Towards Co-evolution in Model-Driven Development Via Bidirectional
Higher-Order Transformation

Bernhard Hoisl'?, Zhenjiang Hu? and Soichiro Hidaka®

Unstitute for Information Systems and New Media, WU Vienna, Vienna, Austria

2Secure Business Austria Research (SBA Research), Vienna, Austria

3 National Institute of Informatics, Tokyo, Japan

Keywords:
tion.

Abstract:

Model-Driven Development, Model Co-evolution, Bidirectional Transformation, Higher-Order Transforma-

In model-Driven development (MDD), metamodels, models, and model transformations are interdependent.

A change in one artifact must be reflected in all other related artifacts. Regardless of their dependencies,
(meta)models and transformations can evolve autonomously rendering referenced artifacts invalid. Coupling
the evolution of models to their corresponding metamodels tries to prevent such mismatches, but is currently
limited to one-way adaptations and does not take model transformations into account. To eliminate these short-
comings, we combine first-class transformation models with bidirectional transformations (BX). Our generic
approach integrates BX into well-established Eclipse-based MDD tools, thereby neither being restricted to a
specific modeling nor model transformation language.

1 INTRODUCTION

In model-driven development (MDD), numerous
models and transformations on different abstraction
levels need to be taken into account. The high
number of models involved originate from a lay-
ered modeling architecture (i.e. metamodels, MMs)
as well as from refinements (i.e. transformations)
from generic to implementation-centric model repre-
sentations (Sendall and Kozaczynski, 2003). On the
one hand, the need for model transformations is inher-
ent to the abstraction mechanism in MDD to represent
platform-specific concepts (e.g., statements in a pro-
gramming language) as platform-independent models
(Schmidt, 2006). On the other hand, model trans-
formation necessities stem also from, for instance,
changes in MMs (model-to-model transformations,
M2M) or the support for multiple platforms (model-
to-text transformations, M2T).

MDD-based artifacts are frequently subject to
change and evolve over time (Di Ruscio et al., 2012).
In most cases, the evolution of (meta)models and
model transformations is a manual process (Meyers
and Vangheluwe, 2011). Individually maintain and
manually evolve MDD specifications is a tedious and
error-prone task (Stevens, 2010; Di Ruscio et al.,
2011). For instance, consider an evolution of a MM

466 Hoisl B., Hu Z. and Hidaka S..

and accompanying constraints. First, all instance
models need to be migrated in order to conform to
the new MM definition. Furthermore, all model trans-
formations need to be adapted (e.g., due to model
type changes). Moreover, tests need to be rewritten to
check that the generated source code fulfills the spec-
ified constraints.

The artifacts which make up a MDD process
(models, M2M/M2T transformations, model and
transformation constraints etc.)—although highly
interdependent—are autonomously maintained.
Changes in one artifact (e.g., in a model) are not
automatically reflected in other dependent artifacts
(e.g, in a M2T transformation). The barrier for a
tight integration of MDD-based artifacts stems from
two limitations of current approaches: 1) Model
transformations are unidirectional and changes can
be propagated in one direction only (e.g., a model
change is reflected in generated code); 2) changes
can only be propagated into output artifacts of trans-
formations (e.g., models), not into transformation
definitions themselves.

In order to overcome these co-evolution problems,
our approach, on the one hand, is based on 1) estab-
lishing bidirectional transformations (BX) between
modeling artifacts (Stevens, 2010). BX is a mecha-
nism for maintaining the consistency of two (or more)

Towards Co-evolution in Model-Driven Development Via Bidirectional Higher-Order Transformation.

DOI: 10.5220/0004809004660471

In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 466-471

ISBN: 978-989-758-007-9

Copyright ¢ 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Towards Co-evolution in Model-Driven Development Via Bidirectional Higher-Order Transformation

related sources of information. A BX between two
sources of information A and B (e.g., two different
models) comprises a pair of unidirectional transfor-
mations: one from A to B (forward transformation)
and another from B to A (backward transformation)
(Czarnecki et al., 2009).

On the other hand, we apply 2) higher-order
transformations (HOTs) on first-class model repre-
sentations of transformation specifications (Tisi et al.,
2009). A HOT “is a model transformation such that
its input and/or output models are themselves trans-
formation models. [...] This demands the represen-
tation of the transformation as a model conforming to
a transformation MM” (Tisi et al., 2009).

In this way, we are able to propagate changes in
two directions (1): From a source model to a target
model and vice versa. These changes can be propa-
gated into models on the same or on different abstrac-
tion levels. Furthermore, we ensure not only the co-
evolution of models, but (2) model transformations,
as well. We represent transformation definitions as
models and are able to propagate changes into hori-
zontal and vertical model transformations (i.e. trans-
formations between models on the same and on dif-
ferent abstraction levels).

Our contributions are as follows:

o A Method for MDD-based Co-evolution: Our ap-
proach of bidirectional higher-order transforma-
tion (B-HOT) for the co-evolution of model arti-
facts builds on former work (Hidaka et al., 2009;
Hidaka et al., 2011; Sasano et al., 2011; Hoisl
et al., 2013). This paper presents first enhance-
ment steps which will allow for coupling, syn-
chronization, and tracing of all model artifacts in-
volved in a MDD process.

o [ntegrated Tool Support: We provide initial pro-
totypes for an integrated MDD-based tool support
for B-HOTs via the Eclipse IDE. Our implemen-
tations build on well-established MDD tools (e.g.,
Eclipse EMF, ATL, Epsilon)'.

e Conformance between BX and MDD: To facili-
tate reproduction and transferability, we present
an approach independent of any transformation
language and we prepare for generalizations ac-
cording to OMG specifications, for example,
MOF, QVT, MOFM2T. Besides integrated BX
and MDD tooling, we also want to contribute to
establish a common terminology to bridge the gap
between the BX and MDD communities (Czar-
necki et al., 2009; Hu et al., 2011).

TAll software artifacts are publicly available at
http://www.biglab.org and http://nm.wu.ac.at/modsec.

2 CURRENT APPROACHES

A traditional model-driven architecture (MDA), as
proposed by the OMG (Bézivin and Gerbé, 2001) and
as supported by a variety of tools, is sketched in Fig-
ure 1. MMs provide the reference frame to which in-
stance models must conform to, for example, a UML
class model conforms to its MM defined in the UML
specification. M2M transformations are applied over
one or more input models with the purpose of gener-
ating one or more output models conforming to the
same or different MMs. A typical M2M transforma-
tion example is the generation of platform-specific
models (PSMs) from platform-independent models
(PIMs). As models are a means for abstraction, they
mostly do not capture enough implementation details
to be directly executable. Hence, M2T transforma-
tions generate textual artifacts (e.g., source code, con-
figuration documents) which can be deployed on a
specific platform.

generates

refers to b Mang
! instance of Model
1 transformation g
applies to generates
Model M2y Platform artifact

Figure 1: Traditional model-driven architecture.

When a MDD-based artifact evolves, changes
must be reflected in all dependent (meta)models,
transformations, and platform artifacts. The com-
plexity of change operations increases with the num-
ber of different modeling languages (MMs, mod-
els), intermediary model representations (M2M trans-
formations), and supported platforms (M2T trans-
formations) involved. Current approaches cannot
sufficiently cope with the co-evolution of multiple
MDD-based artifacts because of restrictions to ex-
press and propagate changes which manifest in 1) uni-
directional model transformations and 2) disregarding
transformation definitions as first-class models (see
Figure 1). An example for evolution mismatches is
the inability to reflect changes in generated platform
artifacts back to their corresponding instance mod-
els. For example, in Eclipse EMF, changes to the
generated Java source code may be lost when ex-
ecuting the unidirectional M2T transformation once
again. Furthermore, by default, the generation tem-
plates (i.e. JET) cannot be adapted, excluding the pos-
sibility to reflect changes in the code generator logic
(i.e. transformation definitions are not treated as first-
class artifacts).

In (Yu et al., 2012), a platform-specific (i.e. Java-
bound) solution for the co-evolution problem stated
above is provided. In the approach, BX is used to

467

MODELSWARD 2014 - International Conference on Model-Driven Engineering and Software Development

synchronize models with generated and user-modified
code. Prerequisites are that the platform-specific
language encodes a textual duplicate of the PIM
(i.e. @model annotations) and that a MM representa-
tion exists for the platform-specific language (i.e. a
Java Ecore MM).

To establish BX, triple graph grammars (Giese
and Wagner, 2009) are commonly employed in MDD
for keeping related models consistent. Triple graph
transformations relate a source and a target graph
(i.e. a model) by some correspondence graph. In this
way, source and target graphs are coupled which pro-
vides a basic structure for their co-evolution.

In (Wachsmuth, 2007), MM/model co-evolution
is considered as a step-wise adaptation of MMs (via
transformation relations) and instance-preservation of
models. Instead of describing the co-evolution of
models as a transformation between two MMs, (Wim-
mer et al., 2010) employs in-place transformations. In
(Herrmannsdoerfer et al., 2009), a framework is pre-
sented to model the co-evolution of MMs/models via
the composition of coupled transactions to adapt the
MM and specify the corresponding model migrations.

Furthermore, state-based MM/model co-evolution
approaches, for instance, adopt HOTs which take a
difference model obtained by comparing two MMs
and generate a model transformation able to produce
the co-evolution of involved models (Di Ruscio et al.,
2011).

Although all of these co-evolution methods cope
with model transformation restrictions, a combined
and uniform solution is missing, so far. Either the
approaches provide only one-way co-evolution pos-
sibilities (i.e. unidirectional) or only for a subset of
MDD artifacts (e.g., only MM/model co-evolution).
Therefore, in the next section, we propose a generic
approach for co-evolving MDD-related artifacts.

3 MODEL CO-EVOLUTION VIA
B-HOT

With our approach (Figure 2 provides an overview)
we want to overcome shortcomings of current meth-
ods and offer a generic solution for co-evolving MDD
artifacts. The upper part of Figure 2 reflects a tradi-
tional MDA. Model co-evolution is achieved by inte-
grating 1) BX capabilities (lower part of Figure 2) and
2) support for HOT into the MDA.

As an example, consider a model transformation
from an object-oriented representation (e.g., a class
diagram) to a relational database model. For instance,
both MMs are defined in a MOF-based language (see
upper part of Figure 2). Hence, their instance models

468

(e.g., using Ecore as technological projection) con-
form to the EMOF MM. A transformation (e.g., spec-
ified via ATL or ETL) is applied to class models and
generates database models. This forward transforma-
tion proves useful in one case only: Changes in evolv-
ing class models should be reflected in database mod-
els, as well. Updates in database models cannot be
propagated back to their source class models. A cou-
pling of both representations limits the target model
to be read-only (otherwise changes get lost when re-
executing the transformation).

In our approach, we integrate BX capabilities by
reusing native MDD concepts. Every transformation
is represented as a first-class model conforming to a
transformation MM. B-HOTs (see Figure 2) provide
for the mapping of unidirectional MDD-based trans-
formation models (e.g. defined via ATL or ETL) into
a bidirectional graph transformation model (and vice
versa). Reconsidering the BX of the class-to-database
model transformation example, in a next step, both
source and target models are mapped to a graph struc-
ture (defined via UnCAL, a graph algebra). Source
and target graph schemas are represented as MOF-
based MMs. The BX provides both, a forward trans-
formation from class to database graphs as well as
a corresponding backward transformation (both de-
fined via UnQL", a SQL-like graph query/transforma-
tion language). Thus, changes in the database graph
can be propagated back to the class graph. As the
transformation of models to graphs is also bidirec-
tional, updated class and database graphs can be rep-
resented in their initial model-based forms. There-
fore, a BX of source and target models (class and
database models in our example) is established. The
backward database-to-class transformation is distinct
to the BX and no corresponding MDD-based transfor-
mation equivalent exists. Therefore, as a last step, the
backward transformation (in UnQL™*) can be repre-
sented in its original MDD-based form (in ATL, ETL)
via a B-HOT mapping (see Figure 2).

We discuss co-evolution properties of our ap-
proach according to the following four categories.

Model Relations: Our approach establishes BX-
based relations between models, graphs, and model
and graph representations. The mapping relation
between traditional MDD-based transformations and
BX representations (B-HOT) allows to add BX sup-
port in traditional MDAs. Furthermore, relations are
not restricted to one source and one target artifact
only, but can be used for the transformation of multi-
ple dependent models/graphs, as well (see also com-
positional BX down below). The coupling of models
via BX allows, on the one hand, to establish synchro-
nization definitions and, on the other hand, to collect

Towards Co-evolution in Model-Driven Development Via Bidirectional Higher-Order Transformation

instance of / refers to

instance of / instance of / 3
refers to Meta-metamodel refers to Metamodel !
””””””” (M3) Tttt (M2 target) '

Metamodel
(M2, source)

(Omer= L MoE™

' instance of "

applies to /
generates

Model instance
(M1, source)

Model-driven development

'

1o souBISUl;

| instance of

Metamodel
1. (M2, source schema)

=
o
T
13
o
1)
=
g
=
S
g
=)
©
=
2
©
Y
5
[+3]

Source representation Transformation definition Target representation

Transformation model
.. instance (M1)

| instance of

Transformation
metamodel (M2)

-'}E)I‘I/io = o
LT T MORr
" instance of
generates /
applies to

Model instance
(M1, target)

'

. .."_‘?’g: 3 !JM4_ i -BPMN"- ~ _E?:L”_: N
applies to / o a applies to / applies to / o =
generate i generate generate '8
: o
BX model BXmodel [} BX model =
.|, instance (M1) -----------, .| _instance (M1, HOT) -l._ instance (M1) i g
i Un(‘ji": U= i UngrT - ' FUnoTE g LS
7 Un, HINQL : ' -2NQL- 7 Un, -)
L ICAL L CAL_; ; S rICAL P g
generate / g 3 ' generate / ' generate / ' g'

applies to erlEs Y 3 g D applies to | cEEEmEsy applies to 3

Graph instance generates ' BX model ? applies to Graph instance :

.l (M1, source) : instance (M1) T . (M1, target)

~Uncar : UnGag ! Lncar 1

| instance of

Metamodel
v__‘(_M2, target schema)

Figure 2: Overview of our model co-evolution approach.

transformation traces. As many modeling artifacts
make up a MDD process, keeping models consistent
is of special importance. Moreover, trace information
are a relevant source for documentation and debug-

ging purposes.

Model Co-evolution Scenarios: Our approach
supports any M2M relation and any number of MM-
layers. Horizontal co-evolution examples are, for
instance, the synchronization of different MMs or
different instance models. Vertical co-evolution ex-
amples are, for instance, keeping PIMs and PSMs
or instance models and corresponding MMs consis-
tent. Transformation models permit to propagate
changes also in horizontal and vertical M2M and M2T
transformation definitions, for instance, for the co-
evolution of MMs and transformation models or dif-
ferent transformation models.

Language-independent Integration: Our approach
is not dependent on a specific model transformation
language, i.e. it does not matter if the model trans-
formation is defined via ATL, ETL, or any other lan-
guage. This is because we do not integrate bidi-
rectionality into a model transformation language di-
rectly. The B-HOT definition serves as a language-
specific binding between the concepts of the unidi-
rectional MDD-based transformation and the bidirec-
tional graph transformation. These bindings must be
specified only once for each MDD-based transforma-
tion language (e.g., ATL, ETL) and facilitate reuse of
our approach.

BX Properties: We develop B-HOTs via a func-
tional bidirectional graph transformation language
(Hidaka et al., 2011). The BX ensures the well-
behavedness of forward and backward transforma-
tions (i.e. that they are consistent with each other)
and satisfy the round-trip property (Czarnecki et al.,
2009). As the BX does not restrict forward trans-
formations to be information preserving, a backward
transformation requires not only the modified tar-
get graph/model, but also the original source graph/-
model. Large BX can be developed in a composi-
tional way of reusing existing information (e.g., via
intermediate models). Compositional BX can be em-
ployed, on the one hand, for a pair of consecutive
transformations, where the output of transformation
A is the input of transformation B; for example, the
output of the source model-to-graph transformation is
fed into the forward source-to-target graph transfor-
mation (see Figure 2). On the other hand, compo-
sitional BX can be used for a pair of transformations
that share an identical input model, for instance, trans-
formations from one PIM to multiple PSMs (Hidaka
et al., 2009).

4 B-HOT REQUIREMENTS

This paper provides a first step to make co-evolution
in MDD via B-HOTSs possible. Initial work regarding
the methodology and accompanying tool support has

469

MODELSWARD 2014 - International Conference on Model-Driven Engineering and Software Development

been performed, but is far from being finalized. In
this section, we list challenging requirements for the
implementation of our approach. We present com-
pleted work and discuss prerequisites for future de-
velopments.

Transformation MMs: Our B-HOT approach re-
lies on transformation (meta)models. MDD-based
M2M transformation MMs exist, for instance, for
ATL (Tisi et al., 2009) and for a subset of the
Epsilon-language family (Wei, 2012). Regarding
M2T transformations, (Hoisl et al., 2013) extended
the Epsilon model representations of (Wei, 2012).
The BX framework (Hidaka et al., 2011) does not
need MM representations for the UnQL* and UnCAL
languages. Syntax definitions in BNF exist for
both languages and need to be mapped to EMOF-
compliant (i.e. Ecore-based) MM representations (on-
going work; see also Section 5).

MM:-specific Bindings: For a B-HOT, language-
specific bindings need to be established between uni-
and bidirectional transformation MMs. Initial work
provides an unidirectional transformation from ATL
to UnQL™, whereby the transformation does not take
the model representation of ATL into account (Sasano
et al., 2011)2. Thus, language-specific bindings
for, for instance, ATL and/or ETL to UnQL* and/or
UnCAL via B-HOT is future work. Furthermore, a
first prototype exists for the BX of model-to-graph
representations (Ecore-based models to UnCAL and
vice versa), but needs improvements (future work).

Round-tripping of transformation definitions: Our
B-HOT approach demands transformation models as
input. In contrast, most model transformation engines
cannot execute model representations of transforma-
tion definitions. Therefore, the round-tripping of exe-
cutable (i.e. text-based) transformation specifications
and their model representations must be provided. For
M2M transformations, “an ATL transformation is it-
self a model, conforming to the ATL MM” (Tisi et al.,
2009). Furthermore, (Wei, 2012) developed initial
round-tripping support for an Epsilon subset which
was extended for M2T transformations (i.e. EGL) by
(Hoisl et al., 2013). Currently, the automatically de-
rived backward transformation of a BX can neither
be expressed as UnQL* or UnCAL textual statements
nor via corresponding model representations (future
work).

Generic Mappings: Prototype developments de-

2This separate work of integrating ATL and BX is per-
formed in collaboration with the AtlanMod team, uses the
same BX framework (GRoundTram), but in contrast focuses
on unidirectional transformations from ATL to UnQL* with
a concrete semantic alignment between these two technical
spaces.

470

fine transformations in a specific language as imple-
mentation vehicle (e.g, ATL, ETL). To support up-
take and transferability of our approach we need to
establish mappings to OMG specifications (see also
Figure 2). (Hoisl et al., 2013) provides mappings be-
tween EGL-based M2T transformation concepts used
for the prototype and the MOFM2T specification. As
future work, uni-/bidirectional M2M transformation
concepts (e.g., ATL, ETL, UnQL") will be mapped to
the QVT specification.

Development Support: Initial support for the
requirements-driven testing of (meta)models and
model transformations via scenarios is provided by
(Sobernig et al., 2013). Furthermore, validation for
source and target models as well as for BX is pre-
sented in (Hidaka et al., 2011). As future work we
will implement an IDE (e.g., a text editor) to support
the development of UnQL* BX and UnCAL-based
graphs. For this task, Eclipse Xtext is a candidate
framework as it combines the grammar specification
for a textual syntax with an Ecore-based model repre-
sentation and provides for an Eclipse-based IDE.

Combine BX and MDD: Model (i.e. graph) trans-
formations are important to both BX and MDD (Czar-
necki et al., 2009; Hu et al., 2011). Our approach
allows to integrate BX into MDD, thereby reusing
native methods and tools for both. We want to
support the creation of a shared terminology (Czar-
necki et al., 2009) via the generalization and mapping
of language-specific uni-/bidirectional transformation
concepts to OMG specifications. After our develop-
ments have matured, as future work, we need to pro-
vide for a larger case study to show that our approach
works in practice.

S CONCLUDING REMARKS

In this paper, we presented an approach for model
co-evolution by combining BX and HOT for MDD.
The developed method (B-HOT) intends to overcome
current limitations for model co-evolution as transfor-
mations are represented as models and model trans-
formations are bidirectionalized. In our approach,
models are coupled via BX providing the benefit
that synchronization of models is ensured via for-
ward/backward transformations. Another advantage
is that changes can be propagated into model trans-
formations keeping them consistent with their evolv-
ing dependent artifacts (MMs, model instances). Our
approach of integrating BX into MDD is generic and
can be applied to any model transformation language
via binding specifications.

A drawback of our proposal is that the efforts of

Towards Co-evolution in Model-Driven Development Via Bidirectional Higher-Order Transformation

creating initial modeling and transformation artifacts
can be high. Transformation MMs may have to be
defined for the intended target language. Currently,
no bindings for transformation languages exist. Al-
though these have to be defined only once for each
language, this is a barrier for uptake. Transformation
engines might not execute models directly making
text/model round-tripping functions necessary (but
again these can be reused per language). Adequate
tool support must be provided to facilitate the devel-
opment of models and transformations.

Currently, we are developing an EMOF-based
MM for the UnQL* BX language (in Ecore). In par-
allel, we transfer the BNF-based grammar definition
to Xtext. This will ensure the consistent mapping of
transformations written in UnQL" to their modeling
equivalents. An editor to support the definition of
UnQL™ statements will be provided, as well. Initial
developments are available at the URLs mentioned
in the footnote of Section 1 and are continuously up-
dated. UnQL"* concepts will be mapped to the QVT
relations language in the near future.

ACKNOWLEDGEMENTS

This work has partly been funded by the Austrian Re-
search Promotion Agency (FFG) of the Austrian Fed-
eral Ministry for Transport, Innovation and Technol-
ogy (BMVIT) through the Competence Centers for
Excellent Technologies (COMET K1) initiative and
the FIT-IT program.

REFERENCES

Bézivin, J. and Gerbé, O. (2001). Towards a precise defini-
tion of the OMG/MDA framework. In Proc. 16th Int.
Conf. Automated Softw. Eng., pages 273-280. IEEE.

Czarnecki, K., Foster, J. N., Hu, Z., Limmel, R., Schiirr,
A., and Terwilliger, J. F. (2009). Bidirectional trans-
formations: A cross-discipline perspective. In Theory
and Practice of Model Transformations, volume 5563
of LNCS, pages 260-283. Springer.

Di Ruscio, D., Iovino, L., and Pierantonio, A. (2011). What
is needed for managing co-evolution in MDE? In
Proc. 2nd Int. Workshop Model Comparison in Prac-
tice, pages 30-38. ACM.

Di Ruscio, D., Iovino, L., and Pierantonio, A. (2012). Cou-
pled evolution in model-driven engineering. IEEE
Softw., 29(6):78-84.

Giese, H. and Wagner, R. (2009). From model transforma-
tion to incremental bidirectional model synchroniza-
tion. SoSyM, 8(1):21-43.

Herrmannsdoerfer, M., Benz, S., and Juergens, E. (2009).
COPE - automating coupled evolution of metamodels

and models. In Proc. 23rd European Conf. Object-
Oriented Programming, pages 52—76. Springer.

Hidaka, S., Hu, Z., Inaba, K., Kato, H., and Nakano, K.
(2011). GRoundTram: An integrated framework for
developing well-behaved bidirectional model trans-
formations. In Proc. 26th Int. Conf. on Automated
Softw. Eng., pages 480-483. IEEE.

Hidaka, S., Hu, Z., Kato, H., and Nakano, K. (2009). To-
wards a compositional approach to model transforma-
tion for software development. In Proc. 24th Sympo-
sium on Applied Computing, pages 468-475. ACM.

Hoisl, B., Sobernig, S., and Strembeck, M. (2013). Higher-
order rewriting of model-to-text templates for inte-
grating domain-specific modeling languages. In Proc.
1st Int. Conf. Model-Driven Eng. and Softw. Develop-
ment, pages 49—61. SciTePress.

Hu, Z., Schurr, A., Stevens, P, and Terwilliger, J. F.
(2011). Dagstuhl seminar on bidirectional transfor-
mations (BX). SIGMOD Rec., 40(1):35-39.

Meyers, B. and Vangheluwe, H. (2011). A framework for
evolution of modelling languages. Sci. Comput. Pro-
gram., 76(12):1223-1246.

Sasano, 1., Hu, Z., Hidaka, S., Inaba, K., Kato, H., and
Nakano, K. (2011). Toward bidirectionalization of
ATL with GRoundTram. In Proc. 4th Int. Conf. The-
ory and Practice of Model Transformations, pages
138-151. Springer.

Schmidt, D. C. (2006). Guest editor’s introduction: Model-
driven engineering. Computer, 39(2):25-31.

Sendall, S. and Kozaczynski, W. (2003). Model transfor-
mation: The heart and soul of model-driven software
development. IEEE Softw., 20(5):42-45.

Sobernig, S., Hoisl, B., and Strembeck, M. (2013).
Requirements-driven testing of domain-specific core
language models using scenarios. In Proc. 13th Int.
Conf. Quality Softw., pages 163—172. IEEE.

Stevens, P. (2010). Bidirectional model transformations in
QVT: Semantic issues and open questions. SoSyM,
9(1):7-20.

Tisi, M., Jouault, F., Fraternali, P., Ceri, S., and Bézivin,
J. (2009). On the use of higher-order model transfor-
mations. In Model Driven Architecture — Foundations
and Applications, volume 5562 of LNCS, pages 18—
33. Springer.

Wachsmuth, G. (2007). Metamodel adaptation and model
co-adaptation. In Proc. 21st European Conf. Object-
Oriented Programming, pages 600-624. Springer.

Wei, W. (2012). EpsilonLabs: Epsilon static analy-
sis. Available at: http://code.google.com/p/
epsilonlabs/wiki/EpsilonStaticAnalysis

Wimmer, M., Kusel, A., Schonbock, J., Retschitzegger, W.,
Schwinger, W., and Kappel, G. (2010). On using in-
place transformations for model co-evolution. In Proc.
2nd Int. Workshop Model Transformation with ATL.
INRIA & Ecole des Mines de Nantes.

Yu, Y., Lin, Y., Hu, Z., Hidaka, S., Kato, H., and Montrieux,
L. (2012). Maintaining invariant traceability through
bidirectional transformations. In Proc. 34th Int. Conf.
Softw. Eng., pages 540-550. IEEE.

471

