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Abstract: This paper presents Cellular Fuzzy Oriented Classifier Evolution (CFORCE), a generic method for construct-
ing fuzzy rules to divide an image into two segments: object and background. In CFORCE, a pair of fuzzy
classification rule sets for object and background is defined as a processing unit, and the identical units are
allocated on each pixel over an input image. Each unit computes matching degree of each pixel with object
and background class iteratively with considering the matching degree of neighbor units. The algorithm has
mainly two features: 1) designing the fuzzy rules using Fuzzy Oriented Classifier Evolution (FORCE) which
develops fuzzy rules represented as directed graphs flexibly and automatically by Genetic Algorithm, and 2)
performing iterative segmentation with considering spatial relationship between pixels besides local features.
In natural image segmentation, many pixels are overlapped between different clusters. Considering the spatial
relationship is important to classify the overlapped pixels correctly. We applied CFORCE to three different
object segmentation, and showed that CFORCE extracted object regions successfully.

1 INTRODUCTION (Lai and Lin, 2008). Borji and Hamidi have proposed
the method to design fuzzy rules for pixel-wise color
Image segmentation is a process to divide an imageclassification of images using Particle Swam Opti-
into meaningful segments (regions). It is a fundamen- mization (Borji and Hamidi, 2007). Stavrakoudis et
tal technique in computer vision, image understand- al. have developed Boosted Genetic Fuzzy Classifier
ing, etc., but hard to be achieved adequately becausgBGFC) which generates fuzzy rules for segmentation
a large variety of segments exists and boundaries ofusing Genetic Algorithm (GA) in an iterative fashion
them are likely ambiguous in natural image segmen- directed by a boosting algorithm, and applied BGFC
tation. To perform effective segmentation, various to land cover classification of remote sensing images
methods have been studied. The supervised segmen(Stavrakoudis et al., 2011).
tation methods using Fuzzy Rule Based Classification  In fuzzy rule based segmentation, we consider that
System (FRBCS) is one of them. designing segmentation rules for various objects ef-
FRBCS is a classifier system using fuzzy IF- fectively and incorporating a mechanism considering
THEN rules that has good interpretability and ac- spatial relationship between pixels in the rules are im-
curacy because of an understandable rule form andportant. As mentioned in various studies (Karmakar
ability of treating ambiguous problems by Member- and Dooley, 2002; Beevi and Sathik, 2012), many
ship Functions (MFs). MF computes matching de- pixels are overlapped between different clusters in
gree of input variables with conditions of rules. The naturalimage segmentation, and considering the spa-
idea treating ambiguity by fuzzy logic is suitable for tial relationship between pixels besides local features
image segmentation which contains ambiguity, and is effective to classify the overlapped pixels correctly.
fuzzy rule based segmentation methods have beerHence, we propose a novel segmentation method us-
studied (Karmakar et al., 2000). For example, Kar- ing FRBCS, Cellular Fuzzy Oriented Classifier Evo-
makar and Dooley have proposed Generic Fuzzy Rulelution (CFORCE) that has mainly two features: 1)
based Image Segmentation (GFRIS) which employs constructing fuzzy rules to classify pixels as either
three MFs based on pixel distributions, closeness of object or background using Fuzzy Oriented Classifier
region and spatial relationships between pixels (Kar- Evolution (FORCE) which develops fuzzy classifica-
makar and Dooley, 2002). Lai and Lin have applied tion rules flexibly by GA (Otsuka and Nagao, 2013),
manually designed fuzzy inference rules with texture and 2) performing iterative segmentation with con-
features to teeth segmentation of dental X-ray imagessidering spatial relationship between pixels. FORCE
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Figure 1: Example of genotype and phenotype representatibuzzy Oriented Classifier Evolution.

is one of Genetic Fuzzy Systems (GFSs) which de- of data with clask. The graph is converted into a
sign fuzzy rules by evolutionary algorithms (Herrera, numeric string (genotype) indicating connections and
2008), and constructs fuzzy classification rules repre- parameters of each condition node and a consequent
sented as directed graphs composed of nodes indicathode number, and developed by optimizing the string
ing fuzzy conditions. We expect FORCE constructs by GA.

fuzzy rules for segmentation efficiently because of the FORCE is expected to constructs fuzzy rules more
compact and flexible graph representation. The sec-flexibly and efficiently than conventional GFSs based
ond feature is inspired by Cellular Neural Network on simple GA or Genetic Programming (Koza, 1992)
(CNN) (Chua and Yang, 1988). CNN consists of because of the compact graph representation. FORCE
a regular array of processing units called cells con- has been applied to image classification tasks and
nected with only their neighbor cells. Each cell com- classification of benchmark data sets in comparison
putes an output value iteratively considering output of with conventional methods, and constructed compact
their neighbor cells besides local information. CNN and accurate classification rules (Otsuka and Nagao,
has showed good performance in image filtering in 2012; Otsuka and Nagao, 2013).

spite of its simple structure. The proposed model

computes matching degree of pixels with object and

background iteratively with considering the matching 3 CELLULARFUZZY ORIENTED
degree of neighbor pixels as CNN computes output
CLASSIFIER EVOLUTION

iteratively, to classify even the overlapped pixels cor-
rectly by considering their spatial relationship.
The remaining of this paper is organizedinthe fol- 3.1 Model Overview

lowing way. Section 2 reviews FORCE briefly, and

details of the proposed model are described in Sec-An overview of CFORCE is described in Figure 2. In

tion 3. Experimental results are shown in Section 4. CFORCE, a pair of graphs representing fuzzy classi-

Finally, in Section 5, we conclude this work. fication rules for object (obj) and background (bkg)
class is defined as a processing unit, and the identical
units are allocated on each pixel over an input image.

2 FUZZY ORIENTED The graphs of each unit output matching degree of
CLASSIFIER EVOLUTION each pixel with obj and bkg class iteratively with con-

sidering local features (LFs) and feedback features
(FBs). LFs are such like standard statistics computed
from pixel values in a local window, and FBs indi-
cate magnitude of the matching degree of neighbor
ixels. After defined number of output iteration, each
%ixel is classified as either obj or bkg associated with
the highest matching degree. In region segmentation,
spatial relationship between neighbor pixels is impor-

Figure 1 illustrates an overview of FORCE. FORCE

represents fuzzy classification rules as a directed
graph composed of two types of nodes: condition
nodes and a consequent node that indicate condition
and a predefined consequent of rules (classification
class) respectively. In the graph, series connections

of condition nodes are defined as AND operation of tant as well as local features. That is, neighbor pixels

the conditipns and parallel connections are _defined aSond to belong to be the same class. FBs are expected
OR operation. A subgrgph of the graph having a path o enable CFORCE to consider the relationship and
to a consequent node |nd|cate§ an a.ntecedent part 0t)rocess complex object segmentation in which clus-
a rule whose consequent part is defined by the CON-1o s of pixels are overlapped.

sequent node. Namely, one graph represents one rule
set for predefined cladssuch like that illustrated in

Figure 1. The rule set computes matching degrke
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Figure 2: Overview of the proposed model.
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Figure 3: Feedback template: how to medgelues of neighbor units to six rotation invariant feedbfeztures.

3.2 Feedback Features

FBs represent magnitude relation between matching
degree of neighbor pixels with obj and bkg class cal-
culated by neighbor graphs in the previous output. In
the t-th output, FBs of a pixel are calculated using
J-1 of neighbor pixels computed by the following

formula; _ t+1 t=1
bkg obj

Jo1= m+w" 1) Figure 4: Example of graphs whég4 1 andt = 1.
bj bk : , 4
whereny™; andm? are matching degree of a pixel t = 1, FBs cannot be computed becam§s® andmg”
with obj and bkg class respectively computed by a are undefined. Therefore, condition nodes using FBs
pair of graphs placed on the pixel in thel)-th out-  are not used when= 1. That is, they are simply ig-

put. J_1 indicates magnitude relation betweeﬁf’jl nored such like that illustrated in Figure 4.

bkg obj bkg .
andm”3. m_3, m_; andJ%_1 are real numbers in

range[0, 1]. In this work, six types of 90 degrees ro- 3.3  Graph Structure and Genotype

tation invariant FBs are computed from neighion

in 5x 5 pixels using a template illustrated in Figure The structure of graphs is the same as that of FORCE
3. Inthe template, a target pixel is placed on the cen- except that CFORCE employs FBs. In the graph, a
ter. FBs are used in condition nodes in the same way condition node represents a condition in a form of

as the other input features except wheal. When “xt Operator V', wherex' is thei-th input feature,
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Figure 5: Membership functions used in this work.

Operatoris a comparison operat@ {=, #,>,<},
andV is a constant or input featurex’? compared
with x*. In addition, each condition node has a pa-
rametemw for MFs. Figure 5 shows MFs correspond-
ing to each comparison operator used in the proposed
model.w determines slope and (i.e.,c orx?) deter-
mines position of MFs.

The genotype for a graph is a numeric string in
which genes deciding parameters for each condition
nodes (i.e., to edge, condition type, X2, ¢ andw),

a consequent node number, and an output iteration
number T line up. Table 1 shows the parameters for
graphs used in this work. Genes for condition nodes
are ID numbers associated with the parameters, and
each condition node is converted from the genes us-
ing lookup tables. Figure 6 illustrates an example of
converting genes to a condition node using Table 1.
Note that, genes fox! andx? indicate ID numbers

of input features including FBs. The length of the
genotype for a graph is fixed: 6U2, where U is the
maximal number of nodes used for a graph. How-

To Con
[2]1

dx? x2 ¢ w

[0]2]0]1
-

[To No.2[x* = x4 F,| F,[0.0] 0.2

(o2

|

Figure 6: Example of converting genes to a condition node.

(a) Iftis T<and less, &executes (b) and (c).

(b) Compute matching degrqagg (X) between in-
put featureX of each pixel with an antecedent
partCK defined by thes-th subgraph of &by
the following fuzzy logic operators.

Hace (X) = min{pa (X)He (X)},  (2)

Hae (X) = max{iia (X) . ()}, (3)

where A and B are arbitrary fuzzy conditions,
andp is matching degree of with the condi-
tions. Matching degree of with a condition
of each condition node is computed by MF.
() Integratei (X) into matching degree® (X)
of X with classk on each pixel by the following
formula:
- zssilpc‘g (X)
B S5
where & is the number of the subgraphs of.G
More detailed process (b) and (c) are described
in Algorithm 1.

; (4)

m(X)

ever, the number of nodes appearing in the phenotype 3. If t is less than makT°P, T°k9}, execute the fol-

(active nodes) is variable because nodes not having a
path to a consequent node do not appear in the pheno-

type (inactive nodes). The graph is feedforward graph

as each node is allowed to connect to only nodes hav-
ing a larger node number than itself. The genotype of

CFORCE is a pair of the numeric string representing

graphs for obj and bkg class.

3.4 Object Segmentation Procedure

Using k € {obj,bkg} and & indicating a graph for
classk, the procedure of object segmentation by the
proposed model is described as follows:

1.t=1.
2. Execute the following procedure for each clkss

lowing procedure.

(a) Compute) on each pixel by Equation 1.
(b) Compute FBs on each pixel by the template de-
scribed in Figure 3.
(c) t=t+1,and go backto 2.
4. Classify each pixel as claksassociated with the

highestm¥ (X).
3.5 RuleEvolution

The two graphs are optimized simultaneously using
GA employing simple two-point crossover and ran-
dom mutation as genetic operators. The fitness is de-
scribed by mainly two indicators of evaluation: “F”
and “IMP”. F is F-measure indicating classification
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Table 1. Parameters of CFORCE.

Parameters 1D
0 1 2 3 4 5 6 7 8 9 10
Condition [ xXX=x* x'#x2 xI>x2 xXX<x* xt=c xX#c xXt>c x<c - - -
c 0.0 0.1 0.2 0.3 0.4 0.5 0.6 07 08 09 10
w 0.1 0.2 0.3 0.4 0.5 - - - - - -
T 1 2 3 4 5 - - - - - -
input : A pixel with input featuresX of rules. IMP is calculated by the following formula:
An iteration numbet NK K
output: Matching degree¥ of X with GX CcDX — wv (6)
if t = 1 then ZLamH (X))
G+ GX without nodes using FBs; SN ok (xK
ds sp =l () )
| G' <+ G*with nodes using FBs; 1
end IMP = >S4 onybiy (CDk : s#) . ®)
= ; ; ) Wherexﬁ indicates input features of threth pixel la-
ni < thei-th active node in G beled as classand N is the number of pixels labeled
while n; is not the consequent node as clas. Finally, the fitness function is represented
.f rom<a set of nodes connectedrig as follows:
if from is not emptyhen
dse cond
| Mmax < 1; where Nong is the total number of condition nodes
end used in graphs, and the last term evaluates compact-
Hn, < Min{tmax, MFn, (X)}; ness of rulese is a small weight valueg(= 0.001 in
i1 this paper).
n; « thei-th active node in G
end
4 EXPERIMENTS
from «+ a set of nodes connectedrig
if from is not emptyhen . .
Sk« the number of nodes ifrom; 4.1 Overview of Experiments
K« Z"J—Ef';"M I* Mo, = Hox ¥ We tested CFORCE using three different object seg-
dse ° mentation tasks to evaluate performance of the model.
| mk«0; e Crack extraction (grayscale)
end This task requires extracting cracks in concrete

Algorithm 1: How to computen® (X) using &.

accuracy, and IMP evaluates importance of obtained
rules. F is calculated by the following formula:

. 2 x Neorrect

= ) 5
N + Ngetect ( )

where N is the number of obj pixels,chect is the

number of obj pixels classified correctly, anddhct

is the number of pixels classified as obj class. IMP is

the average product of Confidence (CD) and Support

(SP) of rules for each class, both representimportance
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wall from images containing cracks and lines not

cracks. Figure 7 shows training images, and

Figure 8 shows test images not used in training
and used to examine the performance of obtained
rules. The images are 128128 pixels.

Coin extraction (color)

This task requires extracting several coins from
images containing coins and other objects. Fig-
ure 9 and Figure 10 show training and test images
respectively. The images are 12828 pixels.

Human extraction (color)
This task requires extracting human’s busts from
images in varied light conditions and various
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backgrounds. Figure 11 and Figure 12 show Table 2: Input features used in this work.
parts of training and test images respectively. We

selected 10 images for training and 20 images Groups| Features

for test from the MSRC Object Category Im- 0 Max, Min, Mean, Median,

age Database ¥2 Originally these images are First quartile, Third quartile,

320x 213 pixels and labeled roughly. In this ex- Six rotation invariant pixel values; |

periment, we reduced them to 18®7 pixels and Standard deviation

labeled them precisely. Range

1

2
For comparison, we also applied four compara- 3 Averaged edge magnitude
tive methods to the same tasks: the original FORCE, 4 Skewness
5
6

Support Vector Machine (SVM) (Vapnik, 2000), C4.5 Kurtosis

(Quinlan, 1993), and a graph cuts based segmentation Six feedback features: FB

method (GC). GC is a method based on Interactive

Graph Cuts (Boykov and Jolly, 2001) which divide an each task. The minNumObj and confidenceFactor
image into object and background regions using graph of C4.5 were also selected frof©,1,2,3,4,5} and
cuts to find globally optimal segmentation. Interac- {0.1,0.2,0.3,0.4,0.5} respectively by grid search.
tive Graph Cuts use seeds marked pixels as object orfFor GC, we selected BIN# of histogram from
background by a user to provide hard constraints for {16,32,64,128 256}, o of boundary penalty function
segmentation and to compute histogram for object or from {0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5} and A a pa-
background intensity distributions. GC does not use rameter for edge weights frofi, 2,4,8,16,32 64}
seeds and computes the histogram from pixel valuesto maximize F-measure for training images in each
of training images. task.

4.2 Experimental Settings 4.3 Resultsand Discussion

lppblft fgatyrrhes fus?d in the expterlrcr;er:jts tartg ?hown InAccuracy results (F-measure) of the experiments are
abie 2. € tealures were standard Stalisics Com-g, ymarized in Table 3. The values in parentheses

p_uted from pixel values in_a Ioca! W"?dOW_ 0f>55. of FORCE and CFORCE are averaged results over
pixel size, six FBs, and SIX rotatlon_mvarlant pixel six runs, and the other values of them are results of
yalutcas ’ compt)utedl f:om nFeéghbgr p'XTI v_alues US" the elitist rules obtained in training. SVM and C4.5

N9 d ﬁ*szll?*e elmp ate as ;.th or co t01[ m;ages, Weprocessed the training images better than CFORCE in
uset FBa color spta%e% an ehlanIJ catures ex-t coin and human extraction, but for the testimages, the
cep u S are,,‘?O".‘p” ed from each color COmponent. g yist ryles of CFORCE showed the most accurate re-
The “Groups” indicates the groups Of. input features sults in all experiments. That is, CFORCE prevented
allowed to be compared each other in CFORCE. A rules from overfitting the training images better than

condition com_paring input featureé_ _andxiz in dif' SVM and C4.5. GC showed better results for the test
ferentfgroupsl|s Cganged to a condition comparing an images in the coin and human extraction than SVM
input featurex: and a constart C4.5 and FORCE. although i X

- . . , gh it hardly processed crack

CFORCE and FORCE were tested six times with extraction because the histogram based on gray level

?'ﬁere.nt randomtsee.dtrlln eachbexpferlment ?smg the is too simple to represent differences between cracks
ollowing parameters: the number of generations was _ background.

10000, the population size was 50, the crossover rate The result images processed by each method are

V(\;/Z‘:'] eorgtioarllng;gemn(])gztlflnS]r?:/stie%%25' aMJ;':;?;_shown in Eigure 7-12. The fea_ture of processing_ by
tion alternation model, and the number of children C.FORCE IS Fhat extracted _reglon_s_tend to_ be united
was 30. The maximal number of nodes U for each with little noises (small mlsclas_sn‘led reglons_), al-

graph was 60. These parameters are based on the pré[_hough poundarles between regions are likely impre-
vious work. SVM and C4.5 were run using WEKA cise a little. We consider this feat.ure is caused by
(Hall et al., 2009). SVM employed RBF kemnel, FBs because results of FORCE without FBs do not

andy of the RBF kemnel and the complexity parame- show such features, and some results of GC consid-
ter C were selected frofe"|n = —7,—6,...1.2} and ering relationship between pixels have similarity to

N o . K : those of CFORCE. SVM and C4.5 produced good
{2'In=-2,-1,..,6,7} respectively by grid search in results with precise boundaries for the training im-

Lhttp://research.microsoft.com/en- ages, but the test results of them have more noises
us/projects/ObjectClassRecognition/ than those of CFORCE. Figure 13 illustrates an exam-
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Table 3: Accuracy results (F-measure) of each method.

SVM | C45 | GC FORCE CFORCE
Best (Avg.) | Best (Avg.)
Crack | Training | 0.910| 0.930| 0.061| 0.788 (0.764)| 0.930 (0.891)
Test 0.665| 0.567 | 0.056| 0.712 (0.718)| 0.827 (0.829)
Coin | Training | 1.000 | 0.997| 0.938| 0.915 (0.896) 0.997 (0.989)
Test 0.936| 0.928| 0.958| 0.931 (0.915)| 0.968 (0.972)
Human| Training | 1.000| 0.998| 0.851| 0.843(0.826)| 0.904 (0.855)
Test 0.755| 0.720| 0.759| 0.718 (0.714)| 0.794 (0.744)
Avg. Training | 0.970| 0.975| 0.616| 0.849 (0.829)| 0.944 (0.912)

Test 0.785| 0.739| 0.591| 0.787 (0.782)| 0.863 (0.848)
b e | e
T I =N e — N

S g J .
[ { z ;
}/ }/ Y ;/ j/
(a) Training images(b) Ground truth (c)C4.5 (d) SVM (e) GC (f) FORCE (g) @RCE
Figure 7: Training images and results of each method in ceatiaction.
S NN ?';-w’t;»wu' L

hno A
() FORCE

e’ \

A (;.;‘ . -
(c)ca5

(a) Testimages (b) Ground truth

4
Y.

(d) SVM (e GC (9) CFORCE

Figure 8: Test images and results of each method in crackatidn.

ple of crack extraction by the elitist rule developed by sults show that iterative process with FBs worked effi-
CFORCE. The brighter pixels indicate higher values ciently for segmentation. Note that, in CFORCE, the
in each image. We can see that each graph intensifiesaumber of output iteration is decided by a gene, and
mk of pixels belonging to clagsgradually by consid-  does not consider convergence of processing. There-
ering their neighbod values (FBs), and decreases the fore, if output process iterates over defined times, un-
number of misclassified pixels which are hard to be desirable results can occur, i.e., misclassified regions
classified by only local features. These visualized re- can increase. The relationship between the iteration
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Figure 9: Training images and results of each method in cdiraetion.
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Figure 10: Test images and results of each method in coiaaidn.

2

(a) Traiing imes(b) Ground truth (c)Cc4.5 (d) SVM (e) GC (f) FORCE (g) @RCE

Figure 11: Examples of training images and results of eadhaddn human extraction.
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»Ton

(a) Testimages (b) Ground truth (c)C45 (d) SV™m (e) GC (f) FORCE (g) CFORCE

Figure 12: Examples of testimages and results of each méathagnan extraction.
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Figure 13: Example of output transition of CFORCE obtairmedrack extraction.

times and convergence should be investigated in fu- which spatial features considering the spatial relation-

ture works. ship are incorporated, and extracts object region by
the rules in iterative process even if the clusters of pix-
els are overlapped. The experimental results showed

5 CONCLUSIONS that_CFORCE constrgcted fuzzy rules for three differ-
ent image segmentation successfully.

In this paper, CFORCE the novel method to construct !N this work, the number of output iteration was
fuzzy classification rules for image segmentation was 9€cided by a gene, and it did notrelate to convergence
presented. The algorithm has mainly two features: 1) ©f ségmentation process. Investigating relationship
designing fuzzy rules for object and background clas- between the iteration times and convergence is one of
sification using FORCE which develops fuzzy rules our future works. Addmonally, we aI_so plan to extend
represented as directed graphs automatically by GA, the model to multi-class segmentation.

and 2) performing iterative segmentation with consid-

ering spatial relationship between pixels. In natural

image segmentation, many pixels are overlapped be-

tween different clusters. Therefore, considering the ACKNOWLEDGEMENTS

spatial relationship besides local features is important

to classify the overlapped pixels correctly. The pro- This work was supported by JSPS KAKENHI Grant
posed model constructs fuzzy classification rules in Number 252243.
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