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Abstract: In daily conversation, people use spatial prepositions to denote spatial relationships and describe relative 
positions. Various quantitative relative position descriptors can be found in the literature. However, they all 
have been designed with 2D objects in mind, most of them cannot be extended to handle 3D objects in vec-
tor form, and there is currently no implementation able to process such objects. In this paper, we build on a 
descriptor called the histogram of forces, and we present the first algorithm for quantitative relative position 
descriptor calculation in the case of 3D vector objects. Experiments validate the approach. 

1 INTRODUCTION 

In daily conversation, people use spatial prepositions 
to denote spatial relationships and describe relative 
positions (e.g., the apple in the bowl, the bowl near 
the vase, the vase in front of the window). Most 
research on relative position descriptors and models 
of spatial relationships has focused so far on quali-
tative approaches and 2D objects (or 2D perspec-
tives of 3D objects), often with the assumption that 
the objects were far enough from each other and 
could be approximated by their centres or minimum 
bounding rectangles. Unacceptable processing times, 
human cognitive limitations, a strong inhibitor factor 
(our long history with 2D research), the ubiquity of 
2D data and the increased complexity of 3D model-
ling have channelled the researchers’ attention away 
from quantitative approaches, 3D objects and intri-
cate configurations. In the past few years, however, 
computer processing speed as well as storage and 
memory capacity have kept improving at exponen-
tial rates, technical limitations to the handling of 3D 
spatial data have been decreasing, and there has been 
a surge of wide-ranging interest in 3D contents.  

In this paper, we present what we believe is the 
first algorithm for quantitative relative position de-
scriptor calculation in the case of 3D objects in vec-
tor form. Various descriptors can be found in the 
literature (Miyajima and Ralescu, 1994); (Wang and 
Makedon, 2003); (Kwasnicka and Paradowski, 2005); 
(Zhang et al., 2010). As far as we know, however, 

they all have been designed with 2D objects in mind 
(mainly objects in raster form), most of them cannot 
be extended to handle 3D vector objects, and there is 
currently no implementation able to process such 
objects. After a thorough comparative analysis, we 
have chosen to build on a descriptor called the histo-
gram of forces (Matsakis et al., 2011). Its math-
ematical definition holds in any Euclidean space, 
and theory endows it with remarkable properties. It 
is able to handle a variety of objects (e.g., connected 
or disconnected, with or without holes, disjoint or 
intersecting). Its behaviour towards affine transfor-
mations is known. It can easily be normalized to 
achieve invariance under translations, rotations, 
reflections and scalings. It lends itself to the design 
of quantitative models of spatial relationships that 
also satisfy remarkable properties. From a practical 
point of view, in the case of 2D objects, it has shown 
to be robust to noise, its discriminative power is 
high, the existing algorithms are highly paralleliz-
able and include subalgorithms often implemented 
in the firmware or hardware of graphics cards. As a 
result, force histograms have been used to interpret 
human-to-robot commands and generate robot-to-
human feedback (Skubic et al., 2004), for scene 
matching (Sjahputera and Keller, 2007), in a geospa-
tial information retrieval and indexing system (Shyu 
et al., 2007), in a land cover classification system 
(Vaduva et al., 2010), etc.   

The concept of the histogram of forces is de-
scribed in Section 2. The new algorithm for the 
handling of 3D vector objects is introduced in Sec-
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tion 3. Experimental results follow in Section 4, and 
Section 5 concludes the paper. 

2 BACKGROUND 

Section 2.1 gives an informal definition of a force 
histogram, while Section 2.2 briefly describes the 
existing algorithm for the handling of 2D vector 
objects. Finally, Section 2.3 explains why the han-
dling of 3D objects is related to the problem of 
finding an even distribution of points on the unit 
sphere. 

2.1 Force Histograms 

The mathematical definition of the histogram of 
forces presented in (Matsakis et al., 2011) is quite 
general, and it holds in any Euclidean space. We 
give here a narrower and less formal definition. 
Consider two distinct points p and q. They are seen 
as infinitesimal particles of mass 1. According to 
Newton’s law of gravity,  p exerts on q the force  

qp / |qp|3 (1)

where qp is the vector from q to p and |qp| its length. 
This force tends to move q towards p, and its mag-
nitude is 1 / |qp|2. Now, consider two subsets A and 
B of the Euclidean space. Assume each one is an 
object, i.e., a nonempty bounded set of points, equal 
to the closure of its interior, and with a finite number 
of connected components. In dimension 2, each 
component is seen as a homogeneous plate with a 
density (mass per unit area) of 1. In dimension 3, it 
is seen as a homogeneous solid with a density (mass 
per volume) of 1. Every point p of the object A exerts 
on every qp of B an infinitesimal gravitational force. 
The vector sum of all these forces, i.e., the resultant 
force exerted by A on B, can be found using integral 
calculus. Instead, however, consider a real number r 
and a unit vector , replace (1) with (2), and calcu-
late the magnitude hr

AB () of the vector sum of all 
the infinitesimal forces in direction  (Fig. 1). The 
function hr

AB so defined is called a force histogram. 
It is one possible representation of the position of A 
relative to B. 

qp / |qp| r+1 (2)

 

Figure 1: Every point of A exerts on every point of B an 
infinitesimal force. Using integral calculus, find the vector 
sum of the forces in direction . Its magnitude is hr

AB (). 

2.2 The Case of 2D Vector Objects 

An algorithm for calculating force histograms in the 
case of 2D vector objects is presented in (Recoskie 
et al., 2012). The objects considered are fuzzy sub-
sets of the Euclidean plane. It is assumed that the 
number of distinct  -cuts of an object is finite and 
that each -cut can be expressedusing the union 
and difference set operationsin terms of a finite 
number of simple polygons. No other assumptions 
are made. An -cut may therefore be convex or 
concave, connected or disconnected, and may have 
holes in it. Moreover, pairs of overlapping objects 
can be handled. Let us briefly describe the case of a 
pair of crisp objects A and B with non-intersecting 
interiors. Here is how to calculate hr

AB (). The 
straight lines in direction  that pass through the 
objects’ vertices divide the objects into trapezoidal 
pieces A1, A2, etc., and B1, B2, etc. (Fig. 2a). We 
have:  

hr
AB () = i j  hr

AiBj () (3)

hr
AiBj () = 0 unless the pieces Ai and Bj are between 

two consecutive lines. If they are, hr
AiBj () can be 

expressed in terms of r, , the edge lengths and the 
distances between the edges of the two pieces. There 
are nine possible expressions, depending on the con-
figuration (Fig. 2bcd) and the value for r. These ex-
pressions are relatively complex closed-form expres-
sions that result from the symbolic calculation of 
definite triple integrals. Note that hr

AB () is 
computed in O(η log η) time, where η is the total 
number of object vertices. 
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                           (a)                                                      (b)                                                       (c)                                              (d)       

Figure 2: (a) The objects A and B are broken into trapezoidal (or triangular) pieces A1, A2, etc. and B1, B2, etc. Note that 
A and B are not necessarily convex, and there may be more than two pieces between two consecutive lines. Two pieces Ai 
and Bj between the same two consecutive lines can be arranged in three possible ways: (b), (c) or (d). Note that in (b), the 
trapezoids may share one vertex or one edge; in (c) they may only share one vertex. 

2.3 Reference Directions 

Practically, of course, only a finite number of direc-
tions can be considered when calculating a force 
histogram. An important issue is the choice of these 
reference directions. The higher the number of re-
ference directions, the more complete the collected 
histogram data, but the longer the processing time. 

In the 2D case, the reference directions are usu-
ally chosen so that they are evenly distributed in 
space (Matsakis et al., 2011). Since a direction  can 
be represented by a point p on the unit circle centred 
at the origin  (choose p such that p=), the prob-
lem comes down to finding an even distribution of 
points on the circle. The set of reference directions 
therefore corresponds to the set of vertices of a 
regular convex polygon. 

In the 3D case, the unit circle becomes the unit 
sphere and regular convex polygons become regular 
convex polyhedra. There are only five such poly-
hedra (known as the Platonic solids). One must thus 
reflect on what an even distribution of an arbitrary 
number of points on a sphere is. The topic has at-
tracted the attention of a wide variety of researchers 
(Saff and Kuijlaars, 1997) (Darvas, 2007), and many 
different criteria for point distribution can be found 
in the literature. The general idea is to optimize 
some function of the positions of the points on the 
sphere. As an example, one may want to see the 
points as electrons that repel each other with a force 
given by Coulomb's law and determine the mini-
mum energy configuration. This is the Thomson 
problem (Thomson, 1904). Practically, points are 
first randomly generated on the sphere, and then an 
iterative process allows a stable configuration to be 
found. For example, Bourke uses hill climbing 
(Bourke, 1996), while Semechko uses a more effi-
cient adaptive Gauss-Seidel update scheme (Se-
mechko, 2012). 

 

3 ALGORITHM 

The calculation of a force histogram that represents 
the relative position of two 3D connected objects in 
vector form is described, in pseudocode, on the next 
page. It relies on a simple numerical integration 
technique called the composite midpoint rule. The 
integral of a function f over an interval [a,b] is cal-
culated as follows: [a,b] is divided into subintervals 
of equal length; the integral of f over each subinter-
val [ai,ai+1] is approximated by (ai+1ai) 
f((ai+ai+1)/2); the integral of f over [a,b] is obtained 
by adding up all the results. In our algorithm, each 
force histogram value h() is approximated using 
this technique (hence the for loop; line 13). First, the 
direction  is rotated together with the objects so 
that it lies in the xy-plane (line 14; Fig. 3). The 
domain of integration [a,b] can then be easily 
determined by sorting the vertices along the z-axis 
(line 15; Fig. 3). 
 

 

Figure 3: Each plane parallel to the xy-plane and with z-
coordinates between a and b slices the 3D objects into 2D 
objects. The force in direction  between the 3D objects is 
the integral over [a,b] of the force in direction  between 
the 2D objects. 
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Each plane parallel to the xy-plane and with z-
coordinates between a and b slices the two 3D 
vector objects into two 2D vector objects (which 
may have multiple connected components). h() is 
the integral over [a,b] of the force in direction  
between these 2D objects (a force calculated as in 
Section 2.2). The number of subintervals considered 
is first set to INITIAL_NUMBER_ SUBINTERVALS 
(line 18). This number is then repeatedly doubled 
(line 21) until the approximation of the integral is 
found satisfactory (line 29). The accuracy of nu-
merical integration is controlled by the relative and 
absolute error tolerances relErrTol and absErrTol 
(line 29). The absolute difference between two con-
secutive approximations is used as an estimate of the 
absolute error absErr (line 23). An estimate of the 
relative error relErr follows (line 27). The reference 
direction 0 closest to the direction defined by the 
centroids of the objects (lines 9-11) is likely to give 
one of the highest force histogram values. It is 
therefore considered first (line 13) and used to de-
termine absErrTol (line 30). The combined use of 
relErrTol and absErrTol (line 29) stems from the 
following: assume the relative error tolerance in 
input (line 5) is 1% and the true force histogram 

values in some directions 1 and 2 are 100 and 10; 
if we accept 99 as an approximation of the first 
value (relative error 1%, absolute error 1), we should 
accept 9 as an approximation of the second value 
(relative error 10%, absolute error 1). 

4 EXPERIMENTS 

The experimental setup is described in Section 4.1 
and the results are given and discussed in Section 4.2.  

4.1 Setup 

The algorithm for force histogram calculation in the 
case of 3D vector objects was implemented in C. 
The experiments were conducted on a machine run-
ning the Linux 3.11.1 kernel with the AMD Phenom 
II X6 1055T processor, 2.8GHz, 8 GB. They involve 
the five objects A, B, C, D and T shown in Fig. 4. 
The scene is relatively simple, but it is a familiar 
scene, with common real-world objects, and ap-
proximating each object by its centre or minimum 
bounding box would be doomed to failure. 
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Three sets of reference directions are used for 
force histogram calculation: one with 102 directions 
(neighbour directions are about 20 apart), one with 
414 directions (10 apart), and one with 1646 direc-
tions (5 apart). Each set of reference directions is a 
set of evenly distributed directions that includes the 
set {above, below, left, right, front, behind} of 
cardinal directions. See Fig. 5. 

Assume h1 and h2 are two force histograms cal-
culated using the same set of reference directions. 
How to compare these histograms? In (Matsakis et 
al., 2004), over twenty similarity measures are 
examined for the comparison of 2D force histo-
grams, and two are retained: the Tversky index  

min(h1(),
 h2 ())

max(h1(),
 h2 ())

 (4)

and the Pappis’ measure  

1
h1() h2 ()


h1() h2 ()


 (5)

Both can be applied to 3D histograms as well, and 
they are used in Section 4.2. 

A force histogram associated with two 2D ob-
jects A and B allows various spatial relationships 
between these objects to be assessed. In particular, 
the histogram can be used to calculate the truth value 
of a proposition such as “A is in direction  of B ” 
(e.g., “A is to the right of B ”, “A is above B ”). Dif-
ferent methods can actually be applied (Matsakis et 
al., 2011). Those considered in Section 4.2 are the 
aggregation and effective force methods, as they can 
easily be extended to the handling of 3D histograms.   

Finally, note that the relative error tolerance 
relErrTol (Section 3) may take three different values 
in Section 4.2: 0.1 (10%), 0.01 (1%), or 0.001 
(0.1%). Moreover, the constant INITIAL_NUMBER_ 
SUBINTERVALS is set to 2. 

4.2 Results 

A force histogram h associated with a pair of 3D 
objects can be graphically represented by the surface 

 

 

Figure 4: The objects: 1 table (48 vertices) and 4 chairs (128 vertices each). 

 (a)     (b)     (c)  

Figure 5: (a) The set of 102 reference directions.  (b) 414 reference directions.  (c) 1646 reference directions. 

chair C 

chair A 

chair B 

chair D 

table T 
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(h()+R), where the constant R is a positive real 
number and the variable  is a direction (i.e., a unit 
vector). This surface is wrapped around the sphere 
of radius R, and bumps on it indicate the presence of 
forces. See Fig. 6. 

Table 1 reports the truth values in the cardinal di-
rections for each object pair. We believe the reader 
will find these values consistent with their own per-
ception of the scene. 0 means “totally false” while 1 
means “totally true”. According to the aggregation 
method, an object may be, to some extent, simulta-
neously above and belowor to the left and to the 
right, front and behindanother one. The effective 
force method disagrees with this point of view, and 
has more clear-cut opinions. These are the main 
differences between the two methods. 

Not surprisingly, the processing times increase 
when the relative error tolerance decreases (Table 
2a). On average, rotating the objects and determin-
ing a domain of integration are procedures that take 
about 0.0001 second each (Table 2b), i.e., only 2% 
(resp. 1%, 0.2%) of the time needed to calculate a 
force histogram value when relErrTol is 10% (resp. 
1%, 0.1%). See the numbers in bold in Table 2ab 
(0.0001/0.00542%, 0.0001/0.01371%, etc.). Cal-
culating a 2D force is as fast, but the procedure is 
repeated many times. In the end, it represents about 
11% (resp. 15%, 15%) of the time needed to calcu-
late a force histogram value when relErrTol is 10% 
(resp. 1%, 0.1%). See the numbers in bold in Table 
2ac (60.0001/0.005411%, 200.0001/0.013715%, 

etc.). Slicing the objects is by far the most time con-
suming. Overall, it represents about 55% (resp. 73%, 
75%) of the time needed to calculate a force histo-
gram value when relErrTol is 10% (resp. 1%, 0.1%). 
See the numbers in bold in Table 2ac (6 
0.0005/0.005456%, 200.0005/0.013773%, etc.). 

The relative error tolerance has a visible impact 
on the force histogram. See Fig. 7. However, in 
applications where histograms are calculated only to 
be compared with each other, setting relErrTol to 
0.01 seems to be a good choice. Indeed, a histogram 
calculated with relErrTol = 0.01 is obtained much 
faster than and is very similar (a 98% to 99% simi-
larity, as shown in Table 3) to the histogram calcu-
lated with relErrTol = 0.001. In applications where 
truth values are extracted from force histograms, 
relErrTol = 0.1 might be enough when using the 
aggregation method, since relErrTol = 0.001 only 
gives a 1% absolute difference in truth value (at 
worst). See Table 4. When using the effective force 
method, relErrTol = 0.1 (resp. 0.01) vs. relErrTol = 
0.001 gives a less than 1% absolute difference in 
truth value, on average, but that difference may 
reach 17% (resp. 9%) in the worst case. The number 
of reference directions seems to have even a bigger 
impact on truth values than the relative error 
tolerance. When using the aggregation method (resp. 
effective force method), 414 vs. 1646 directions 
gives a less than 1% absolute difference in truth 
value, on average, but that difference may reach 5% 
(resp. 13%) in the worst case. See Table 5. 

 

Figure 6: Three different views of the same force histogram: (a) from above, (b) from front, (c) from right. The histogram 
represents the position of the chair C relative to the table T. It has been calculated using 414 reference directions and a 
relative error tolerance of 1%.  

A�First�Algorithm�to�Calculate�Force�Histograms�in�the�Case�of�3D�Vector�Objects

109



Table 1: The truth values in the cardinal directions for each object pair in the scene. These values are extracted from the 
force histograms (414 directions, 1% relative error tolerance) using the aggregation and effective force methods.  

B / A agg eff C / B  agg eff A / T agg eff C / T agg eff 
above 
below 
left 
right 
front 
behind 

0.44 
0.02 
0.14 
0.16 
0.12 
0.22 

0.86 
0 
0 
0.06 
0 
0.17 

above 
below 
left 
right 
front 
behind 

0.13 
0.00 
0.48 
0 
0 
0.48 

0.46 
0 
0.75 
0 
0 
0.72 

above 
below 
left 
right 
front 
behind 

0.03 
0.19 
0.15 
0.17 
0.57 
0 

0 
0.40 
0 
0.02 
0.84
0 

above 
below 
left 
right 
front 
behind 

0.37 
0.01 
0.21 
0.15 
0.10 
0.26 

0.84 
0 
0.06 
0 
0 
0.24 

C / A agg eff D / B agg eff B / T agg eff D / T agg eff 
above 
below 
left 
right 
front 
behind 

0.17 
0.00 
0.40 
0 
0 
0.55 

0.47 
0 
0.65 
0 
0 
0.74 

above 
below 
left 
right 
front 
behind 

0.02 
0.08 
0.08 
0.03 
0 
0.83 

0 
0.38 
0.23 
0 
0 
0.92 

above 
below 
left 
right 
front 
behind 

0.05 
0.15 
0.16 
0.17 
0.56 
0 

0 
0.30 
0 
0.06 
0.85
0 

above 
below 
left 
right 
front 
behind 

0.04 
0.37 
0.18 
0.21 
0.05 
0.24 

0 
0.57 
0 
0.05 
0 
0.36 

D / A agg eff D / C agg eff  
 0.02 

0.02 
0.02 
0.02 
0 
0.94 

0 
0 
0 
0 
0 
1.00 

 0.00 
0.24 
0 
0.72 
0.05 
0.04 

0 
0.51 
0 
0.85 
0.17 
0 

Table 2: Processing times (in seconds). The force histograms are calculated for every pair of objects in the scene, using 414 
reference directions. 

 Processing time 
(a) relErrTol = 0.1 relErrTol = 0.01 relErrTol = 0.001 

procedure min ave max min ave max min ave max 
calculating a force histogram 1s 2s 4s 1s 6s 14s 2s 24s 86s 
calculating a force histogram value  0.0007 0.0054 0.0935 0.0007 0.0137 0.7628 0.0007 0.0574 3.5135

 

(b) processing time 
procedure min ave max 

rotating the objects 0.0001 0.0001 0.0004
determining a domain of integration  0.0001 0.0001 0.0001

 

    number of times the procedure is applied (per direction) 
(c) processing time relErrTol = 0.1 relErrTol = 0.01 relErrTol = 0.001 
procedure min ave max min ave max min ave max min ave max 

slicing the objects 0.0003 0.0005 0.0009
0 6 126 0 20 1022 0 86 4094 calculating a 2D force  0.0000 0.0001 0.0014

 

(a)      (b)      (c)  

Figure 7: These force histograms, which are shown from the same point of view, represent the position of the chair A 
relative to the chair B. They have been calculated using 414 reference directions and a relative error tolerance of (a) 10% 
(b) 1% (c) 0.1%.  

above front 
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Table 3: Comparing force histograms. For every pair of objects in the scene, compare the force histograms calculated using 
414 reference directions and two different relative error tolerances. 

 similarity 
 Tversky index Pappis’ measure 

relative error tolerance min ave max min ave max 
0.1 vs. 0.01 0.84 0.92 0.97 0.91 0.96 0.98 
0.1 vs. 0.001 0.84 0.91 0.96 0.91 0.95 0.98 
0.01 vs. 0.001 0.97 0.98 0.99 0.99 0.99 1.00 

Table 4: Comparing truth values (I). For every pair of objects in the scene, calculate the force histograms using 414 
reference directions and two different relative error tolerances; then, compare the truth values obtained in every reference 
direction. 

 absolute difference
 aggregation method effective force method 
relative error tolerance min ave max min ave max 
0.1 vs. 0.01 0 0.002 0.013 0 0.005 0.169 
0.1 vs. 0.001 0 0.002 0.012 0 0.005 0.169 
0.01 vs. 0.001 0 0.001 0.004 0 0.002 0.086 

Table 5: Comparing truth values (II). For every pair of objects in the scene, calculate the force histograms using a relative 
error tolerance of 0.01 and two different sets of reference directions; then, compare the truth values obtained in every 
cardinal direction (above, below, left, right, front, behind). 

 absolute difference
 aggregation method effective force method 
number of directions min ave max min ave max 
102 vs. 414 0 0.012 0.063 0 0.025 0.195 
102 vs. 1646 0 0.014 0.093 0 0.029 0.280 
414 vs. 1646 0 0.005 0.054 0 0.009 0.134 

 

5 CONCLUSIONS 

We have presented in this paper the first algorithm 
for quantitative relative position descriptor calcu-
lation in the case of 3D objects in vector form. We 
have built on the histogram of forces because its 
mathematical definition holds in any Euclidean 
space and theory endows it with remarkable proper-
ties. A force histogram associated with 2D objects 
allows various spatial relationships between these 
objects to be assessed through the calculation of 
truth values; we have shown that the same holds for 
a force histogram associated with 3D objects, and 
we have shown that the assessments are consistent 
with human perception. The new algorithm is an 
approximation algorithm with two parameters: the 
set of reference directions and the relative error 
tolerance. The higher the number of reference direc-
tions, the more complete the collected histogram 
data; the lower the relative error tolerance, the more 
accurate the collected data; but the longer the pro-
cessing time. We have provided some insight on 
how the two parameters impact the processing times, 
the force histograms, and the truth values that can be 

extracted from the histograms. In future work, we 
will show that the processing times can be drasti-
cally reduced. In particular, we will use a much 
more sophisticated numerical integration technique, 
and we will calculate special sets of reference direc-
tions that will allow directions to be grouped and 
batch processed. 
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