
Model based Validation of XML Requirements, Applied on Healthcare
IT Standards

Abderrazek Boufahja1 and Eric Poiseau2

1Gazelle Team, Kereval / IHE-Europe, Rennes, France
2Gazelle Team, Inria Rennes / IHE-Europe, Rennes, France

Keywords: Model-based, Validation, Requirements, XML, Healthcare Standards, Schematron, Interoperability, Quality.

Abstract: Nonconformity of healthcare implementations to the medical standards has become a real source of troubles
and loss of interoperability between systems. Healthcare documents frequently contain inconsistent require-
ments related to the standards they must conform to. Few standards and methodologies exist to deal with
complex requirements, and often they are only dedicated to some specific kinds of healthcare standards, like
CDA, HL7 and DICOM. The complexity of standards and their constant evolution have made difficult the
implementation of robust check methods and tools for healthcare documents. In this paper, we propose a
novel model-based validation methodology, which allows enumerating and validating requirements related to
healthcare documents that have XML based structure. Model-based methodology defined and specified in
this paper allows checking any kind of requirements even for healthcare documents with complex standards’
cascading. Experimentations of model based checking demonstrate that this method was highly effective in
detecting inconsistencies, and orienting implementers of healthcare technologies.

1 INTRODUCTION

Numerous regional and national healthcare initia-
tives are requiring eHealth applications to be tested
for conformance to profiled standards. Meaning-
ful Use (Melissa Markey, 2012) in the USA, Elga
(Georg Duftschmid, 2009) in Austria or ASIP (ASIP,
2012a) in France illustrate the desire of healthcare or-
ganizations to build an infrastructure to share PHR.
Most of those initiatives are profiling the HL7 CDA
(HL7, 2005a) standards and/or the IHE XDS (IHE,
2012a) profiles specifications. CDA specifies how to
structure and code health records while XDS provides
the sharing mechanism of these records.

Testing the conformance of healthcare solutions
becomes an important issue in order to achieve the in-
teroperability of the different components contribut-
ing to the sharing of such documents. Since both XDS
messages and CDA documents have an XML struc-
ture, we have developed a methodology that allows
the conformance checking of XML documents in the
context of hybrid healthcare standards. This method-
ology is based on UML modeling and MDA approach
to describe the specifications. The main idea of this
methodology is to inject constraints into UML mod-
els instead of executing xpath rules into XML docu-

ments. The result of this methodology is a report of
validation generated automatically from the models
describing the healthcare standards.

Following a review of existing solutions for vali-
dating XML documents in the field of healthcare we
will present our methodology and its evaluation based
on its use on real life project like epSOS (Thorp,
2010) (epSOS, 2013).

2 STATE OF THE ART

Numerous tools provide validation of healthcare stan-
dards based XML technology. However, most of
them are based on Schematron standard and MDHT
project’s methodology. This section provides an anal-
ysis of these methods.

2.1 Schematron

2.1.1 Presentation

Schematron is an ISO/IEC standard that offers the
possibility to create complex rules, like conditional
rules, iterations over nodes, nodes content compari-
son, etc. This set of schematron rules can be used to

295Boufahja A. and Poiseau E..
Model based Validation of XML Requirements, Applied on Healthcare IT Standards.
DOI: 10.5220/0004776902950302
In Proceedings of the International Conference on Health Informatics (HEALTHINF-2014), pages 295-302
ISBN: 978-989-758-010-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



check the conformance of an XML document. Many
groups are using schematron rules for the validation
of XML documents (Lee, 2000). There are open
source tools that allow validating an XML document
regarding a schematron, and they are widely used
and maintained by a large community, offering some
trust in the performance and the quality of the stan-
dard. A schematron document is basically composed
of multiple xpath assertions, which represent the rules
that the tested XML document shall verify (Clark and
DeRose, 1999).

2.1.2 Strengths and Weaknesses

Schematrons are efficient when used for few rules,
and they are simple to use as they are an inter-
preted language. However, schematrons have multi-
ple weaknesses. First the processing of the schema-
trons is too long. When hundreds of rules are to be
verified, the validation takes too much time. The sec-
ond problem is the use of xpath as language of con-
straint. Xpath is known to be a difficult language and
hard to debug (Clark and DeRose, 1999). Also, the
code defined by hundreds of xpath rules is not easy to
read and to understand. As a consequence, it is not
easy to maintain a set of schematron rules. Another
weakness of schematrons, there is no real coupling
between requirements and rules. Moreover, there is
no automatic generation of documentation. We can-
not know for an existing schematron if a requirement
is checked or not. Furthermore, there is no unit test-
ing generation for the written rules. Finally, there is
no support for changeable value sets. In healthcare
standards, the list of technical keywords grows fre-
quently. There are no techniques on the schematrons
that allows using a dynamic validation regarding to a
dynamic list of a standard value sets.

2.2 MDHT Project

2.2.1 Presentation

MDHT is an open source tool developed and main-
tained by Open Health Tools (Sondra Renly, 2012), a
not-for-profit Trade Association, incorporated in the
United State of America. MDHT is dedicated to doc-
ument and to validate medical IT standards that are
based on HL7 CDA standard (HL7, 2005a). The aim
of the project is to offer a tool that allows the descrip-
tion of the requirements related to healthcare speci-
fications based on HL7 CDA standard, in a simple
UML model. As output, the tool provides a docu-
mentation of the requirements, the java source code
for the manipulation (read and write) of CDA docu-
ments, and a validator of CDA documents related to

the standard described in the UML model. MDHT
provides an eclipse plugin for the edition of the under-
lying UML model. A large community uses MDHT
as a reference of development and for requirements
validation and documentation (example: CCD, IHE,
HITSP, etc).

2.2.2 Strengths and Weaknesses

MDHT is an excellent tool for CDA document val-
idation with a large user base. However the tool is
designed for CDA and can not be easily extended to
the validation of XML documents which are not CDA
documents, like XDS messages or XDW documents
(IHE, 2012b), as the profile of UML stereotypes that
describe the UML models is based on the structure of
CDA documents.

3 MODEL BASED VALIDATION
OF HEALTHCARE
DOCUMENTS

3.1 Objectives

Our goal is to create a method that allows describing
formally all requirements under an XML healthcare
standard. This method should be generic and support
inheritance between standards. The performance of
this method shall be comparable to the performance
of schematrons, and even better. This method shall
provide a documentation and a coverage of the imple-
mented requirements. The maintainability of the tools
and models shall be better than schematrons maintain-
ability. The method described here provide also gen-
erated unit testing for each implemented requirement,
which is a huge advantage comparing to schematrons.
The outcome of the proposed methodology is to pro-
vide a UML model and a set of methods used to con-
vert it into documentation, validators and test proce-
dures (Hans-Erik Erikson, 2004).

Standards Inheritance: We can point as exam-
ple two standards that share the same basic parent
standards, and extend them with more rules and re-
quirements. These standards are the Swiss CDA Lab-
oratory documents (eHealth Suisse, 2013), and the
French CDA Laboratory documents (ASIP, 2012b).
These two kinds of documents are based on the stan-
dards below, described on the figure 1. The two stan-
dards have a common base, and differ only on the top
of the pyramid of standards. The method described
here takes care of this kind of inheritance, and allows
having shared models for shared standards.

HEALTHINF�2014�-�International�Conference�on�Health�Informatics

296



Figure 1: Inheritance between healthcare standards.

3.2 Principle

Figure 2: Principle of model based validation of XML
healthcare documents.

The principle of the method that we propose for the
validation of XML documents based on UML de-
scription, is the following (figure 2):

1 - From medical standards like HL7, DICOM
(Hongli Lin, 2010) and IHE standards, we extract all
requirements, and we insert them into a specific UML
model, which has a specific structure, that we will
describe later. The UML model contains constraints
written in OCL (Object Constraint Language) (OMG,
2012). The purpose of this language is to describe
the relationship between elements of the UML model,
which can not be simply described by diagrammatic
notation. Each OCL constraint represents a require-
ment on a medical standard. OCL is a powerful lan-
guage that permits many variants of constraints, like
loops, search constraints, conditional constraints, etc.
By our experience on more than 50 validators of IHE
documents, OCL can generate the description of any
kind of rules related to the model. The created UML
model contains also the structure of the XML doc-

ument. This structure allows linking the OCL con-
straint to its corresponding XML element.

2 - The OCL constraints are then processed to
a programming language code like JAVA. In the in-
dustry, there are many processors of OCL. The most
popular one is DresdenOCL, which is a library de-
veloped and maintained by students and scientists of
the Software Technology Group at Dresden Univer-
sity of Technology (Birgit Demuth, 2009) (Birgit De-
muth and Zschale, 2004).

3 - The UML models and the processed OCL con-
straints are then used by a UML model to text gen-
erator (M2T), to generate a specific validator based
on the UML contents (OMG, 2008). There are many
projects that present themselves as a UML model to
text tool, the most popular one is Acceleo (OMG,
2008). Acceleo is not a classic generator of code from
UML models, like EMF generator. To generate code
you have to provide some M2T templates, which de-
scribe the generated text from the model. The gener-
ated text can be of any kind: html, java, or C++ for
example. The idea was to generate java code that al-
lows transforming the XML document to be validated
from XML to JAVA instances, and then to validate
these java instances by using the code generated by
the OCL processor. The M2T method allows also to
generate a documentation of the UML model, and unit
tests for constraints written on OCL. Each module is
described by its M2T templates.

3.3 Healthcare Requirements
Management

Requirements on healthcare documents are generally
written on human language, not a formal one. A
major problem of the maintainability of schematrons
was the fact that once the schematron written, we
do not know which requirements are described on
it, and which ones are not. We have no information
about the coverage of rules written on schematrons,
according to requirements from healthcare speci-
fications. Many tools offer the possibility to list
requirements, like TestLink for example. The one
that we chose was an OASIS standard: taml (OASIS,
2011). This standard is a common structure for
defining requirements. We used this standard and
restricted its structure to better conform to the context
of requirements on healthcare documents. This
standard allows specifying the list of predicates, and
for each predicate you can specify a list of tags which
describe the predicate. We restricted the tags to:
’section’ and ’page’, which describe the section on
the document and the page that refer to the require-
ment. Each predicate is defined by a unique identifier

Model�based�Validation�of�XML�Requirements,�Applied�on�Healthcare�IT�Standards

297



(/taml:testAssertion/@id), and each list of require-
ments is defined by a unique identifier: /testAssertion-
Set/common/normativeSource/target/@idscheme.
We restricted the OASIS taml standard by imposing
that the common element of the taml:testAssertionSet
shall be present, and this common element shall
contain information about the healthcare document
that we are processing, like the document name,
version, source name, and a URI to the original
document. These properties are included in the
element taml:common/taml:refSourceItem. We
forced the taml descriptor to have a unique identifier
by adding the element taml:common:/taml:target.
This is an example of taml assertion token from the
taml document of CDA PADV specification:
<testAssertion id="CONF-5">
<predicate>The Pharmaceutical Advice section
SHALL contain code.</predicate>

<prescription level="mandatory"/>
<tag tname="Section">6.3</tag>
<tag tname="Page">19</tag>

</testAssertion>

Each requirement is identified by a unique couple (tar-
get@idscheme , testAssertion@id). So we defined
a stereotype applied on UML constraint elements,
which describes the relationship between constraints
and requirements (figure 3). It contains two attributes:
IDs and targetIDScheme, where IDs represents the
list of ID on the taml document, and targetIDScheme
is the identifier of the taml document.

Figure 3: Relationship between rules and requirements.

This correlation between constraints and require-
ments allows calculating the coverage of the valida-
tor according to the list of requirements, and then to
identify requirements that are not implemented in the
UML models.

3.4 UML Models’ Specification

3.4.1 Constraints’ Specification

Each requirement extracted from the specifications of
the XML document is translated into a UML con-
straint that contains an OpaqueExpression element
with the attributes:

� language: ’OCL’

� body: the OCL constraint

The OCL constraint shall always have the result
equals to true when applied to an UML instance spec-
ification. On healthcare standards, especially on HL7
ones, there are three kinds of rules: requirements,
warning, and notes, which are specified by the key-
word SHALL, SHOULD and MAY (Bradner, 1997).
We specified a stereotype applied on UML constraint
elements, which allows to specify if the constraint
is an error, a warning, or a note. This stereotype is
named ConstraintType (figure 4).

Figure 4: Stereotypes related to Constraint element.

We defined also a stereotype to document a con-
straint when it is related to a valueSet: a dynamic
list of values, that can be provided by a CTS or a
SVS provider (IHE, 2010) (HL7, 2005b) (Heymans S,
2011). Each created constraint element shall be re-
lated to a UML class element.

3.4.2 Classes’ Specification

There are two kinds of UML classes in this methodol-
ogy: classes used to describe the content of the XML
document, and classes used to apply a list of rules on
a kind of XML element.

1- Classes used to Describe the Content of the
XML Document: These classes, called in our spec-
ification StructureClass (SC), contain attributes with
the same structure described in the schema of the
XML document. The profile used to describe the
relation between classes and the schema elements is
’Ecore’ profile (Dave Steinberg, 2008). From an XSD
we can generate the UML model containing the de-
scription of the content of the XML document. The
principal stereotypes used from this profile to describe
the XML structure are: EPackage, Eclass, EEnum,
EAttribute, and EReference. The generation of code
binded to XML is based on these stereotypes. On this
kind of classes, basic constraints can be included. If
we are sure that a rule shall be applicable to any re-
striction of the standard, and it is not related to some
specific context, we can add it directly on the class of
description of the element.

2- Classes used to Apply Rules on a kind of
XML Element: When we are on a special specifi-
cation of a standard, or on an affinity domain which
restrict the original standard, like for example epSOS

HEALTHINF�2014�-�International�Conference�on�Health�Informatics

298



CDA standard, we know that rules applied by these
standards are not absolute, and we can not attach
these rules directly to the class of description of the
element. We defined the notion of ’package of con-
straints’. Each package of constraints contains a list
of classes of constraints, and each class of constraints
contains a list of constraints, has a generalization to
the parent UML StructureClass or to another class of
constraints, and has a stereotype that defines the kind
of the class of constraints.

We defined three kinds of stereotypes that describe
the kind of a class of constraints (figure 5):

� TemplateSpec (TS): described by a (path, id). The
list of constraints on this class is applied only
when the value of the path on the XML instance
has the same value as the id

� ConstraintsSpec (CS): the list of constraints is ap-
plied automatically to any instance of the element
described by the parent class

� AdvancedTemplate (AT): defined by an OCL rule.
The list of constraints on this kind of classes is
applied only when the specified rule is verified on
an instance of the parent class.

Figure 5: Stereotypes of classes of constraints.

The UML classes that are described by these
stereotypes are created manually in the UML model,
in order to provide restrictions on the StructureClass
(SC) classes, using UML constraints that describe re-
quirements of the specifications. However, the Struc-
tureClass(SC) classes are created automatically from
the XSD schema that describes the structure of the
XML documents to be validated (R. Bhuvaneswari,
2012). This schema is generally provided by the stan-
dard specification.

The mixing of these kinds of classes of con-
straints can lead us to illogic situations, by gen-
eralization from one kind to another. So we de-
fined some rules of inheritance between Template-
Spec (TS), ConstraintsSpec (CS), AdvancedTemplate
(AT) and StructureClass (SC).

When a class of constraints generalizes another
class of constraints, parent class rules are added to

the child class rules, and the two lists of rules are exe-
cuted only if we can execute the two lists in the same
time. If we allow a TemplateSpec to inherit from an-
other TemplateSpec, the rules of the child are exe-
cuted only if the element tested on the XML docu-
ment verifies the two paths of the parent and the child
classes. If one of these paths is not verified, the rules
are not executed, and here we have a problem because
no error is reported to the designer of the XML doc-
ument, showing that the XML element is missing a
path, one or the other. For this reason, the table below
specifies this kind of relationship between classes of
constraints (table 1).

Table 1: Inheritence between classes of constraints.

– TS CS AT SC
TS x x x v
CS v v v v
AT x x x v
SC x x x v

We described these relationships by a formal
grammar G = (N;s;Y;P), where:

� Alphabet: s = fT S;CS;AT;SCg
� Nonterminal symbols: N = fYg
� Start symbol: Y

� production rules P:

Y ! T S:SC
Y ! AT:SC
Y ! Y:SC
Y !CS:(SCjY )
This can be described by the diagram below (fig-

ure 6).

Figure 6: State diagram of classes of constraints’ relation-
ship.

The language defined by G is:

L(G)= fCSn(T SjAT jCS)SCm;n;m2N;n� 0;m� 1g
(1)

We also defined a stereotype to document classes
of constraints, named DocumentationSpec. It allows
specifying information about the standard which is
the origin of constraints, and this provides a better
documentation of the class of constraints when gener-
ating the documentation of the model of constraints.

Model�based�Validation�of�XML�Requirements,�Applied�on�Healthcare�IT�Standards

299



3.5 M2T Generation’s Specification

3.5.1 XML Binding

As explained on the principle of this method, as out-
put we need to generate a code that allows transform-
ing XML elements to object instances. In the imple-
mentation of this methodology, we chose JAXB as the
API to bind XML to objects (McLaughlin, 2002). Or-
acle provides a tool, named xjc (McLaughlin, 2001),
which allows to generate from an XML schema, java
classes containing a full description of the XSD ele-
ments, based on JAXB annotations. The same func-
tionality of generation of code containing a binding
with XSD elements is done by a M2T template. Cre-
ating our own generator of java code gives us the pos-
sibility to add further methods and attributes, that are
not generated by xjc. For example, we have intro-
duced the ability to validate xpath constraints as a
method of validation on the generated java code.

3.5.2 Validation Code

The second kind of output from UML models is the
classes of validation. This generated code is the com-
bination of the OCL code transformed and processed
by the OCL processor, and the generated code from
a M2T template that links rules between themselves.
The result of the execution of the generated code is
a list of verifications. This list contains errors, warn-
ings, notes and reports about processing of rules. For
each package of classes of constraints, we gener-
ate a class of validation. This technique allows the
reusability of the generated code, and simplifies the
imbrication of standards. For example, in the labora-
tory domain described in figure 1, for each block in
the two pyramids, we define a package of constraints.
So for each of HL7 CDA, IHE PCC and XD-LAB,
we define a unique package of validation. Then we
define specific packages for CDA-FR, CDA-CH, and
LAB-FR, LAB-CH. The validator is the combination
of the common packages and the specific packages.
The M2T templates generate code based on the visitor
pattern: for each element on the object structure gen-
erated to describe the elements of the XML, we pass
an instance of the package of validation, to a method
generated from the template of generation of struc-
tured classes (figure 7).

This method verifies the rules of the package on
the current instances, and calls the same method on
its attributes with the same package’s instance.

Figure 7: State principle of the visitor pattern applied on
XML elements validation.

3.5.3 Unit Testing Generation

The generation of unit tests is managed by a M2T
template to facilitate the process of unit testing. This
feature does not exist on the schematrons’ process.
The generated code provides for each constraint, two
tests: one OK and one KO. The principle of each test
is to validate a whole document, and to verify if the
result of the constraint is what it is supposed to be.
The specification of the XML documents to be veri-
fied can not be done automatically; it is the role of the
tester to provide them.

3.5.4 Templates Coverage

As we define a structure of templates and advanced
templates, the specified model of constraints provides
an overview of the complexity of the XML document.
This feature is very useful in CDA documents and in
XDS metadatas analysis, as the specifications of these
kinds of documents are based on templates structure.
For example, in CDA documents, sections and entries
have an attribute named templateId which is a unique
identifier of the kind of the element, and it is refer-
enced by the TemplateSpec stereotype (HL7, 2005a).

3.5.5 Documentation Generation

The defined stereotypes to document constraints and
classes of constraints are used for the generation of
the documentation. The generation is performed us-
ing a M2T template, with an html output. There are
two kinds of documentation that can be generated:

- the documentation of the structure of the XML
document: this documentation is a description of the
elements of the XML document. For each element we
can document the cardinality, the type, the name, and
the parent.

- the documentation of classes of constraints: this
documentation contains the relationship between con-

HEALTHINF�2014�-�International�Conference�on�Health�Informatics

300



straints and classes, documentation of the kind of con-
straints and the kind of classes of constraints, and fi-
nally a documentation of the link between constraints
and taml assertions.

4 IMPLEMENTATION

4.1 Implementation Details

We have implemented and used this methodology for
the development of validators used by the Gazelle
Test Bed plateform (Eric Poiseau, 2010). The UML
editor used for the implementation is Topcased: it of-
fers a rich graphical editor, and provides an efficient
search tool for an easy retrieval of constraint or the
attributes of a stereotype. The OCL processor used is
DresdenOCL and the M2T generator used is Acceleo,
as they are open source tools. The generated code for
the validation and testing is in JAVA and the gener-
ated documentation is in HTML. Acceleo templates
are packaged as an eclipse plugin, so a developer who
want to use the tool to create a validator for a specific
standard only needs to upload the plugin and to write
the UML models, and then to automatically generate
the java code of validation, the unit test code and the
documentation. So there are no further acceleo tem-
plates to write.

4.2 Developers Feedback

Developers who have used the model based tool to
create and update UML models were pleased to the
fact that OCL was easier to use than xpath on schema-
trons. The generated unit tests give a kind of confi-
dence on the generated code, and the generated doc-
umentation is helpful for debugging when the valida-
tion fails. Also, UML models are easier to maintain
than schematrons. Developers at IHE-Europe have
tested this methodology and adopted it for numerous
IHE profiles. At the date of this publication, the num-
ber of model-based validators implemented by IHE
Europe is close to 80, and it is growing.

4.3 Users Feedback

The model based validation methodology was applied
to perform the validation of messages and documents
in various standards used in the field of Healthcare.
Beside the use within the epSOS project for HL7
CDA and XDS metadatas validations, we have ap-
plied the methodology to other specifications in the
IHE domain. Today we applied it to many of the XML
based profiles, like DSUB, XDS, PDQV3, HPD, and

SVS. Users of these validators were satisfied by the
robustness of the validation. Moreover, sometimes
the implementation of model based validators allowed
us to detect inconsistencies between the specifications
and the referenced standards.

4.4 Performance Issues

The implementation of this methodology has proved
that the model-based validation is easier to main-
tain and to reuse than schematrons. Furthermore, the
model-based validators are faster than schematrons.

Figure 8: Comparison between execution time (ms) of the
validation using model based validation and schematrons.

The figure 8 reports the execution time for the
validation of a HL7 CDA documents on the epSOS
domain. Red curve represents the execution time of
schematrons (SCH) according to the number of rules
verified on a document, and the blue curve repre-
sents the execution time for the model-based valida-
tion (MBV) according to the number of rules veri-
fied. 1300 samples CDA documents were processed
in order to plot these curves. The samples were pro-
vided from 20 national infrastructures of the Euro-
pean member states participating in the epSOS project
(McLaughlin, 2002). One can remark that for the
same number of rules processed the time of MBV
is smaller than for schematrons. In addition, as the
number of rules increases the execution time is ris-
ing faster for the schematron validation than for the
model based one.

5 CONCLUSIONS

In this paper, we designed a methodology of vali-
dation of XML documents on healthcare standards
based on model based architecture. This methodology
has allowed to remain with weaknesses of schema-
trons technology, especially problems of maintain-
ability, reusability, unit testing, documentation and re-

Model�based�Validation�of�XML�Requirements,�Applied�on�Healthcare�IT�Standards

301



quirements coverage. It has also simplified the vali-
dation of pyramidical standards.

The implementation of this methodology was
done using open source tools, especially Topcased as
editor, DresdenOCL as OCL processor, and Acceleo
as M2T generator. The generated output code was
on Java technology. The result of this implementa-
tion has covered the needs of developers and users of
the generated validators. The use of this methodology
to create validators for multiple kinds of healthcare
standards in many domains like epSOS and IHE has
proved the efficiency of this method: any kind of con-
straint can be expressed. And also, an important fea-
ture was, the model based validators are quicker than
schematrons.

Several improvements could be injected into this
methodology and its implementation, like a self edi-
tor of the UML model, to simplify the creation and
the management of classes and constraints. Also, the
concept of stereotypes to describe classes and con-
straints can evolve to a meta-model that describes this
set of stereotypes, and a use of GMF can improve the
usability and minimize the risk of inconsistencies of
UML models. Moreover, the model based validation
of XML based healthcare standards could be adapted
to other domains that use the XML technology.

REFERENCES

ASIP (April 25, 2012a). Cadre d’interoprabilité des
SIS, Document chapeau. Agence des systèmes
d’information partagés de santé.

ASIP (October 15, 2012b). Volet Compte Rendu dÉxamens
de Biologie Médicale. Asip Santé, v1.3.0.0 edition.

Birgit Demuth, C. W. (2009). Model and object verification
by using dresden ocl. In Proceedings of the Russian-
German Workshop Innovation Information Technolo-
gies: Theory and Practice. Ufa State Aviation Techni-
cal University, Ufa, Bashkortostan, Russia.

Birgit Demuth, S. L. and Zschale, S. (September 15 - 17,
2004). Structure of the dresden ocl toolkit. In The
2nd International Fujaba Days : MDA with UML and
Rule-based Object Manipulation. Technical Univer-
sity of Darmstadt, Germany.

Bradner, S. (1997). RFC 2119 : Keywords for use in RFCs
to Indicate Requirement Levels. W3C recommenda-
tion, Harvard University, Boston, Massachusetts.

Clark, J. and DeRose, S. (November, 1999). XML path lan-
guage (XPath) version 1.0. W3C recommendation.

Dave Steinberg, Frank Budinsky, M. P. E. M. (Decem-
ber 16, 2008). EMF: Eclipse Modeling Framework.
Addison-Wesley Professional.

eHealth Suisse (May 21, 2013). Format déchange Rap-
ports de laboratoire soumis à déclaration en Suisse.
eHealth Suisse.

epSOS (January 03, 2013). epSOS Architecture and Design
Interoperability Specification. Smart Open Services
for European Patients.

Eric Poiseau, Karima Bourquard, M. O. M. Z. (2010). Test-
ing Tools Strategy. Healthcare Interoperability Testing
and Conformance Harmonisation (HITCH).

Georg Duftschmid, Wolf gang Dorda, W. G. (2009). The
elga initiative: A plan for implementing nationwide
electronic health records system in austria. In Medical
University of Vienna.

Hans-Erik Erikson, Magnus Penker, B. L. D. F. (2004).
UML2 Toolkit. Wiley Publishing, Inc.

Heymans S, McKennirey M, P. J. (2011). Semantic valida-
tion of the use of snomed ct in hl7 clinical documents.
In Journal of Biomedical Semantics.

HL7 (June, 2005b). HL7 Version 3 Standard: Common Ter-
minology Services. Health Level Seven, release 2 edi-
tion.

HL7 (May, 2005a). HL7 Clinical Document Architecture,
Release 2.0 (CDA), Normative Edition. Health Level
Seven.

Hongli Lin, Zhencheng Chen, W. W. (2010). Xml schemas
representation of dicom data model. In Bioinformatics
and Biomedical Engineering (iCBBE).

IHE (August 10, 2010). IT Infrastructure Technical Frame-
work Supplement, Sharing Value Sets. Integrating the
Healthcare Enterprise.

IHE (August 31, 2012a). IT Infrastructure Technical
Framework. Integrating the Healthcare Enterprise.

IHE (August 31, 2012b). IT Infrastructure Technical
Framework Supplement, Cross-Enterprise Document
Workflow (XDW). Integrating the Healthcare Enter-
prise.

Lee, D. . C. (September, 2000). Comparative analysis of six
xml schema languages. In ACM SIGMOD.

McLaughlin, B. (2002). Java And Xml Data Binding.
O’Reilly.

McLaughlin, B. (August, 2001). Java and XML. O’Reilly,
second edition.

Melissa Markey, M. M. (2012). Practice manager panel:
Putting ehrs to meaningful use in the medical office,
perspectives from practice managers. HIMSS.

OASIS (November 2011). Test Assertions Markup Lan-
guage (TAML). Advancing Open Standards For the
Information Society (OASIS), v1.0 edition.

OMG (January, 2008). MOF Model to Text Transformation
Language. Object Management Group, v1.0 edition.

OMG (January, 2012). OMG Object Constraint Language
specification (OCL). Object Management Group,
v2.3.1 edition.

R. Bhuvaneswari, K. K. (February 2012). Software support
for xml schema design patterns and pattern matching
of xml schemas. In International Journal of Scientific
and Research Publications, Volume 2, Issue 2.

Sondra Renly, Rita Altamore, L. N. (November, 2012). A
new model for collaboration: Building cda documents
in mdht. In AMIA Annual Symposium Proceeding.

Thorp, J. (September, 2010). epsos project, an overview of
european interoperability initiatives. In AHIMA.

HEALTHINF�2014�-�International�Conference�on�Health�Informatics

302


