixed value ofi as
shwon in Figure 3. These results prove that the perfor-
mance of Robust Parametrized R-OKM depends on a
suitable configuration of the parameterThis corre-
lation can be explained by the fact that the parame-
tery is used to control the number of outlier points.
In fact, the parametegrcontrols the distance between
each observation and the prototype of cluster in which

the outliers are assigned to. This distance depends on

this parameter. As well asis small and near to 0 the

distance noise becomes more smaller leading to large

detection of outliers.

"TP” designs the number of pairs of observations
in X that share at least one class in C and share at
least one cluster in R.

"TN” the number of pairs of observations in X
that do not share any class in C and do not share
any cluster in R;

"FN” designs the number of pairs of observations
in X that share at least one class in C and do not
share any cluster in R;

e "FP” designs the number of pairs of observations

in X that do not share any class in C and share at
least one clusterin R

the validation measures are computed as follows:

Precision= TP
 TP+FP’
TP
Recall= ———— .
S SN

(2 x Recallx Precision
(Recall+ Precision
TP+TN
TP+FN+FP+TN’

F —measure=

Rand Index=

Experiments are performed in three domains where

data need to be assigned to more than one cluster. The
statistic of the used data sets are described in Table 1.
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Figure 3: Sensitivity of Robust Parametrized R-OKM methmthe parametey.

Table 2: Comparison of Robust Parametrized R-OKM with éxisbverlapping clustering methods on Benchmark data sets.

Data sets Methods Precision Recall F-measure Rand Index
EachMovie  fuzzy c-mean$E 0.33) 0.610+ 0.001  0.734- 0.001  0.666+ 0.001  0.696+ 0.001
OKM 0.465+0.020 0.9210.055 0618+0.001 0532+0.032
Robust Parametrized R-OKM{E 0.8)  0.62740.010 0857+ 0.020 0.724+ 0.02 0.621+0.03
Parametrized R-OKM{( = 0.1) 0.474+0.016 Q900+ 0.042 0621+0.024 Q0547+0.024
Robust Parametrized R-OKME 1.0)  0.6804+0.024  Q727+0.084  0699+0.024  0.640+ 0.025
Emotion fuzzy c-mean®g€ 0.1667) 0.493t 0.003 0.35# 0.001 0.414+ 0.002 0.524+ 0.002
OKM (a = 0) 0.483+0.000 06474+0.029  0553+0.011 Q508+ 0.001
Robust Parametrized R-OKM¢E 10) 0.657-0.004 0512+0.017 0.578+0.012 0.5174+0.003
Parametrized R-OKMY( = 5.0) 0.506-+0.002 02134+0.007  Q300+0.008 0.531+ 0.000
Robust Parametrized R-OKM¢ 0.1) 0.698+0.000 0222+0.021 0337+0.024 Q440+ 0.004
Scene FCMg = 0.1667) 0324+0.004  04824+0.022 0388+0.005 Q706+ 0.008
OKM 0.233+0.006 0.928 0.013 0372+0.008 Q397+0.019
Parametrized R-OKMY( = 2.0) 0.451+0.000 04174+0.001  Q433+0.001 0.789+ 0.000
Robust Parametrized R-OKM¢ 0.8) 0.488+0.030 0652+0.119 0548+0.023 0632+0.019

Table 1: Data sets description. with OKM (0.618) and the F-measure obtained with

FCM(0.666). The improvement of F-measure with

Data set Observation ~ Dimension  Labels  Overlap b i

EachMovie 75 3 3 14 proposed methods is induced by the improvement of
Music 593 72 6 186 classification precision compared to OKM and FCM
Scene 2407 6 1.07 .86 methods.

In Emotion and Scene data set, the improvement

Table 2 and Table 3 report average scores and standaréf the F-measure obtained with the proposed method
deviations of Precision, recall, F-measure. compared to the F-measure obtained with Robust

In Eachmovie, Emotion and Scene data sets, re- Parametrized R-OKM is induced by the improvement
sults obtained with Robust Parametrized R-OKM out- of classification precision. For example, in Emo-
perform results obtained with FCM and Parametrized tion data set, the average of Precision using Robust
R-OKM. For example, in Eachmovie data set the Parametrized R-OKM witlr =5 andy= 0.1 is equal
F-measure obtained with Robust Parametrized R-to 0.506 while the average of Precision when using
OKM (0.724) outperform the F-measure obtained Parametrized R-OKM witl = 5 is equal to (698.
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Table 3: Sensitivity of proposed methods to the parameterBenchmark data sets.

Data sets Methods Precision Recall F-measure Rand Index

EachMovie  Robust Parametrized-OKév O,y = 1) 0.632+0.02 0886+ 0.05 0.7320.03 0635+ 0.04
Robust Parametrized-OKM(= 0,y = 0.8) 0.627+0.01 0857+0.02 07244+0.02 0621+0.03
Robust Parametrized-OKM (= 0,y = 0.7) 0.623+0.01 0868--0.04 0725+0.01 0619-+0.02
Robust Parametrized R-OKM(= 1,y = 1) 0.69H 0.05 0635+ 0.03 0.659:0.03 0619+ 0.05
Robust Parametrized R-OKM(= 1,y = 0.7) 0.69H-0.06 0621+ 0.06 0652+ 0.04 0611+0.06
Robust Parametrized R-OKMI(= 1,y = 0.5) 0.661+0.03 0605+0.07 0631+0.05 0583+0.04
Robust Parametrized R-OKM(= 1.5y = 1) 0.719t0.10 0632+ 0.05 0.668t0.05 0631+ 0.06

Robust Parametrized R-OKMI(= 1.5,y = 0.7) 0.711+0.09 06114+0.05 0653+0.01 0617+0.18
Robust Parametrized R-OKMI(= 1.5,y = 0.5) 0.663+0.03 0603+ 0.07 0630+ 0.05 0583+ 0.04

Emotion Robust Parametrized-OKM& 0,y = 0.3) 0.659+0.005 0519+0.038 0580+0.022  0521+0.007
Robust Parametrized-OKM (= 0,y = 0.4) 0657+0.005 0491+0.013 0562+0.006  (0510-+0.000
Robust Parametrized-OKM(= 0,y = 0.8) 0.654+0.003 0492+0.039 0561+0.024  Q507-+0.009
Robust Parametrized-OKM (= 0,y = 5.0) 0661+0.006  0487+£0.02  0560+0.011 0510+0.002
Robust Parametrized R-OKMI(= 5y = 0,1) 0.698+0.000  0222+0.021  Q0337+0.024  Q440+0.004
Robust Parametrized R-OKMI(= 5y = 0,5) 0.677+0.00 0203+0.00 0313+0.00  0428+0.000

Robust Parametrized R-OKMI(= 5y = 0.7) 0.679+0.002  Q0207-0.00 0318+0.00 0429+0.00

Robust Parametrized R-OKM(= 5,y = 1.0) 0672+0.000 0200+0.004 Q308+0.004 0424+0.001
Robust Parametrized R-OKMI(=0.1y=0,1)  0.700+0.002 0285+0.006  Q405+0.006  Q462+0.003
Robust Parametrized R-OKMI(=0.1y=0.3)  0681+0.001 0244+0.015 0388+0.011  Q454+0.004
Robust Parametrized R-OKM(=0.1y=0.5) = 0676+0.002  0262+0.034  Q377+0.036  Q447+0.011
Robust Parametrized R-OKMI(=0.1y=1.0) 0676+0.001 0256+0.037 0370+0.039  0445+0.013

Scene Robust Parametrized-OKdv 2.0,y = 0.2) 0.514+0.055  0960+0.000 = 0672+0.040  0509+0.051
Robust Parametrized-OKM(= 2.0,y = 0.5) 0.480+0.050 Q557+ 0.048 0511+ 0.009 0578+ 0.025
Robust Parametrized-OKM (= 2.0,y = 0.8) 0488+0.030  0652+0.119 0548+0.023  0632+0.019
Robust Parametrized-OKM(= 2.0,y = 5.0) 0.514+0.000 Q682+ 0.005 0586+ 0.001 Q688+ 0.000

Robust Parametrized R-OKMI(= 0.8y=0.2)  0514+0.053 Q0960+0.000 0668+0.045 0509+ 0.051
Robust Parametrized R-OKMI(= 0.8y=0.5)  0492+0.041 0585+£0.064 0529+0.002 0593+0.013
Robust Parametrized R-OKMI(=0.8y=1.0)  0471+0.020 = 0672£0.110 0548+0.023 0631+0.018
Robust Parametrized R-OKMI(=0.8y=5.0)  0514+0.000 Q726+0.039 0586+0.002 0688+ 0.000
Robust Parametrized R-OKMI(=0.4y=0.2)  0514+0.053 Q0960+0.000 0668+0.045 0509+ 0.051
Robust Parametrized R-OKMI(=0.4y=0.8)  0473+0.018 0639+0.135 0536+0.038 0623+0.009
Robust Parametrized R-OKM(=0.4y=1.0)  0525+0.002 Q0672+0.003 0590+0.003 0686+ 0.000
Robust Parametrized R-OKMI(=0.4y=5.0)  0516+0.002 0684-+0.008 0588+0.004 0689+0.001

Table 3 evaluates the sensitivity of proposed ficial and real data sets showed the robustness of pro-
method to the parametgrrespectively on Emotion, posed method when data contain noise.
EachMovie and Scene data sets. Using EachMovie  As future work, we plan to confirm preliminary
and Scene data sets, F-measure and Rand Index desbtained results on other real overlapping data sets.
crease whery decrease. However F-measure and Instead, one could add an auto adjusted valugtof
Rand Index decrease whgiincrease using Emotion  automatically control the outliers boundaries in real

data set. life applications of overlapping clustering.
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