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Abstract: The objective of link prediction for social network is to estimate the likelihood that a link exists between
two nodesx andy. There are some well-known local information-based link prediction algorithms (LILPAs)
which have been proposed to handle this essential and crucial problem in the social network analysis. How-
ever, they can not adequately consider the so-called local information: the degrees ofx andy, the number
of common neighbors of nodesx andy, and the degrees of common neighbors ofx andy. In other words,
not any LILPA takes into account all the local information simultaneously. This limits the performances of
LILPAs to a certain degree and leads to the high variability of LILPAs. Thus, in order to make full use of
all the local information and obtain a LILPA with highly-predicted capability, an ordered weighted averaging
(OWA) operator based link prediction ensemble algorithm (LPEOWA) is proposed by integrating nine different
LILPAs with aggregation weights which are determined with maximum entropy method. The final experimen-
tal results on benchmark social network datasets show that LPEOWA can obtain higher prediction accuracies
which is measured by the area under the receiver operating characteristic curve (AUC) in comparison with
nine individual LILPAs.

1 INTRODUCTION

With the development of information technology and
big data mining (Lin and Ryaboy, 2013), the social
network analysis is attracting more and more atten-
tions and becoming a research hot-spot of sociology
and statistics. The social network analysis (Carring-
ton et al., 2005; Knoke and Yang, 2008) refers to mine
and discover the underlying knowledge from a so-
cial network diagram by using the mathematical and
graphical techniques. The social network is repre-
sented as a graphic structure that made up of a set
of nodes and links, where nodes represent the indi-
viduals within network and links denote the relation-
ships between individuals. The main studies of so-
cial network analysis include the identification of lo-
cal/global patterns, location of social units, and mod-
eling of dynamic network, etc, where the link predic-
tion (Al Hasan and Zaki, 2011; Cukierski et al., 2011;
Dong et al., 2012; Fire et al., 2011; Lü and Zhou,
2011) as a branch of network pattern recognition is
the most fundamental and essential problem for the
social network analysis.

The link prediction for social network attempts to

estimate the existence likelihood of a link between
two nodesx and y in social network. The essence
of link prediction algorithm is to assign a score for
the non-existent link in social network (Lü and Zhou,
2011; Lü et al., 2009; Zhou et al., 2009), where
the score quantifies the existence likelihood of this
non-existent link. So far, there are many link pre-
diction strategies which have been proposed (Lü and
Zhou, 2011), e.g., similarity-based algorithms, max-
imum likelihood methods, probabilistic models and
so on, where the similarity-based algorithms are most
frequently-used and simplest ones. Moreover, accord-
ing to the information used to design the measure in-
dices of link existence likelihood, the similarity-based
algorithms can be further classified into three cate-
gories: local, global and quasi-local ones. In consid-
eration of its easier implementation and less compu-
tational complexity, our tour of studies in this paper
starts with the local information-based link predic-
tion algorithm (LILPA). There are nine representative
LILPAs as follows: common neighbors (CN) (Lorrain
and White, 1971), Salton index (Chowdhury, 2010),
Jaccard index (Lü and Zhou, 2011), Sφrensen in-
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dex (Lü and Zhou, 2011), hub promoted index (HPI)
(Ravasz et al., 2002), hub depressed index (HDI)
(Lü and Zhou, 2011), Leicht-Holme-Newman-I in-
dex (LHN-I) (Leicht et al., 2006), Adamic-Adar index
(AA) (Adamic and Adar, 2003) and resource alloca-
tion index (RA) (Zhou et al., 2009). The comparative
studies (Lü et al., 2009; Zhao et al., 2012) have re-
ported the merits of LILPAs, but we think there still
exists a defect for the implementations of LILPAs,
i.e., not any LILPA can adequately make use of the
so-called local information (the degrees ofx andy, the
number of common neighbors of nodesx andy, and
the degrees of common neighbors ofx andy). This
limits the performances (Measured by the area under
the receiver operating characteristic curve (AUC)) of
LILPAs to a certain degree and leads to the higher
variability among LILPAs (Zhang and Ma, 2012).

Inspired by the outlook in Lü and Zhao’s work (Lü
and Zhou, 2011), i.e.,“we can implement many in-
dividual prediction algorithms and then try to select
and organize them in a proper way. This so-called
ensemble learning method can obtain better predic-
tion performance than could be obtained from any
of the individual algorithms.”, we try to use the en-
semble learning strategy (Zhang and Ma, 2012; Zhou,
2012) to relieve this limitation of LILPAs and accord-
ingly improve the prediction performance of LILPA.
As stated in (Zhang and Ma, 2012), ensemble learning
is such a strategy whichis known to reduce the classi-
fiers’ variance and improve the decision system’s ro-
bustness and accuracy. The ensembles of some ma-
chine learning algorithms (e.g., decision tree (Ban-
field et al., 2007), neural network (Zhou et al., 2002),
support vector machine (Kim et al., 2003), etc.) are
all well and sophisticatedly studied, while there isn’t
any study of ensemble of LILPAs in literatures.

The ordered weighted averaging (OWA) operator
(Yager, 1988) is one of mostly used information ag-
gregation techniques. In view of the effectiveness of
OWA in preference rankings (Wang et al., 2007), an
OWA operator based link prediction ensemble algo-
rithm (LPEOWA) is proposed by integrating the nine
above-mentioned LILPAs with aggregation weights
which are determined with maximum entropy method
(O’Hagan, 1988). The experimental results on bench-
mark social networks (Pajek, 2007) demonstrate the
feasibility of our proposed LPEOWA and show that
LPEOWA can obtain higher prediction accuracies in
comparison with nine individual LILPAs. The rest of
this paper is organized as follows. In Section 2, the
theoretical and empirical analysis to nine LILPAs are
given. In Section 3, the new OWA operator based link
prediction ensemble model (LPEOWA) is presented. In
Section 4, experimental comparisons are conducted to

Table 1: The notation-list.

Notation Meaning

G= 〈V,E〉 A social network graph

A = (axy) The adjacency matrix of G

V The set of nodes in G

E= ETrain∪ETest The set of links in G (ETrain∩ETest= Ø)

ETrain The training set

ETest The testing set

U The set containing all possible links of G

EPredict= U−E The set containing nonexistent links of G

x∈ V A nodex belonging to V

sxy The existence likelihood of linkxy

Γ(x) The set of neighbors of nodex

‖S‖ The cardinality of setS

kx = ‖Γ(x)‖ The degree of nodex

illustrate the feasibility of proposed ensemble model.
Finally, conclusions are given in Section 5.

2 LILPA ANALYSIS

2.1 Nine Basic LILPAs

For a nonexistent linkxy∈ EPredict, LILPAs calculate
the scoresxy for it to express the likelihood of its ex-
istence. There are nine frequently used LILPAs as
follows. Without loss of generality, we assume there
is no isolated node in G for the sake of simplicity. Our
discussion is based on the notations in Table 1.

• Common neighbors index (CN) (Lorrain and
White, 1971) is the most direct and simplest like-
lihood measure and defined as

sCN
xy = ‖Γ(x)∩Γ(y)‖ . (1)

It is obvious thatsCN
xy =

(

A2
)

xy. And, sCN
xy repre-

sents the number of paths fromx to y with two
steps in G. Thus, the minimum ofsCN

xy is 0, i.e.,
there is no any path with two steps betweenx
andy; the maximum ofsCN

xy is ‖V‖− 2, i.e., all
the residual nodes are served as the intermedi-
ate nodes fromx and y. In summary, we get
sCN
xy ∈ [0,‖V‖−2].

• Salton index (Chowdhury, 2010) considers the de-
grees of nodes and is defined as

sSalton
xy =

‖Γ(x)∩Γ(y)‖
√

kx× ky
. (2)

In Eq. (2), kx = ‖Γ(x)‖ ∈ [1,‖V‖−1] and
ky = ‖Γ(y)‖ ∈ [1,‖V‖−1]. Then,

√

kx× ky ∈

[1,‖V‖−1]. Thus,sSalton
xy ∈ [0,‖V‖−2].
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• Jaccard index (Lü and Zhou, 2011) is defined as

sJaccard
xy =

‖Γ(x)∩Γ(y)‖
‖Γ(x)∪Γ(y)‖

. (3)

Because‖Γ(x)∪Γ(y)‖ ∈ [1,‖V‖], we can derive
sJaccard
xy ∈ [0,‖V‖−2].

• Sφrensen index (Lü and Zhou, 2011) is defined as

sSørensen
xy =

2‖Γ(x)∩Γ(y)‖
kx+ ky

. (4)

Because kx+ ky ∈ [2,2(‖V‖−1)], we can derive
sSørensen
xy ∈ [0,‖V‖−2].

• Hub promoted index (HPI) (Ravasz et al., 2002)
is said to assign a higher score for link connecting
to the nodes with high degrees (Zhao et al., 2012;
Zhou et al., 2009) and defined as

sHPI
xy =

‖Γ(x)∩Γ(y)‖
min{kx,ky}

∈ [0,‖V‖−2] . (5)

• Hub depressed index (HDI) (Lü and Zhou, 2011)
is opposite to HPI and assigns a lower score for
link connecting to the nodes with high degrees.
The definition of HDI is

sHDI
xy =

‖Γ(x)∩Γ(y)‖
max{kx,ky}

∈ [0,‖V‖−2] . (6)

• Leicht-Holme-Newman-I index (LHN-I) (Leicht
et al., 2006) is similar to the Salton index and de-
fined as

sLHN−I
xy =

‖Γ(x)∩Γ(y)‖
kx× ky

∈ [0,‖V‖−2] . (7)

The main difference between Salton index and
LHN-I index is the denominator of Eq. (2) and
Eq. (7): the former is

√

kx× ky and the latter
kx× ky. Because kx×ky ≥ 1, kx×ky ≥

√

kx× ky.
Then, we can getsSalton

xy > sLHNN−I
xy when kx×ky 6=

1. That is to say, for a same link, Salton index al-
ways assigns a higher score compared with LHN-I
index.

• Adamic-Adar index (AA) (Adamic and Adar,
2003) is defined as

sAA
xy = ∑

z∈Γ(x)∩Γ(y)

1
log2 (kz)

. (8)

Because kz ∈ [2,‖V‖−1], we can derivesAA
xy ∈

[

1
log2(‖V‖−1) ,‖V‖−2

]

.

• Resource allocation index (RA) (Zhou et al.,
2009) is similar to AA index and defined as

sRA
xy = ∑

z∈Γ(x)∩Γ(y)

1
kz

∈

[

1
‖V‖−1

,
‖V‖−2

2

]

. (9)

AA and RA indices are all inclined to assign a low
score for the link betweenx andy which have the
comment neighbors with high degrees. By com-
paring Eq. (8) with Eq. (9), we can findsAA

xy > sRA
xy

whenΓ(x)∩Γ(y) 6= Ø.

2.2 Performance Measure Index-AUC

AUC (Lü and Zhou, 2011; Zhao et al., 2012) is the
prevalently used index to measure the performance of
link prediction algorithm, which is defined as

AUC =
n1+0.5n2

n
, (10)

wheren is the number of independent comparisons
including n1 times the missing link having a higher
score,n2 times the missing link and nonexistent link
having the same score, andn3 times the missing link
having a lower score, i.e.,n = n1 + n2 + n3. The
missing link denotes the link in testing set ETest, and
nonexistent link is the link in EPredict. AUC assumes
that a good prediction algorithm is more likely to as-
sign a higher score for the missing link compared with
the nonexistent link.

Assume there are two different link prediction al-
gorithms: AlgoA and AlgoB. If AlgoA obtains a bet-
ter performance, i.e., larger AUC, than AlgoB on the
same ETest and EPredict, we want to know what con-
clusions can be derived from the result AUCAlgoA >

AUCAlgoB.
From the definition of Eq. (10), we know

AUCAlgoA =
nAlgoA

1 +0.5nAlgoA
2

n
(11)

and

AUCAlgoB =
nAlgoB

1 +0.5nAlgoB
2

n
. (12)

Because AUCAlgoA > AUCAlgoB, we can get

nAlgoA
1 −nAlgoB

1 > 0.5
(

nAlgoB
2 −nAlgoA

2

)

. (13)

As mentioned above, a better link prediction algo-
rithm is assumed to assign a high score for the miss-
ing link in ETestmore easily. Thus, we think that these
two deductions, i.e,nAlgoA

1 = nAlgoB
1 , nAlgoA

2 > nAlgoB
2 ,

nAlgoA
3 < nAlgoB

3 andnAlgoA
1 < nAlgoB

1 , nAlgoA
2 > nAlgoB

2 ,

nAlgoA
3 < nAlgoB

3 , are inadvisable for AUCAlgoA >

AUCAlgoB, becausenAlgoA
1 = nAlgoB

1 and nAlgoA
1 <

nAlgoB
1 all deviate from the previous assumption. This

deduction can be demonstrated by the following ex-
perimental results and analysis.
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Figure 1: Network of Food Webs-ChesLower.

2.3 High Variability of LILPAs

In this subsection, we study the prediction perfor-
mances of these nine LILPAs. We select two bench-
mark social networks (Pajek, 2007) as shown in Fig. 1
and Fig. 2 for our experimental datasets: Food Webs-
ChesLower and Graph Drawing Contests Data-B97.

The 10-fold cross-validation is used to test the
AUCs of LILPAs. Firstly, the set E including all the
existent links is randomly and averagely divided into
10 disjointed subsets (folds): E= E1∪E2∪ ·· · ∪E10
and E1∩E2∩·· · ∩E10 = Ø. Then, we select the sub-
set Ei (1≤ i ≤ 10) as testing set Etest in sequence, the
link in which is called missing link. Based on the
Etest=Ei and‖U−E‖, AUCi in Eq. (10) is calculated
for ith fold dataset. Finally, 10 AUCs on 10 folds are
averaged as the evaluation result of link prediction al-
gorithm. The detailed experimental results on these
two networks are summarized in Table 2 and Table 3
respectively. By observing the experimental results,
we can get the following conclusions:

• According to the prediction performance, we can
divide the above-mentioned 9 LILPAs into three
categories: AA and RA obtain the higher AUCs,
CN the medium AUC and other 6 algorithms the
lower AUCs. From Eqs. (1)-(9), we know that AA
and RA consider the degrees of common neigh-
bors ofx andy, CN considers the number of com-
mon neighbors ofx andy, and other algorithms
consider the number of common neighbors ofx
andy and the degrees ofx andy synchronously
(The item‖Γ(x)∪Γ(y)‖ in Jaccard index equals
to kx + ky when there are no common neighbors
for x andy).

• For the different link prediction algorithms Al-
goA and AlgoB, when AUCAlgoA > AUCAlgoB,
we can getnAlgoA

1 > nAlgoB
1 . E.g., from the ex-

perimental results in Tables 2 and 3, we can find
that under the situation of AUCAA > AUCCN,
nAA

1 (ChesLower) = 6038> nCN
1 (ChesLower) =

5424 and nAA
1 (B97) = 19998> nCN

1 (B97) =
17399 hold for the employed two networks re-
spectively. This empirical conclusion also reflects

Figure 2: Network of Graph Drawing Contests Data-B97.

that increasing the number of missing links having
higher scores is the key for improving the perfor-
mance of LILPA from another perspective.

• The variability of LILPAs is high. We can find
that the prediction performances of different LIL-
PAs are varying dramatically for the same train-
ing and testing datasets. For example,n1=5110,
4083, 4254, 4254, 3263, 4444, 1846, 5620 and
5791 respectively on the Fold 5 of ChesLower and
n1=16892, 16273, 15567, 15567, 17280, 15147,
14605, 19606 and 19977 respectively on the Fold
9 of B97.

From the foregoing analysis, we can find that no
any link prediction algorithm mentioned in Subsec-
tion 2.1 can consider the degrees ofx andy, the com-
mon neighbors ofx andy, and the degrees of common
neighbors ofx andy simultaneously. This leads to the
high variability of LILPAs and limits the prediction
performances of LILPAs.

3 LPEOWA ALGORITHM

The n-dimensional OWA operator is a mapping F :
ℜn → ℜ with an associated weight vector~w =
(w1,w2, · · · ,wn) such that

n

∑
i=1

wi = 1,wi ∈ [0,1] , i = 1,2, · · · ,n (14)

and

F(a1,a2, · · · ,an) =
n

∑
i=1

wibi , (15)

wherebi is theith largest value ofa1,a2, · · · ,an. The
important issue of applying OWA operator is deter-
mining the weight vector~w of OWA operator.

In order to determine the weight vector~w, two
important measures Disp(~w) and orness(~w) are de-
fined, where Disp(~w) measures the degree to which all
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Table 2: Prediction performances of nine LILPAs on the network of Food Webs-ChesLower.
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

CN [4326 1143 3014 0.5773] [5686 956 1841 0.7266] [5164 731 2588 0.6518] [5926 1038 1519 0.7598] [6170 761 1552 0.7722] [5110 785 2588 0.6487] [4833 1155 2495 0.6378] [4733 943 2308 0.6519] [6850 456 678 0.8865] [5441 695 1848 0.7250] [5424 866 2043 0.7038±0.0079]

Salton [3111 60 5312 0.3703] [4134 47 4302 0.4901] [3474 31 4978 0.4114] [3805 47 4631 0.4513] [4675 51 3757 0.5541] [4083 24 4376 0.4827] [3574 20 4889 0.4225] [3551 23 4410 0.4462] [5364 19 2601 0.6730] [4273 16 3695 0.5362] [4004 34 4295 0.4838±0.0075]

Jaccard [3063 143 5277 0.3695] [4134 140 4209 0.4956] [3380 99 5004 0.4043] [3688 216 4579 0.4475] [4605 110 3768 0.5493] [4254 142 4087 0.5098] [3362 260 4861 0.4116] [3335 61 4588 0.4215] [5117 101 2766 0.6472] [4254 151 3579 0.5423] [3919 142 4272 0.4799±0.0072]

Sφrensen [3063 143 5277 0.3695] [4134 140 4209 0.4956] [3380 99 5004 0.4043] [3688 216 4579 0.4475] [4605 110 3768 0.5493] [4254 142 4087 0.5098] [3362 260 4861 0.4116] [3335 61 4588 0.4215] [5117 101 2766 0.6472] [4254 151 3579 0.5423] [3919 142 4272 0.4799±0.0072]

HPI [2596 688 5199 0.3466] [3734 472 4277 0.4680] [3747 210 4526 0.4541] [3564 633 4286 0.4574] [4257 716 3510 0.5440] [3263 480 4740 0.4129] [3966 508 4009 0.4975] [3799 633 3552 0.5155] [5200 502 2282 0.6827] [3472 467 4045 0.4641] [3760 531 4043 0.4843±0.0078]

HDI [3271 215 4997 0.3983] [4184 208 4091 0.5055] [3245 164 5074 0.3922] [3763 169 4551 0.4536] [4521 150 3812 0.5418] [4444 164 3875 0.5335] [3291 123 5069 0.3952] [3168 100 4716 0.4031] [4885 87 3012 0.6173] [4445 102 3437 0.5631] [3922 148 4263 0.4804±0.0068]

LHN-I [1524 125 6834 0.1870] [2023 116 6344 0.2453] [1218 90 7175 0.1489] [1170 57 7256 0.1413] [2137 172 6174 0.2621] [1846 84 6553 0.2226] [1624 54 6805 0.1946] [1193 44 6747 0.1522] [1959 88 5937 0.2509] [1751 48 6185 0.2223] [1645 88 6601 0.2027±0.0020]

AA [5042 157 3284 0.6036] [6434 59 1990 0.7619] [5684 65 2734 0.6739] [6883 4 1596 0.8116] [6645 71 1767 0.7875] [5620 102 2761 0.6685] [5522 243 2718 0.6653] [5446 187 2351 0.6938] [7209 3 772 0.9031] [5899 28 2057 0.7406] [6038 92 2203 0.7310±0.0077]

RA [5001 157 3325 0.5988] [6465 59 1959 0.7656] [5714 65 2704 0.6774] [6995 4 1484 0.8248] [6773 71 1639 0.8026] [5791 102 2590 0.6887] [5596 243 2644 0.6740] [5596 187 2201 0.7126] [7221 3 760 0.9046] [5915 28 2041 0.7426] [6107 92 2135 0.7392±0.0078]

Note: The quadruple denotes [n1 n2 n3 AUC].

Table 3: Prediction performances of nine LILPAs on the network of Graph Drawing Contests Data-B97.
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

CN [18250 3946 2185 0.8295] [18159 3946 2276 0.8257] [19026 3607 1748 0.8543] [15959 5113 3309 0.7594] [17751 3711 2016 0.8351] [16210 4297 2971 0.7819] [16484 4271 2723 0.7931] [18148 3511 1819 0.8478] [16892 4141 2445 0.8077] [17113 3879 2486 0.8115] [17399 4042 2398 0.8146±0.0009]

Salton [17065 223 7093 0.7045] [17203 248 6930 0.7107] [17945 161 6275 0.7393] [15190 1018 8173 0.6439] [17374 271 5833 0.7458] [15518 1050 6910 0.6833] [15748 624 7106 0.6840] [16720 204 6554 0.7165] [16273 227 6978 0.6980] [16970 652 5856 0.7367] [16601 468 6771 0.7063±0.0010]

Jaccard [16294 354 7733 0.6756] [16341 443 7597 0.6793] [17040 351 6990 0.7061] [14396 1286 8699 0.6168] [17104 481 5893 0.7388] [15121 1261 7096 0.6709] [15213 751 7514 0.6640] [15803 300 7375 0.6795] [15567 414 7497 0.6719] [16709 757 6012 0.7278] [15959 640 7241 0.6831±0.0012]

Sφrensen [16294 354 7733 0.6756] [16341 443 7597 0.6793] [17040 351 6990 0.7061] [14396 1286 8699 0.6168] [17104 481 5893 0.7388] [15121 1261 7096 0.6709] [15213 751 7514 0.6640] [15803 300 7375 0.6795] [15567 414 7497 0.6719] [16709 757 6012 0.7278] [15959 640 7241 0.6831±0.0012]

HPI [18458 1481 4442 0.7874] [18383 2055 3943 0.7961] [18793 1969 3619 0.8112] [16581 2990 4810 0.7414] [17184 2051 4243 0.7756] [15561 2729 5188 0.7209] [17023 2429 4026 0.7768] [18485 1897 3096 0.8277] [17280 1723 4475 0.7727] [16666 2420 4392 0.7614] [17441 2174 4223 0.7771±0.0010]

HDI [15793 590 7998 0.6599] [15738 608 8035 0.6580] [16371 507 7503 0.6819] [14037 1299 9045 0.6024] [16619 591 6268 0.7204] [14774 1223 7481 0.6553] [14845 757 7876 0.6484] [15018 344 8116 0.6470] [15147 469 7862 0.6551] [16224 970 6284 0.7117] [15457 736 7647 0.6640±0.0011]

LHN-I [14940 276 9165 0.6184] [14999 340 9042 0.6222] [15477 269 8635 0.6403] [13617 1050 9714 0.5800] [15198 390 7890 0.6556] [13769 1057 8652 0.6090] [14049 626 8803 0.6117] [14360 218 8900 0.6163] [14605 294 8579 0.6283] [14948 756 7774 0.6528] [14596 528 8715 0.6235±0.0005]

AA [20839 324 3218 0.8614] [20981 325 3075 0.8672] [21986 174 2221 0.9053] [18965 1211 4205 0.8027] [20709 206 2563 0.8864] [18414 1247 3817 0.8109] [19291 746 3441 0.8376] [20138 409 2931 0.8664] [19606 507 3365 0.8459] [19047 931 3500 0.8311] [19998 608 3234 0.8515±0.0010]

RA [21010 323 3048 0.8684] [21352 325 2704 0.8824] [22149 174 2058 0.9120] [19257 1211 3913 0.8147] [20941 206 2331 0.8963] [18764 1247 3467 0.8258] [19585 745 3148 0.8501] [20026 409 3043 0.8617] [19977 507 2994 0.8617] [19169 931 3378 0.8363] [20223 608 3008 0.8609±0.0009]

the aggregates are equally used and orness(~w) mea-
sures the degree to which the aggregation is like an
or operation. O’Hagan’s maximum entropy method
(O’Hagan, 1988) is one of the commonly used meth-
ods for determining the weight vector of OWA oper-
ator, which solves~w from the following constrained
nonlinear optimization model:

Maximize Disp(~w) =−
n
∑

i=1
wi In(wi)

s.t. orness(~w) = α = 1
n−1

n
∑

i=1
(n− i)wi ,

n
∑

i=1
wi = 1,

wi ∈ [0,1] , i = 1,2, · · · ,n,
(16)

whereα ∈ [0,1] is the optimism level factor, which
controls the desired degree of orness. When
α = 0, ~w = (0, · · · ,0,1) and F(a1,a2, · · · ,an) = bn
= min{ai}; when α = 1, ~w = (1,0, · · · ,0) and
F(a1,a2, · · · ,an) = b1 = max{ai}; whenα = 0.5,~w=
(

1
n,

1
n, · · · ,

1
n

)

and F(a1,a2, · · · ,an) = 1
n

n
∑

i=1
bi = 1

n

n
∑

i=1
ai .

LINGO software is used to find the optimized weight
vector~w for Eq. (16). In this study, because OWA op-
erator will be used to aggregate 9 different LILPAs,
we letn= 9 in the following implementation.

LPEOWA is such an ensemble algorithm which in-
tegrates 9 LILPAs with OWA operator to carry out
the link prediction for social network. The likelihood
score of a link existence calculated with LPEOWA is
defined as follows:

sOWA
xy =

9

∑
i=1

wis
(i)
xy , (17)

where s(i)xy ∈ [0,1] is the ith largest value ofsnCN
xy ,

snSalton
xy , snJaccard

xy , snSørensen
xy , snHPI

xy , snHDI
xy , snLHN−I

xy ,
snAA

xy and snRA
xy which are the normalization ofsCN

xy ,
sSalton
xy , sJaccard

xy , sSørensen
xy , sHPI

xy , sHDI
xy , sLHN−I

xy , sAA
xy and

sRA
xy as shown in Eqs. (1)-(9),wi (i = 1,2, · · · ,9) is the

weight of OWA operator, which is determined with
maximum entropy method.

The role of normalization is to locate the likeli-
hood scores in the interval[0,1] and regards the like-
lihood score as a probability value. For the kx,ky > 2
and kx 6= ky, we can derive

1< min{kx,ky}<
√

kxky <
kx+ ky

2
< max{kx,ky}< ‖Γ(x)∪Γ(y)‖< kxky.

(18)

Furthermore, we can get the following derivations:

sCN
xy > sHPI

xy > sSalton
xy > sSørensen

xy > sHDI
xy

> sJaccard
xy > sLHN−I

xy ,
(19)

and

snCN
xy > snHPI

xy > snSalton
xy > snSørensen

xy

> snHDI
xy > snJaccard

xy > snLHN−I
xy .

(20)

For any nodez∈ ‖Γ(x)∩Γ(y)‖, when kz > 2, we
can obtain

1< log2kz < kz ⇒ 1>
1

log2kz
>

1
kz
. (21)

ConsideringsCN
xy = ‖Γ(x)∩Γ(y)‖ = ∑

z∈‖Γ(x)∩Γ(y)‖
1,

we can derive

sCN
xy > sAA

xy > sRA
xy andsnCN

xy > snAA
xy > snRA

xy . (22)

Eqs. (20) and (22) tell us that the individual algo-
rithm only considers the number of common neigh-
bors of two different nodesx andy, to obtain the high-
est weight in LPEOWA, because it is obvious and direct
that a link will more likely exist between two nodes
x andy if they have more common neighbors. This
kind of local information plays a more crucial role in
the link prediction compared with other two local in-
formation, i.e., the degrees ofx andy and the degrees
of common neighbors ofx andy.
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Table 4: Prediction performances of LPEOWA on the network of Food Webs-ChesLowerl.
orness(~w) = α Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

0.55 [5362 30 3091 0.6339] [6586 13 1884 0.7771] [5796 19 2668 0.6844] [7217 3 1263 0.8509] [6842 15 1626 0.8074] [5868 64 2551 0.6955] [5750 78 2655 0.6824] [5842 90 2052 0.7373] [7244 1 739 0.9074] [5968 9 2007 0.7481] [6248 32 2054 0.7524±0.0072]

0.60 [5470 30 2983 0.6466] [6601 13 1869 0.7789] [5802 19 2662 0.6851] [7373 3 1107 0.8693] [6832 15 1636 0.8063] [5867 64 2552 0.6954] [5799 78 2606 0.6882] [5973 90 1921 0.7538] [7242 1 741 0.9071] [5979 9 1996 0.7494] [6294 32 2007 0.7580±0.0071]

0.65 [5571 30 2882 0.6585] [6620 13 1850 0.7812] [5814 19 2650 0.6865] [7462 3 1018 0.8798] [6824 15 1644 0.8053] [5860 64 2559 0.6946] [5903 78 2502 0.7005] [6086 90 1808 0.7679] [7227 1 756 0.9052] [5972 9 2003 0.7486] [6334 32 1967 0.7628±0.0068]

0.70 [5658 30 2795 0.6687] [6647 13 1823 0.7843] [5846 19 2618 0.6903] [7505 3 975 0.8849] [6830 15 1638 0.8060] [5857 64 2562 0.6942] [6012 78 2393 0.7133] [6168 90 1726 0.7782] [7225 1 758 0.9050] [5979 9 1996 0.7494] [6373 32 1928 0.7674±0.0065]

0.75 [5681 30 2772 0.6715] [6641 13 1829 0.7836] [5845 19 2619 0.6901] [7549 3 931 0.8901] [6780 15 1688 0.8001] [5837 64 2582 0.6919] [6062 78 2343 0.7192] [6236 90 1658 0.7867] [7229 1 754 0.9055] [5947 9 2028 0.7454] [6381 32 1920 0.7684±0.0066]

0.80 [5705 30 2748 0.6743] [6660 13 1810 0.7859] [5869 19 2595 0.6930] [7577 3 903 0.8934] [6743 15 1725 0.7958] [5832 64 2587 0.6913] [6107 78 2298 0.7245] [6270 90 1624 0.7910] [7217 1 766 0.9040] [5925 9 2050 0.7427] [6391 32 1911 0.7696±0.0065]

0.85 [5745 30 2708 0.6790] [6705 13 1765 0.7912] [5915 19 2549 0.6984] [7599 3 881 0.8960] [6743 15 1725 0.7958] [5798 64 2621 0.6873] [6144 78 2261 0.7289] [6306 90 1588 0.7955] [7205 1 778 0.9025] [5924 9 2051 0.7425] [6408 32 1893 0.7717±0.0064]

0.90 [5766 30 2687 0.6815] [6741 13 1729 0.7954] [5949 19 2515 0.7024] [7610 3 870 0.8973] [6716 15 1752 0.7926] [5795 64 2624 0.6869] [6183 78 2222 0.7335] [6341 90 1553 0.7998] [7200 1 783 0.9019] [5893 9 2082 0.7387] [6419 32 1882 0.7730±0.0064]

0.92 [5769 30 2684 0.6818] [6743 13 1727 0.7957] [5955 19 2509 0.7031] [7613 3 867 0.8976] [6701 15 1767 0.7908] [5799 64 2620 0.6874] [6193 78 2212 0.7346] [6345 90 1549 0.8004] [7196 1 787 0.9014] [5877 9 2098 0.7367] [6419 32 1882 0.7729±0.0063]

0.93 [5770 30 2683 0.6820] [6758 13 1712 0.7974] [5968 19 2496 0.7046] [7618 3 862 0.8982] [6701 15 1767 0.7908] [5800 64 2619 0.6875] [6196 78 2209 0.7350] [6347 90 1547 0.8006] [7196 1 787 0.9014] [5877 9 2098 0.7367] [6423 32 1878 0.7734±0.0063]

0.94 [5770 30 2683 0.6820] [6757 13 1713 0.7973] [5969 19 2495 0.7048] [7625 3 855 0.8990] [6693 15 1775 0.7899] [5801 64 2618 0.6876] [6200 78 2205 0.7355] [6350 90 1544 0.8010] [7196 1 787 0.9014] [5865 9 2110 0.7352] [6423 32 1879 0.7734±0.0063]

0.95 [5772 30 2681 0.6822] [6758 13 1712 0.7974] [5971 19 2493 0.7050] [7628 3 852 0.8994] [6686 15 1782 0.7890] [5801 64 2618 0.6876] [6194 78 2211 0.7348] [6353 90 1541 0.8014] [7196 1 787 0.9014] [5859 9 2116 0.7344] [6422 32 1879 0.7733±0.0064]

0.96 [5773 30 2680 0.6823] [6760 13 1710 0.7977] [5973 19 2491 0.7052] [7634 3 846 0.9001] [6686 15 1782 0.7890] [5797 64 2622 0.6871] [6199 78 2206 0.7354] [6360 90 1534 0.8022] [7194 1 789 0.9011] [5859 9 2116 0.7344] [6424 32 1878 0.7735±0.0064]

0.97 [5773 30 2680 0.6823] [6768 13 1702 0.7986] [5982 19 2482 0.7063] [7642 3 838 0.9010] [6673 15 1795 0.7875] [5796 64 2623 0.6870] [6201 78 2204 0.7356] [6363 90 1531 0.8026] [7188 1 795 0.9004] [5859 9 2116 0.7344] [6425 32 1877 0.7736±0.0064]

0.98 [5773 30 2680 0.6823] [6769 13 1701 0.7987] [5983 19 2481 0.7064] [7642 3 838 0.9010] [6673 15 1795 0.7875] [5796 64 2623 0.6870] [6202 78 2203 0.7357] [6363 90 1531 0.8026] [7188 1 795 0.9004] [5859 9 2116 0.7344] [6425 32 1876 0.7736±0.0064]

Table 5: Prediction performances of LPEOWA on the network of Graph Drawing Contests Data-B97.
orness(~w) = α Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

0.55 [20852 148 3381 0.8583] [19275 1351 3755 0.8183] [20854 123 3404 0.8579] [21653 71 2657 0.8896] [20137 195 3146 0.8618] [20822 79 2577 0.8886] [20665 509 2304 0.8910] [19633 891 2954 0.8552] [20958 136 2384 0.8956] [21101 69 2308 0.9002] [20595 357 2887 0.8716±0.0007]

0.60 [20894 148 3339 0.8600] [19385 1351 3645 0.8228] [21057 123 3201 0.8662] [21749 71 2561 0.8935] [20253 195 3030 0.8668] [21032 79 2367 0.8975] [20748 508 2222 0.8945] [19662 891 2925 0.8564] [21044 136 2298 0.8992] [21246 68 2164 0.9064] [20707 357 2775 0.8763±0.0007]

0.65 [20923 148 3310 0.8612] [19449 1351 3581 0.8254] [21169 123 3089 0.8708] [21839 71 2471 0.8972] [20307 195 2976 0.8691] [21161 79 2238 0.9030] [20784 508 2186 0.8961] [19684 891 2903 0.8574] [21073 136 2269 0.9005] [21343 68 2067 0.9105] [20773 357 2709 0.8791±0.0007]

0.70 [21011 148 3222 0.8648] [19516 1351 3514 0.8282] [21263 123 2995 0.8746] [21880 71 2430 0.8989] [20385 195 2898 0.8724] [21249 79 2150 0.9067] [20814 508 2156 0.8974] [19678 891 2909 0.8571] [21088 136 2254 0.9011] [21380 68 2030 0.9121] [20826 357 2656 0.8813±0.0007]

0.75 [21035 148 3198 0.8658] [19584 1351 3446 0.8310] [21349 123 2909 0.8782] [22002 71 2308 0.9039] [20426 195 2857 0.8742] [21374 79 2025 0.9121] [20838 508 2132 0.8984] [19709 891 2878 0.8584] [21158 136 2184 0.9041] [21439 68 1971 0.9146] [20891 357 2591 0.8841±0.0007]

0.80 [21164 148 3069 0.8711] [19625 1351 3405 0.8326] [21369 123 2889 0.8790] [22104 71 2206 0.9081] [20496 195 2787 0.8771] [21415 79 1984 0.9138] [20874 508 2096 0.8999] [19717 891 2870 0.8588] [21194 136 2148 0.9056] [21492 68 1918 0.9169] [20945 357 2537 0.8863±0.0007]

0.85 [21240 148 2993 0.8742] [19621 1351 3409 0.8325] [21411 123 2847 0.8807] [22164 71 2146 0.9105] [20559 195 2724 0.8798] [21433 79 1966 0.9146] [20921 508 2049 0.9019] [19715 891 2872 0.8587] [21210 136 2132 0.9063] [21542 68 1868 0.9190] [20982 357 2501 0.8878±0.0008]

0.90 [21314 148 2919 0.8772] [19624 1351 3406 0.8326] [21446 123 2812 0.8821] [22242 71 2068 0.9137] [20625 195 2658 0.8826] [21414 79 1985 0.9138] [20972 508 1998 0.9041] [19689 891 2898 0.8576] [21222 136 2120 0.9068] [21610 68 1800 0.9219] [21016 357 2466 0.8892±0.0008]

0.92 [21325 148 2908 0.8777] [19632 1351 3398 0.8329] [21457 123 2801 0.8826] [22261 71 2049 0.9145] [20641 195 2642 0.8833] [21426 79 1973 0.9143] [20989 508 1981 0.9048] [19735 891 2852 0.8595] [21275 136 2067 0.9091] [21619 68 1791 0.9223] [21036 357 2446 0.8901±0.0008]

0.93 [21318 148 2915 0.8774] [19632 1351 3398 0.8329] [21468 123 2790 0.8830] [22277 71 2033 0.9152] [20669 195 2614 0.8845] [21431 79 1968 0.9145] [21002 508 1968 0.9054] [19743 891 2844 0.8599] [21296 136 2046 0.9100] [21628 68 1782 0.9227] [21046 357 2436 0.8905±0.0008]

0.94 [21318 148 2915 0.8774] [19633 1351 3397 0.8330] [21477 123 2781 0.8834] [22283 71 2027 0.9154] [20678 195 2605 0.8849] [21427 79 1972 0.9143] [21005 508 1965 0.9055] [19750 891 2837 0.8602] [21305 136 2037 0.9103] [21638 68 1772 0.9231] [21051 357 2431 0.8907±0.0008]

0.95 [21317 148 2916 0.8774] [19629 1351 3401 0.8328] [21479 123 2779 0.8835] [22272 71 2038 0.9150] [20675 195 2608 0.8848] [21415 79 1984 0.9138] [21007 509 1962 0.9056] [19741 891 2846 0.8598] [21304 136 2038 0.9103] [21645 69 1764 0.9234] [21048 357 2434 0.8906±0.0008]

0.96 [21330 148 2903 0.8779] [19631 1351 3399 0.8329] [21483 123 2775 0.8837] [22279 71 2031 0.9152] [20679 195 2604 0.8849] [21421 79 1978 0.9141] [21007 509 1962 0.9056] [19748 891 2839 0.8601] [21311 136 2031 0.9106] [21655 69 1754 0.9238] [21054 357 2428 0.8909±0.0008]

0.97 [21331 148 2902 0.8779] [19633 1351 3397 0.8330] [21489 123 2769 0.8839] [22280 71 2030 0.9153] [20686 195 2597 0.8852] [21426 79 1973 0.9143] [21008 508 1962 0.9056] [19759 891 2828 0.8606] [21322 136 2020 0.9111] [21666 68 1744 0.9243] [21060 357 2422 0.8911±0.0008]

0.98 [21335 148 2898 0.8781] [19633 1351 3397 0.8330] [21489 123 2769 0.8839] [22282 71 2028 0.9154] [20686 195 2597 0.8852] [21426 79 1973 0.9143] [21008 508 1962 0.9056] [19759 891 2828 0.8606] [21322 136 2020 0.9111] [21668 68 1742 0.9244] [21061 357 2421 0.8911±0.0008]

4 EXPERIMENTATION

The prediction performance of LPEOWA is also tested
on the social networks of ChesLower and B97. We
compare LPEOWA with other 9 LILPAs on the same
folds. 15 different values are assigned to the optimism
level factorα. The detailed experimental results are
summarized in Table 4 and Table 5.

Three advantages of LPEOWA can be found by
observing these experimental results: (1) LPEOWA
obtains higher prediction accuracies compared with
any individual LILPA through increasing the numbers
of individual missing links (i.e.,n1s) having higher
scores. For example,n1s on any fold in Table 4 and
Table 5 are larger than the corresponding ones in Ta-
ble 2 and Table 3. (2) LPEOWA reduces the possibility
that user selects a weak LILPA and thus improve the
high variability of LILPAs. (3) LPEOWA is more sta-
ble in comparison with individual LILPAs because of
the lower prediction variances in Table 4 and Table 5.
In addition, the computational complexity of LPEOWA
is O(‖V‖) which is same as the individual LILPAs.
The selection of parameterα plays a positive impact
on the performance of LPEOWA, i.e., the largerα gives
rise to higher prediction accuracy by emphasizing the
individual LILPA with higher probability.

We think the better performances of LPEOWA are
derived from the adequate utilization of the local in-
formation. Besides the more direct number of com-
mon neighbors ofx andy, LPEOWA also considers the
degrees ofx andy and the degrees of common neigh-
bors ofx andy.

5 CONCLUSIONS

This paper studies the ensemble problem of link pre-
diction algorithm for the first time. An OWA oper-
ator based ensemble strategy LPEOWA for integrat-
ing nine local information-based link prediction algo-
rithms is proposed. The feasibility and effectiveness
of LPEOWA are demonstrated by the experimental re-
sults on benchmark social networks. A number of en-
hancements and future research can be summarized
as follows: (1) testing the performance of LPEOWA
on the social networks with millions of nodes col-
lected from well-known social-networking sites, e.g.,
Flickr, Facebook, Weibo and etc; (2) developing the
optimization mechanism for the selection of optimism
level factorα; and (3) comparing LPEOWA with other
aggregation/ensemble strategies.
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Lü, L. and Zhou, T. (2011). Link prediction in complex
networks: A survey.Physica A: Statistical Mechanics
and its Applications, 390(6):1150–1170.

O’Hagan, M. (1988). Aggregating template or rule an-
tecedents in real-time expert systems with fuzzy set
logic. In Signals, Systems and Computers, Twenty-
Second Asilomar Conference on, volume 2, pages
681–689. IEEE.

Pajek (2007). http://vlado.fmf.uni-lj.si/pub/networks/data/.
Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N.,

and Barabási, A.-L. (2002). Hierarchical organiza-
tion of modularity in metabolic networks.Science,
297(5586):1551–1555.

Wang, Y.-M., Luo, Y., and Hua, Z. (2007). Aggregating
preference rankings using owa operator weights.In-
formation Sciences, 177(16):3356–3363.

Yager, R. R. (1988). On ordered weighted averaging aggre-
gation operators in multicriteria decisionmaking.Sys-
tems, Man and Cybernetics, IEEE Transactions on,
18(1):183–190.

Zhang, C. and Ma, Y. (2012).Ensemble machine learning:
methods and applications. Springer.

Zhao, J., Feng, X., Dong, L., Liang, X., and Xu, K. (2012).
Performance of local information-based link predic-
tion: a sampling perspective.Journal of Physics A:
Mathematical and Theoretical, 45(34):345001.
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