Feature Selection Applied to Human Tear Film Classification

Daniel G. Villaverde, Beatriz Remeseiro, Noelia Barreira, Manuel G. Penedo, Antonio Mosquera

2014

Abstract

Dry eye is a common disease which affects a large portion of the population and harms their routine activities. Its diagnosis and monitoring require a battery of tests, each designed for different aspects. One of these clinical tests measures the quality of the tear film and is based on its appearance, which can be observed using the Doane interferometer. The manual process done by experts consists of classifying the interferometry images into one of the five categories considered. The variability existing in these images makes necessary the use of an automatic system for supporting dry eye diagnosis. In this research, a methodology to perform this classification automatically is presented. This methodology includes a color and texture analysis of the images, and also the use of feature selection methods to reduce image processing time. The effectiveness of the proposed methodology was demonstrated since it provides unbiased results with classification errors lower than 9%. Additionally, it saves time for experts and can work in real-time for clinical purposes.

References

  1. Bolón-Canedo, V., Sánchez-Maron˜o, N., and AlonsoBetanzos, A. (2013). A review of feature selection methods on synthetic data. Knowledge and information systems, 34(3):483-519.
  2. Brewitt, H. and Sistani, F. (2001). Dry Eye Disease: The Scale of the Problem. Survey of Ophthalmology, 45(2):199-202.
  3. Bron, A. J. (2001). Diagnosis of Dry Eye. Survey of Ophthalmology, 45(2).
  4. Burges, C. J. (1998). A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2:121-167.
  5. C¸ esmeli, E. and Wang, D. (2001). Texture Segmentation Using Gaussian-Markov Random Fields and Neural Oscillator Networks. IEEE Transactions on Neural Networks, 12.
  6. Clausi, D. and Jernigan, M. (1998). A Fast Method to Determine Co-occurrence Texture Features. IEEE Transactions on Geoscience and Remote Sensing, 36(1):298- 300.
  7. CMEX-1301x (n.d.). CMEX-1301x camera. Euromex Microscopen BV, Arnhem, The Netherlands.
  8. Dash, M. and Liu, H. (2003). Artificial intelligence, 151(1- 2):155-176.
  9. Daubechies, I. (1992). Ten Lectures on Wavelets. SIAM, CBMS series.
  10. Doane, M. G. (1989). An instrument for in vivo tear film interferometry. Optometry and Vision Science, 66(6):383-388.
  11. E.Wolff (1954). Anatomy of the eye and orbit (4th edition). H. K. Lewis and Co., London.
  12. Freeman, M. H. and Hull, C. C. (2003). Interference and optical films. Butterworth Heinemann.
  13. Gabor, D. (1946). Theory of Communication. Journal of Institute for Electrical Engineering, 93:429-457.
  14. Gonzalez, R. and Woods, R. (2008). Digital image processing. Pearson/Prentice Hall.
  15. Guillon, J. P. and Guillon, M. (1997). Tearscope plus clinical hand book and tearscope plus instructions. Keeler Ltd. Windsor, Berkshire, Keeler Inc, Broomall, PA.
  16. Guyon, I., Gunn, S., Nikravesh, M., and Zadeh, L. (2006). Feature Extraction: Foundations and Applications. Springer Verlag.
  17. Hall, M. (1999). Waikato.
  18. Haralick, R. M., Shanmugam, K., and Dinstein, I. (1973). Texture Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics In Systems, Man and Cybernetics, 3:610-621.
  19. Jie, Y., Xu, L., Wu, Y. Y., and Jonas, J. B. (2008). Prevalence of dry eye among adult Chinese in the Beijing Eye Study. Eye, 23(3):688-693.
  20. Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11:674-693.
  21. McLaren, K. (1976). The development of the CIE 1976 (L*a*b) uniform colour-space and colour-difference formula. Journal of the Society of Dyers and Colourists, 92(9):338-341.
  22. Moss, S. E. (2000). Prevalence of and Risk Factors for Dry Eye Syndrome. Archives of Ophthalmology, 118(9):1264-1268.
  23. Teich, J. (2001). Pareto-front exploration with uncertain objectives. In Evolutionary multi-criterion optimization, volume 1993, pages 314-328. Springer.
  24. Thai, L. C., Tomlinson, A., and Doane, M. G. (2004). Effect of Contact Lens Materials on Tear Physiology. Optometry and Vision Science, 81(3):194-204.
  25. VOPTICAL GCU (n.d.). VOPTICAL GCU, VARPA optical dataset annotated by optometrists from the Department of Life Sciences, Glasgow Caledonian University (UK). [Online] Available: http://www.varpa.es/voptical gcu.html, last access: december 2013.
  26. Zhao, Z. and Liu, H. (2007). Searching for interacting features. pages 1156-1161.
Download


Paper Citation


in Harvard Style

G. Villaverde D., Remeseiro B., Barreira N., G. Penedo M. and Mosquera A. (2014). Feature Selection Applied to Human Tear Film Classification . In Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-758-015-4, pages 395-402. DOI: 10.5220/0004809403950402


in Bibtex Style

@conference{icaart14,
author={Daniel G. Villaverde and Beatriz Remeseiro and Noelia Barreira and Manuel G. Penedo and Antonio Mosquera},
title={Feature Selection Applied to Human Tear Film Classification},
booktitle={Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2014},
pages={395-402},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004809403950402},
isbn={978-989-758-015-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - Feature Selection Applied to Human Tear Film Classification
SN - 978-989-758-015-4
AU - G. Villaverde D.
AU - Remeseiro B.
AU - Barreira N.
AU - G. Penedo M.
AU - Mosquera A.
PY - 2014
SP - 395
EP - 402
DO - 10.5220/0004809403950402