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Abstract: Action recognition in video is an important part of many applications. While the performance of action
recognition has been intensively investigated, not much research so far has been done in the understanding of
how long a sequence of video frames is needed to correctly recognize certain actions. This paper presents a
new method of measurement of the length of the video sequence necessary to recognize the actions based on
space-time feature points. Such length is the key information necessary to successfully recognize the actions
in real-time or performance critical applications. The action recognition used in the presented approach is the
state-of-the-art one; vocabulary, bag of words and SVM processing. The proposed methods is experimentally
evaluated on human action recognition dataset.

1 INTRODUCTION

Contemporary video technology produces a large
number of video sequences which need to be stored,
processed, and searched for various purposes. In this
context, action recognition becomes increasingly sig-
nificant with a growing number of cameras every-
where. These cameras provide video streams which
may be used to secure human lives, properties, and
hopefully to make our lives nicer and easier. One of
the main application of action detection is the detec-
tion of human behavior or actions.

In order to detect actions, the space-time interest
point features are often used. Some authors such as
Wang (Wang et al., 2009; Wang et al., 2011; Reznicek
and Zemcik, 2013) have shown that the best state-
of-the-art performance is achieved by combining of
several space-time feature points extractors. Unfor-
tunately, real-time performance of video processing
using these algorithms is very difficult to achieve us-
ing today’s computer technology. Such tasks can only
be done by using high performance computer clus-
ters, where the processing load is distributed among
several CPUs. Anyway, apart from the precision
of the action recognition, it is interesting to learn
how long video sequences are needed for successful
recognition of the actions of interest. The reason is
that the minimum necessary length of the video se-
quence determines important features of the applica-
tions. Such features include, for example, a delay
between the start of specific human action and the

computer system’s response in human machine inter-
faces, computational performance in applications that
search some recorded video sequences for certain ac-
tions, etc. Moreover, the high computational com-
plexity of the space-time features based action recog-
nition algorithms will shortly become less important,
especially thanks to the quickly increasing computa-
tional performance observed in computer technology
today.

The action detection algorithms based on space-
time interest points may be applied in a variety of
tasks. They can be used for on-line detection of hu-
man behavior for surveillance systems, as a support
for video system operators as well as for searching for
specific action or human behavior in video databases.
Many of the applications of action recognition algo-
rithms would benefit from real-time processing and
this paper should help to reach such a performance.

In this paper, the length of the video necessary for
action recognition is investigated along with the ac-
curacy of the recognition. We have investigated the
dependency between the number of video frames in
a video sequence containing certain actions and the
accuracy of the action recognition with an assump-
tion that the accuracy of action recognition will grow
with the length of the video sequence until it achieves
state-of-the-art accuracy. It should be noted that in
contemporary state-of-the-art systems, the length of
the video sequences is not restricted. Using the re-
sults of this research, systems capable of well defined
delay in action recognition as well as well defined ac-
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Figure 1: Examples of frames from the actions contained Hollywood2 dataset (Marszalek et al., 2009); hugging, kissing and
answering the phone actions.

curacy can be built.
In this work, the proposed approach is evaluated

for human action recognition on the ”Hollywood2”
dataset (Marszalek et al., 2009).

While alternative possibilities of action recogni-
tion, and specifically human action recognition, exist,
the video (video only) systems remain the most usable
ones because of the availability of video data. For ex-
ample, human behavior detection may be performed
using non-visual streams, such as depth maps. How-
ever, the depth maps can be obtained only from spe-
cific sensors, such as Kinect (Zhang, 2012) or from
the similar ones. Even though the non-visual stream
real-time processing is feasible to achieve on contem-
porary computers with reasonable accuracy, the prin-
ciple drawback is in the need for special sensors and
a lack of infrastructure available for these sensors.
Moreover, alternative sensors often need to be cali-
brated, etc.

Section 1.1 describes the related work published
on similar areas of computer vision science and
section 1.2 presents the main characteristics of the
dataset which will be used in this work for classifier
evaluation.

After that Chapter 2 describes the classification
pipeline; then Chapter 3 presents the experiments per-
formed on the dataset; and finally in Chapter 4 con-
clusions are drawn.

1.1 Related Work

In the last decade, a number of papers with vari-
ous concepts for action recognition were published.
A significant part of those approaches are based on
space-time feature point extraction, fixed-sized repre-
sentation conversion, and finally, classifier creation.
The most important approaches, shown below, are
also explored in the presented work.

Wang et al. evaluated in (Wang et al., 2009) sev-
eral combinations of feature extractors and feature de-
scriptors using all important datasets available at the
time. In this approach, video sequences are repre-
sented by a bag-of-words and vocabulary is created
using k-means algorithm. For classification purposes,

the non-linear support vector machine with c2 kernel
(Zhang et al., 2006) is used. The results are reported
and measured using mean average precision.

Wang et al. (Wang et al., 2011) proposed in his
later work a new way of extracting the space-time in-
terest points, called Dense trajectories. The Dense tra-
jectories extractor is based on the assumption that the
search of the extrema across all three dimensions is
not efficient because of the different characteristics of
the space domain and the temporal domain. In this
approach, the points are detected in the spatial do-
main and then tracked across the temporal domain.
After the point trajectory is found, the descriptor is
calculated around this trajectory, while the length of
all trajectories is equal. A number of descriptors were
examined with this extractor. The HOG (Histogram
of oriented gradients) and HOF (histogram of optical
flow) descriptors (the same as in the STIP extractor
(Laptev and Lindeberg, 2003)), trajectory descriptor,
and MBH descriptor were used. The trajectory de-
scriptors are based on the trajectory shape represented
by relative point coordinates as well as appearance
and motion information over a local neighborhood of
some size along the trajectory. The MBH (Motion
boundary histogram) descriptor (Dalal et al., 2006)
separates the optical flow fields into horizontal and
vertical components (MBx, MBy). Spatial derivatives
are evaluated for each of them and the orientation in-
formation is quantized into histograms, similarly to
the HOG descriptor. MBH represents the gradient
of the optical flow with constant motion information
suppressed and only information about the changes is
kept.

All of the above feature descriptors are used sep-
arately; they are transformed into a bag-of-words
(Csurka et al., 2004) representation and used for train-
ing the multichannel non-linear SVM with c2 kernel
in a similar fashion as in (Ullah et al., 2010). The ac-
curacy of the algorithm is evaluated on present-day’
datasets and is compared with other state-of-the-art
papers using a mean average precision measure.

Ullah et al. (Ullah et al., 2010) has presented
an extension of the standard bag-of-words approach,
where the video is segmented semantically into mean-
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ingful regions (spatially and temporally) and the
bag-of-words histograms are computed separately for
each region.

Le Q. V. (Le et al., 2011) has presented a method
for learning of features from spatio-temporal data us-
ing independent subspace analysis.

Jain Mihir et al. proposed (Jain et al., 2013) to
decompose visual motion into dominant and residual
motions that are used in the feature detection part of
the processing and also in the feature description pro-
cess. He extracted the DCS (Divergence-Curl-Shear)
descriptor (Jain et al., 2013) based on differential mo-
tion scalar quantities, divergence, curl and shear fea-
tures. Later on, the VLAD (Jegou et al., 2012) coding
technique from image processing was applied to ac-
tion recognition problem.

1.2 Dataset

Marszalek et al. in (Marszalek et al., 2009) proposed
a dataset with twelve action classes and ten scene
classes annotated, which is acquired from 69 Hol-
lywood movies. The dataset1 is built from movies
containing human actions and processed using script
documents and subtitle files which are publicly avail-
able for these movies. The script documents contain
the scene captions, dialogs and the scene descriptions;
however, they are usually not quite precisely synchro-
nized with the video. The subtitles have video syn-
chronization so they are matched to the movie scripts
and this fact can be used for improvements in video
clip segmentation. By analyzing the content of movie
scripts, the twelve most frequent action classes and
their video clip segments are obtained. These seg-
ments are split into test and training subsets so that
the two subsets do not share segments from the same
movies.

These twelve action classes are : answering the
phone, driving car, eating, fighting, getting out of the
car, hand shaking, hugging, kissing, running, sitting
down, sitting up and standing up. Examples of the
frames contained in these video sequences are shown
in Figure 1. The framerate of the videos is 25 fps.

Two training parts of the dataset exist: the auto-
matic part generated using the above mentioned pro-
cedure, and the clean part which is manually corrected
using visual information from the video. The test part
is manually corrected in the same way as in the clean
training part of the dataset. In both cases, the correc-
tion is performed in order to eliminate ”noise” from
the dataset and consequently to create better classi-
fiers. In the work described above, some experiments

1The Hollywood2 dataset can be downloaded from:
http://www.di.ens.fr/ laptev/actions/hollywood2/

were performed. The processing chain consisted of
feature extraction the SIFT (Lowe, 2004) image and
STIP (Laptev and Lindeberg, 2003) space-time ex-
tractors, both converted into a bag-of-words represen-
tation and then used in multichannel c2 Support Vec-
tor Machine for classification purposes. The results
are measured using a mean average precision metric
across all of the classes and presented as the first eval-
uation performed on this dataset.

2 CLASSIFICATION PIPELINE

In the presented work, we used the standard bag of
words pipeline processing and the space-time features
combined in the multi-kernel SVM. The method of
processing is described in more detail below.

2.1 Feature Vectors Processing

A space-time interest points feature extractor pro-
duces a large number of feature vectors. The number
of the feature vectors differ for different video shots,
but every feature vector has the same dimensional-
ity. The space-time feature points extractor consists
of two parts: the search part that seeks for interest
points location across both space and time domains
and the description part that examines the neighbor-
hoods of such detected feature point locations.

The consequent part of the feature vectors pro-
cessing is the conversion of the feature vectors into
the form, where a single fixed-sized feature vector de-
picts the video shot. This is achieved through a visual
vocabulary which is used for a bag-of-words (Csurka
et al., 2004) feature vector construction.

The visual vocabulary is created as a model for the
representation of the low-level feature space, which is
formed by a set P of representatives Pi (points) in n-
dimensional space. The size of the vocabulary has to
be adjusted to a suitable value so that the represen-
tation of the space is compact and accurate enough
at the same time . If the size is too large, nearly all
low-level features become representatives of the vi-
sual vocabulary. If the size is too small, very large
clusters will exist and the discriminative power of the
whole solution may be adversely affected.

The k-means square-error partitioning method
(Duda et al., 2000) can be used for these purposes.
This algorithm iteratively processes data so that it as-
signs feature points to their closest cluster centers and
recalculates the cluster centers. The k-means algo-
rithm converges only to local optima of the squared
distortion and does not determine the k parameter. It
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Figure 2: The standard algorithm schema; The LLFx boxes depict the low level feature extractors, the VOCx represent the
vocabularies constructed from related feature extractors, the BOWx boxes depict the bag-of-words creation units, the multiple
channels feature vector is constructed by concatenation of all vectors, but the positions of all subparts need to be kept.

can be parametrized through the specification of the
number of iterations and number of output clusters.

The bag-of-words can represent the video se-
quence or its part using one feature vector with a con-
stant dimension. The dimension does not depend on
the number of the local space-time vectors nor on the
video shot length. The bag-of-words representation
can be (in its simple form) constructed in the follow-
ing way. The input of this process is the set S of local
feature vectors s 2 S and a vocabulary, while the out-
put is a histogram of the occurrences of matched input
vectors. For each input vector, exactly one bin in out-
put histogram is incremented. This simple form of
assignment is sometimes called the hard assignment
which also has some disadvantages. The main disad-
vantage is that only slightly different input local fea-
ture vectors may be accumulated into totally different
output histogram bins (nearest codewords are differ-
ent); this may cause total dissimilarity of two similar
input vectors.

The above issue is addressed in the soft assign-
ment approach. The soft assignment is performed
as follows. A small group of the clusters very close
to the vector being processed is retrieved instead of
a single cluster; all the clusters from such groups
are assigned a weight corresponding to their close-
ness to the vector; finally each of the correspond-
ing output histogram bins are added to the weight of
the appropriate clusters. The most frequently used
method of weight computation is through exponential
function of the distance to the cluster center wi(a) =

exp(� (d(a;pi))
2

2s2 ), where d is an Euclidean distance
from the cluster center to the vector, while the s is a
parameter and controls the width of the function. This
function needs to be evaluated for each of the clusters

in the group. Finally, soft assignment parameters cor-
respond to the number of the very close vectors to be
considered and the s which controls the shape of soft-
weighting function.

2.2 SVM Models Creation

The bag-of-words feature vectors are combined us-
ing a non-linear multi-kernel support vector machine
(Zhang et al., 2006), as depicted in Figure 2, with
a multichannel gaussian kernel (Zhang et al., 2006).
The kernel shall be defined as:

K(A;B) = exp(�å
c2C

1
Ac

Dc(A;B)) (1)

where Ac is the scaling parameter which is determined
as a mean value of mutual distances Dc between all
the training samples for the channel c from a set of
channels C, Dc(A;B) is the c2 distance between two
bag-of-words, A and B are the input vectors of the
form:

Ai = ( a1 : : :an1| {z }
channel h1;n1i

; an1+1 : : :an2| {z }
channel hn1+1;n2i

; : : :

: : : ; ani�1 : : :ani| {z }
channel hni�1;nii

)
(2)

where set of channels C can be defined as:

C = fh1;n1i;hn1 +1;n2i; : : : ;hni�1;niig (3)

The bag-of-words distance Dc(A;B) is defined as:

Dc(A;B) =
1
2 å

n2c

(an�bn)
2

an +bn
(4)
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Figure 3: Dependency of the average precision on the length of the shot achieved for all classes contained in the Hollywood2
dataset. The dependency is split into 3 separate charts in order to improve readability. It should be noted that the big marks
indicate the average action length shown in the charts for actions shorter than 100 frames.
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The best ratio of combined channels
fck;cl ; : : : ;czg 2 C for a given training set is es-
timated using a coordinate descend method. The
set of input channels needs to be specified outside
of the training process. Beside this SVM building
procedure requires the number of input parameters
that affect the classifier accuracy; these parameters
are automatically evaluated using the cross-validation
approach (Hsu et al., 2010). The classifier creation
process may be apprehended in the whole proce-
dure as a black-box unit which for a given input
automatically creates the best performing classifier.

3 EXPERIMENTS

The purpose of the experiments performed in the
presented work has been to determine the minimum
length of a video shot containing the action to be rec-
ognized, and for which the recognition accuracy is
still comparable to the state-of-the-art solutions. Such
experiments correspond to real-time search in video
or, for example, to a situation where a video record
is searched for the action (at randomly selected posi-
tions, positions determined by the application).

We have used the pipeline presented in Chapter 2
and the Hollywood2 dataset presented in Chapter 1.1
(Marszalek et al., 2009). This dataset, as mentioned
earlier, contains twelve action classes from Holly-
wood movies, namely: answering the phone, driving
car, eating, fighting, getting out of the car, hand shak-
ing, hugging, kissing, running, sitting down, sitting up
and standing up.

We investigated the recognition algorithm behav-
ior in such a way that pieces of video containing the
action were presented to the algorithm at randomly
selected positions inside the actions. For example, the
actions were known to start earlier than the beginning
of the processed piece of video, and ended only after
the end of the presented piece of video. For this pur-
pose, we had to reannotate the Hollywood2 dataset
(all three its parts - train, autotrain and test) to obtain
precise beginning and ending frames of the actions.

In our experiments, we have been trying to depict
a dependency between the length of video shot, be-
ing an input to the processing, and the accuracy of the
output. We have set the minimum shot length to 5
frames, more precisely the 5 frames from which the
space-time point features are extracted. The maxi-
mum shot length was set to 100 frames and the frame
step was set to 5 frames.

The space-time features extractor process N pre-
vious and N consequent frames of the video sequence
in order to evaluate the points of interest for a single

frame. Therefore, 2*N should be added to every fig-
ure concerning the number of frames to get the total
number of frames of the video sequence to be pro-
cessed. In our case, N was equal to 4 so that, for
example, the 5 frames processed in Figure 3 mean 13
frames of the video.

A classifier has been constructed for every video
shot length considered. The training samples were
obtained from the training part of the dataset in the
following way: the information of the start and stop
position in the currently processed sample was used
and large number of the randomly selected subshots
were obtained. The training dataset has 823 video
samples in total and from each sample, we extracted
6 subshots on average.

The actual evaluation of the classifier has been
done four times in order to obtain the information
about reliability of the solution. Also, the above men-
tioned publications used the 823 samples for evalua-
tion purposes and we wanted our results to be directly
comparable. The results shown in Table 1 and Fig-
ure 3 present the average of the results of the four
runs. For this purpose we have randomly determined
a position of starting frame of a testing subshot within
a testing sample four times. The above approach
brings us two benefits - the final solution accuracy
can be measured using an average precision metric
and the results obtained through the testing can be
easily comparable to the published state-of-the-art so-
lutions. The results were compared with the accu-
racy achieved on the video sequences with completely
unrestricted size that are close to the state-of-the-art
(Reznicek and Zemcik, 2013).

The parameters for feature processing and clas-
sification purposes were as follows: the tested fea-
ture extractor is the dense trajectories extractor (Wang
et al., 2011), which produces four types of descrip-
tors, namely: HOG, HOF, DT and MBH. These four
feature vectors were used separately. For each de-
scriptor a vocabulary of 4000 words was produced
using the k-means method and the bag-of-words rep-
resentation was produced with the following param-
eters: s = 1, the number of searched closest vectors
is 16; these values and codebook size were evaluated
in (Reznicek and Zemcik, 2013) and are suitable for
bag-of-words creation from space-time low-level fea-
tures. In the multi-kernel SVM creation process all
four channels (bag-of-words representations of HOG,
HOF, DT and MBH descriptors) are combined to-
gether, no searching for a better combination is per-
formed.

The above described evaluation procedure was re-
peated for every class contained in the Hollywood2
dataset. For each class, we are presenting the graph of
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Table 1: Results of the experiments. The first four columns show the accuracy (average precision) for the selected video
sizes, the consequent column shows the reference accuracy reached for unrestricted video size, and the final column shows
the minimum number of frames needed to achieve 90% of the precision achieved using the unrestricted video size.

Video size (frames) Unrestricted video Number of frames to
Action 5 10 30 90 size accuracy achieve 90% accuracy
driving car 0.757 0.798 0.852 0.874 0.848 10
running 0.739 0.765 0.752 0.769 0.812 10
fighting 0.459 0.479 0.543 0.675 0.718 90
eating 0.2 0.203 0.309 0.498 0.326 25
kissing 0.599 0.541 0.540 0.535 0.597 5
getting out of the car 0.335 0.36 0.471 0.277 0.358 5
hugging 0.214 0.217 0.273 0.235 0.264 25
sitting up 0.142 0.179 0.138 0.17 0.163 10
standing up 0.721 0.758 0.612 0.273 0.598 5
sitting down 0.587 0.649 0.442 0.33 0.654 10
hand shaking 0.395 0.38 0.229 0.172 0.232 5
answering the phone 0.201 0.243 0.139 0.08 0.225 10

dependency between the video sample shot length and
the system best accuracy, as well as the figure show-
ing the number of frames needed to achieve 90% of
state-of-the-art accuracy.

It should be noted that the first group of results
(driving car, running, fighting, eating) corresponds
well to the expectation that the accuracy will be in-
creasing with the length of the shot. The second
group (kissing, getting out of the car, hugging, sitting
up) showed approximately constant accuracy depend-
ing on the length. This was probably due to the fact
that the actions in these shots are recognized based
on some short motions inside the actions. The final
group (standing up, sitting down, hand shaking, an-
swering the phone) showed decreased accuracy de-
pending on the length. The reason is that the actions
were too short (length shown using markers in Figure
3) and so increasing the length of the shot only ”in-
creased noise” and did not bring any additional infor-
mation. The expectations were also not fulfilled for
generally poorly recognized actions where the exper-
iments showed that the shot length is not correlated
with accuracy.

Based on our experiments, for example, the run-
ning activity can be recognized in 10 frames of space-
time features with 0.765 accuracy (90% of the state-
of-the-art) which corresponds to the 18 frames in total
and approximately 0.72s of real-time.

4 CONCLUSIONS

In this paper, we presented novel results showing de-
pendency between the length of a video sequence con-
taining certain action and the accuracy of the action

recognition. For this purpose, we used the Holly-
wood2 dataset and we demonstrated the results on the
human action recognition.

The results indicate that the idea suggesting the
accuracy of the action recognition being dependent
on the length of the video sequence is generally right
with the exception of some short and poorly recog-
nized classes. Our research also indicates that sig-
nificant differences exist between the sizes of video
sequences to recognize different actions.

The results of our work can be useful in the de-
sign the real-time action recognition systems as well
as in applications, such as a video database search,
where real-time is not critical but where the computa-
tion performance is the bottleneck.

Future research includes extension of the classier
creation process, where an algorithm for automatic
optimal combination of input feature channels should
be constructed in order to minimize the processing
time, while preserving accuracy through minimiza-
tion of the input channel count. Additionally, more
efficient feature extraction and processing approaches
from both the point of view of frames processed and
the point of view of the computational time needed
will be considered.
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