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Abstract: The vehicle routing problem with route balancing is a bi-objective routing problem, in which the total route 
length and the balance of routes (i.e. the difference between the maximal and minimal route length) have to 
be minimized. In this paper, we propose an approach based on two solution representations: a giant tour 
representing a sequence of customers (indirect representation) and a complete solution with a decomposition 
of the giant tour, combined with a split algorithm to alternate between them. This approach offers a mainly 
efficient way to explore the solution space. Our motivation is based on the possibility to generate efficiently 
several solutions a time using an indirect representation which has been already proved to be efficient in 
numerous routing problems resolution. The originality here is to tune the split algorithm considering two 
objectives. An evolutionary path relinking algorithm is embedded to improve the obtained solutions. The 
proposed approach is evaluated on classical vehicle routing problem instances and the results push us into 
accepting that the method is competitive with the best published mono-objective methods (on criteria one : 
the total route length). On a bi-objective point of view, our method is competitive with the lexicographic 
solutions reported in the literature in the sense that it provides similar or better results in comparable 
computational time. 

1 INTRODUCTION  

This paper addresses the vehicle routing problem 
with route balancing (VRPRB), which is a variant of 
the bi-objective vehicle routing problem (bi-
objective VRP). The VRP is a class of routing 
problems that consist in visiting a set of customers 
using a homogeneous fleet of capacitated vehicles 
with the objective of minimizing the total route 
length. The bi-objective versions of VRP consist, for 
the second objective, in maximization of a profit or 
equity between routes by minimizing the route 
balancing. The VRPRB holds on the second. 

1.1 Vehicle Routing Problems  

The basic version of the VRP is the capacited 
vehicle routing problem (CVRP). It can be defined 

on a complete and undirected graph ܩ ൌ ሺܸ,  ,ሻܧ
where ܸ ൌ ሼ0,… , ݊ሽ is the set of nodes and ܧ ൌ
ሼሺ݅, ݆ሻ|∀݅, ݆ ∈ ܸ, ݅ ് ݆ሽ is the set of edges. The depot 
is represented by node 0, where an unlimited fleet of 
identical vehicles with a capacity ܳ is available to 
serve the demand ݀௜ of each customer ݅ 
corresponding to nodes from 1 to ݊. Each edge ሺ݅, ݆ሻ 
is the shortest path from node ݅ to node ݆ and 
associated with a non-negative cost ܥ௜௝. The 
objective is to find the set of routes of minimal cost 
to serve all customers with the following constraints:  

 demands cannot be split (each customer must be 
served by a single visit); 
 each route starts and ends at the depot; 
 the total demand of the customers served by one 

vehicle must fit its capacity. 
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In several publications, the number of vehicles is 
limited and/or a time limit is given to perform a trip. 
In the latter case, a service time is added to each 
customer. The CVRP is NP-hard since the mono-
vehicle case, corresponding to the traveling 
salesman problem (TSP) is known to be NP-hard.  

When multiple objectives are identified, they are 
frequently in conflict. For this reason, adopting a 
multi-objective point of view can be interesting. 

1.2 VRP with Route Balancing  

In the VRPRB is an extension of the CVRP in which 
two objectives have to be optimized: 

 Minimization of the distance traveled by the 
vehicles. 
 Minimization of the difference between the 

longest and the shortest route length. 

Even if very efficient methods exist to solve the 
CVRP, they manage only the first objective. 
Lacomme et al. (Lacomme et al., 2006) concerns the 
resolution of an arc routing problem using an 
NSGA-II approach. To the best of our knowledge, 
the last publication on VRPRB is the one proposed 
by Jozefowiez et al. (Jozefowiez et al., 2009). 
Among the proposed approaches in the literature for 
multi-objective (MO) problems, NSGAII (Deb, 
2001) is intensively used. However, to provide 
quality results on the CVRP, its general structure 
requires efficient specific developments. More 
generally, taking advantages of ranking schemes 
seems to be a good approach in routing problem as 
stressed by Coello Coello (2000) in a survey. For a 
complete introduction on MO optimization, it is 
possible to refer to the annotated bibliography from 
Ehrgott and Gandibleux (2002) which provides a 
suitable entry point for general definitions and 
pertinent references.  

In this paper, a new approach is proposed to 
obtain a set of efficient solutions through a 
technique that is based on an indirect representation 
of solutions for routing problems: the mapping 
function denoted split in the majority of publications 
(Prins, 2004). The original version is here adapted to 
tackle the multi-objective feature of the problem and 
a Path Relinking (PR) algorithm is embedded to 
explore the solution space.  

The remainder of this paper is organized as 
follows: section 2 presents the proposed approach; 
computational results are introduced on Section 3 
and the paper concludes with section 4. 

2 PROPOSED APPROACH 

The proposed algorithm is based on a Split 
algorithm, a procedure that has proven its efficiency 
on routing problems and that is here adapted to 
handle multi-objective functions. 

2.1 Split based Approaches for Routing 
Problems 

The split algorithm was proposed by Beasley as the 
second phase in a “route-first, cluster-second” 
heuristic for the CVRP (Beasley, 1983). The first 
phase consists in creating a giant tour by relaxing 
both vehicle capacity and maximum tour length, and 
the second phase constructs a cost network and then 
applies a shortest path algorithm to find least cost 
feasible trips. However, the real rise of the approach 
appears in 2001 when it has been implemented 
within more general frameworks for routing 
problems providing methods competitive with the 
best published ones from 2001 to 2008 on the 
Capacitated Arc Routing Problem - CARP 
(Lacomme et al., 2001) (Lacomme et al., 2004) and 
the VRP (Prins, 2004). In this context, the number of 
split applications in routing increases strongly as 
pointed by Duhamel et al. (2011) and covers now 
CARP, VRP, Location routing and numerous 
extensions which represent a set of more than 40 
publications. Moreover, Duhamel et al. (2011) gives 
a fully generic description of split functions and 
proves that some ones require shortest path with 
resource constraints and several labels on nodes. 

The split algorithm is a function which ensures a 
mapping from one indirect representation of solution 
(denoted QDRS in the Figure 1) and a solution of  

 

Figure 1: Efficient routing framework outlines according 
to (Duhamel et al., 2011). 
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the problem. The oscillation between the set of 
QDRS (giant tours in routing problem) and the set of 
solutions (solutions of the VRP for example) has 
been proved to be a strongly efficient way for space 
exploration. 

The mapping function between one QDRS and a 
solution could be classified into several categories 
(Figure 2) as stressed for years by Cheng et al. 
(1996). 

 

Figure 2: The mapping from coding  
to solution (Cheng et al., 1996). 

2.2 Search Space Exploration Strategy: 
SPR 

The search strategy is made by a path relinking 
approach enforced by a multi-start scheme to bring 
some diversity, and by an alternation between 
solution spaces thanks to a new adaptation of the 
classical split procedure for VRP. The resulting 
method is called SPR (Split based Path Relinking 
approach) and provides an approximation of the

 Pareto front – referred to as GPOP - updated all 
along the search process, by keeping non-dominated 
solutions. Three main components characterize the 
method (Figure 3): 

  Generation of giant tours, either heuristically 
(through a randomized nearest neighbor 
algorithm or a random sequencing) at the 
beginning of each restart, or with PR between 
existing giant tours; 

 Evaluation of the giant tours by transformation 
into potentially non-dominated solutions through 
the proposed split procedure followed by local 
searches; 

 Inclusion of the obtained non-dominated 
solutions within the current population POP, and 
GPOP which model the Pareto front. The 
insertion may result in some solution deletions in 
the populations due to dominance rules.  

The originality of the proposed approach remains 
on the alternation between two search spaces taking 
advantages of the split procedure. Several non-
dominated solutions can be derived from a single 
giant tour. Using such an approach, a strongly 
limited number of giant tours permits to obtain a 
larger population with a time efficient split 
algorithm. However, the population is limited to 
݊௠௔௫ solutions sorted by increasing solution cost. 

Thus, the generation of the initial giant tours at 
the beginning of each global iteration or restart (line 
12 in procedure 1) aims at creating ݊ீ் giant tours 
either with a randomized nearest neighbor algorithm 
or   a   random   sequencing.   A   set  of  solutions is 

 

Figure 3: SPR strategy principle. 
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Procedure 1: Multi_Start_Split_based_Path_Relinking_Approach  
1 global parameters 
2   iter_max: maximal number of iterations 
3.  Nr : number of replications 
4. input/output parameters 
5.  GPOP : population  
6. local variables 
7.   POP: a population of solutions 
8. begin 
9.  GPOP :=   
10.  for j:=1 to iter_max do 
11.   POP =    
12.   call Generate_new_sol_in_Population (POP) 
13.   call Path_relinking ( iter_max ,POP,POP.n)    
14    GPOP := GPOP + POP    
15   end for 
16.  call Post-optimization( iter_max ,GPOP,GPOP.n)   

17.  return GPOP 

obtained from the evaluation of each giant tour by 
the proposed split procedure. Then, these solutions 
are improved using local search procedures, and 
inserted into both populations POP (the current 
population made of non-dominated solutions 
encounter since the beginning of the related global 
iteration) and GPOP (the global population, made of 
the pool of non-dominated solutions encounter since 
the beginning of the whole algorithm).  Once 
inserted, some solution deletions in the populations 
may result of the dominance rules. 

The second part of the algorithm (line 13) 
explores the solution space around solutions in POP 
through a path relinking between them. Two inner 
loops are successively called. The first one performs 
a path relinking between the best solution of POP 
according to the cost criteria and ݊௉ோ randomly 
selected other solutions of the population. The 
second loop does the same process but with the best 
solution according to the balance criteria. The 
encountered solutions on the paths are tested to enter 
in both POP and ܱܲܲܩ. 

The third part (line 16) is a post optimization 
that also performs a path relinking, but this time, it is 
made between the subset of ܾ solutions of the 
approximate efficient front contained in GPOP. 
More precisely, a loop with ݅ from 1 to ܾ/2 create a 
path between solutions ݅ et ܾ െ ݅. 

2.3 An Adaptation of Split Procedure 
for Multi-objective VRP 

The split procedure allows to obtain the lowest cost 
feasible trips from a given giant tour ܶ. To do so, an 
auxiliary acyclic graph ܪ based on a sequence of 

tasks (giant tour of customers) is first constructed. 
The graph ܪ	contains ݊ ൅ 1 nodes numbered from 0 
to ݊, 0 being an artificial initial node. An arc ሺ݅, ݆ሻ 
corresponds to a subsequence of consecutive 
customer from position ݅ ൅ 1 to ݆ in tour ܶ and 
visited in a single trip starting and ending at the 
depot. Splitting ܶ corresponds to the computation of 
a min-cost path from node 0 to node ݊ in ܪ. On 
VRP, using Bellman algorithm for acyclic graph, the 
splitting of the giant tour is optimal. On more 
complex VRP versions, it might be useful to 
compute a resource-constrained shortest path 
(Desrochers, 1988) that is typically done by a label-
correcting algorithm, involving to manage several 
labels per node. 

In VRPRB, there exist also several labels per 
node since a label ܮ can be defined as a structure 
with its cost ܮ. .ܮ	and its balance ܥ  This definition .ܤ
does not allow for a simple comparison to claim that 
one dominates or is at least equal to another, as this 
is the case when only a cost is used to compare 
labels. Unfortunately, the second criteria, the 
balance of the routes, is not regular and the only 
dominance rule which could guarantee the split 
optimality is weak and does not permit to prune 
enough labels to obtain strongly time efficient split 
algorithm. 

Thus, we introduce approximate dominance rules 
which cannot guarantee the split optimality but 
which are consistent with objectives and should 
offer a compromise between split quality and 
computation time related to the number of labels 
kept on nodes. 

Label ܮଵ  approximately dominates label ܮଶ if 
and only if 
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.ଵܮ ܥ ൏ .ଶܮ	 .ଵܮ   and  ܥ ܤ ൑ .ଶܮ	    ܤ
or 
.ଵܮ ܥ ൑ .ଶܮ	 .ଵܮ   and  ܥ ܤ ൏ .ଶܮ	    ܤ
The dominance rule reduces the number of labels 

stored at each node to a small subset. However, a 
large number of labels could still be generated. 
Thence, other time-saving approaches can be 
proposed, such as limiting the number of labels per 
node or the total number of lables generated during 
the split process. Here, the number is limited only on 
each label to n୪ୟୠୣ୪ୱ. This principle, added into the 
approximate dominance rules, results in some labels 
pruning whereas they should not. Such restrictions 
may allow to strongly reducing the CPU time, but 
they are also raisons explaining why the proposed 
algorithm does not guarantee to generate optimal 
splitting. 

For a detailed presentation of a shortest path 
algorithm with resource constraints including a 
specific algorithm for label comparison, it’s possible 
to refer to (Duhamel et al., 2011) where a generic 
algorithm dedicated to split with resource 
constrained is introduced. We introduced hereafter, 
basic split example decomposition from one giant 
tour into a set of non dominated solutions. 

2.4 Local Searches 

The local search procedures implemented in the 
framework rely on the first improvement selection 
strategy. The local search is composed of 3 parts.  

• Improvement of each trip by using classical VRP 
neighborhoods such as 2-OPT and insertion 
technique. It is limited to ݊୐ୗ iterations per call. It 
focuses only on cost reduction.  

• Closure of the shortest trip with the objective to 
minimize the solution trips balance (second criterion 
to minimize).  

• Reduction of the longest trip by using a careful 
nodes transfer technique in existing trips. During 
this part of the algorithm, worsening of the criterion 
1 (the cost) is acceptable in the limit of 1.1 time the 
initial cost. The objective is to avoid excessive waste 
of time in exploring non-promising solutions for the 
criterion 1. 

2.5 Path Relinking 

Numerous distance measures could be investigated 
as stressed in the overview of (Sörensen and 
Schittekat, 2013). In this paper, the one proposed by 
(Zhang 2005) is used. They design an efficient 
algorithm to compute the distance relates to the 
minimum numbers of permutations required to 

transform a sequence ܣ into a sequence	ܤ. The size 
of the two sequences has to be the same and that is 
totally compliant with the giant tour definition. The 
proposed path relinking relies on giant tour and also 
introduces progressively attributes from a guiding 
solution into an initial solution to reduce the distance 
defined by (Zhang 2005). Let us note ܵ as a solution 
and ܶ the corresponding giant tour obtained by split-

1 (the inverse function of the split algorithm, consiste 
of concatenating the trips of a solution into a geant 
tour). Given that a small change on ܶ may produce 
very distant solutions from ܵ, the path relinking 
works only on promising solutions (and not 
necessarily distant as preconized in most of the 
papers). Thus, two solutions, selected in a given 
population (POP or GPOP), are transformed into 
tours and then linked through a path in this reduced 
solution space. Each giant tour on the path, with a 
given probability ܾ݋ݎ݌௦௣௟௜௧ undergoes an evaluation 
by split (producing potentially several solutions) and 
local searches (also generating potentially several 
non-dominated solutions). This strategy offers a 
strong exploration.  

3 NUMERICAL EXPERIMENTS  

Numerical experiments were achieved on 14 
classical problems first introduced by (Christofides 
and Eilon, 1969) and (Christofides and al.,1979). 
They are made of two groups, problems 1-5 and 11-
12 having a maximum vehicle range (travel time) 
and problems 6-10 and 13-14 having not. In these 
instances, the number of customers varies from 50 to 
199. 

3.1 Parameters 

Results presented in this section have been achieved 
by setting the parameters of the method (called SPR 
in the sequel) as follow. Parameters were defining 
using a short time tuning empirical process. 
 n୍୲ୣ୰ ൌ ݊/5 
 n୪ୟୠୣ୪ୱ ൌ 25 
 n୫ୟ୶ ൌ 100	
 nୋ୘ ൌ 5		
 n୔ୖ ൌ 			2/݊݋݅ݐ݈ܽݑ݌݋݌	݈ܽ	݁݀	݈݈݁݅ܽݐ
 n୪ୱ ൌ 2 ∗ ݊	
 probୱ୮୪୧୲ ൌ 	

ଷ଴

௡
		

3.2 Comparative Study 

To provide a fair comparative study, the computational 
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time of each method has been scaled by the 
performance factor presented in Table 2. This 
coefficient takes into account the MIPS performance 
of each processor. A special attention must be 
directed on the RISC 6000 computer which used 8 
processors and author take advantages of the 8 
processors. Since the 1.1 Ghz proc. is ranked about 
125 MFlops, the whole computer provides a global 
performances about 1Gflops (Table 1). 

Table 1: Relative performances of computers. 

 
(Jozefowiez et 

al.,2009) 
Our proposal

(SPR) 
Approach of 
resolution 

bi‐objective  bi‐objective 

Computer 
RISC 6000 
1.1 Ghs 

8 processors 

Intel Xeon 
2.40 Ghz 

OS  Unix
Language  C  C
MFlops  1000 Mflops  4850 MFlops

Speed factor  0.2  1

3.3 Analysis of Solutions 

The numerical experiments encompasses the 14 
well-known instances but the comparative study 
with (Jozefowiez et al., 2009) is limited to instance 
1-5 and 11-12 since their method (MOEA) is only 
dedicated to this subset of instances, without vehicle 
range.  

3.3.1 Best Solution Cost 

Table 2 exposes the results on the cost criteria. 
Column ݊ indicates the number of customers in the 
related instance. BKS provides the best-known 
solution cost.  

Columns 3 (9) and 4 (10) indicate the best solution 
cost obtained during the 5 runs of MOEA (SPR) and 
the corresponding gap to BKS. Column 5 (11) gives 
the balance associated to the solution cost. തܶ is the 
CPU time reported in (Jozefowiez et al., 2009) in 
seconds. തܶ  Norm is the scaled time in seconds 
according to Table 2. These times are the average 
ones over the 5 replications and are representative of 
the time efficiency of the method. Boldface 
solutions represent dominance over the other 
method. 

For the first set of instances (1-5 and 11-12), 
MOEA provides a gap of less than 1% for an 
average computational time of 500 seconds and SPR 
provides a gap of 2.24% with a computation time 
350 seconds. It is possible to state that SPR 
competes with the MOEA in terms of computational 
time but provides a deviation greater than 2%. 
However, this result is mainly due to instance 11 for 
which SPR achieves very poor solution cost with a 
gap around 10% from BKS. A comparison removing 
this instance would lead to gaps equal to 1.12 and 
0.96 for MOEA and SPR respectively, giving the 
advantage to SPR. In fact, MOEA seems more stable 
but it does not tackle instances with limitation on the 
service provided by vehicles (problems 6-10 and 13-
14). SPR does and provides a good global 
performance with a gap of 1.92% to BKS and by 
retrieving 7 best known solutions. To conclude for 
the solution cost, it is possible to state that SPR as a 
range of application greater than MOEA. Although a 
fair comparative study is difficult to manage, one 
can note SPR and MOEA have similar computation 
time   and   MOEA   is   quite  better  for  a subset of  

Table 2: Results for the extreme solutions on the cost criteria. 

MOEA (Jozefowiez et al. 2009) SPR (our proposal) 
Instance n BKS Cost Gap(cost) Balance ࢀഥ ࢀഥ Norm Cost Gap(cost) Balance ࢀഥ Norm 

1 50 524.61 524.6 0.00 20.07 613.20 122.64 524.6 0.00 20.07 30.40 
2 75 835.26 835.3 0.01 78.1 1522.80 304.56 843.7 1.01 93.08 142.40 
3 100 826.14 827.4 0.15 67.55 2113.20 422.64 827.4 0.15 67.55 219.20 
4 150 1028.14 1047.35 1.84 74.78 3936.00 787.20 1038.8 1.01 94.92 496.80 
5 199 1291.45 1352.46 4.72 76.6 4968.00 993.60 1337.6 3.57 90.04 902.80 
6 50 555.43 - - - - - 555.4 0.00 116.78 62.60 
7 75 909.68 - - - - - 909.7 0.00 32.75 152.20 
8 100 865.94 - - - - - 865.9 0.00 48.57 245.60 
9 150 1162.55 - - - - - 1175.4 1.11 29.02 565.40 
10 199 1395.85 - - - - - 1434.7 2.78 36.45 1363.40 
11 120 1042.11 1042.11 0.00 146.67 2418.00 483.60 1145.7 9.94 135.89 419.00 
12 100 819.56 819.6 0.00 93.43 2125.80 425.16 819.6 0.00 93.43 235.80 
13 120 1541.14 - - - - - 1655.0 7.39 49.18 629.80 
14 100 866.37 - - - - - 866.4 0.00 532.56 353.00 

Avg. scale time (s) (instance 
1-5 +  11-12)     

505.63 
   

349.49 

Gap % 
(instance 1-5 +  11-12) 

 0.96     2.24   

Avg. scale time (s) (instance 
1-14) 

        342.69 

Gap % 
(instance 1-14) 

      1.92   
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instances. A second part of the analysis can focus on 
the best solutions in terms of balance. 

3.3.2 Best Solution Balance 

In this section, the other extreme of the Pareto front 
is analyzed, i.e. the best solutions according to the 
balance criteria. In Table 3, the two first columns are 
related to the instance. Cost and Balance represents 
respectively the cost and the balance of the best 
solution on the balance criteria found over the five 
replications for both MOAE and SPR. Cost' and 
Balance' are respectively the cost and the balance of 
the solution found by SPR over the five replications 
that have the closest (but smaller) balance to the 
solution reported with MOEA. Boldface solutions 
represent dominance over the other method. 

Firstly, let us note that on a great majority of 
instances, the right end solution of the front has a 
lower balance with SPR than with MOEA. For 
example, with the instance 1, the right hand solution 
has a balance of 0.03 with SPR and 0.24 with 
MOEA. This remark holds for all the instances. This 
remark pushes us into accepting than the Pareto 
front is well spread in the balance with SPR.  

Table 3: Results for the right hand solutions on the balance 
criteria. 

MOEA SPR 
n Cost Balance Cost Balance Cost' Balance'

1 50 618.22 0.24 783.39 0.03 611.50 0.20
2 75 1203.98 0.59 2153.38 0.31 1194.34 0.57 
3 100 1871.06 0.29 1296.07 0.11 994.85 0.28 
4 150 1484.48 0.80 1704.33 0.18 1338.50 0.71 
5 199 1902.64 1.38 2571.97 0.30 1767.56 1.25 
6 50   690.89 1.40 
7 75   1141.87 3.58 
8 100   1052.83 1.71 
9 150   1662.29 4.13 
1 199   1943.96 5.32 
1 120 2388.30 0.10 1920.21 0.03 1485.09 0.10 
1 100 1429.90 1.15 1272.55 0.10 1203.57 0.85 
1 120   2502.85 0.64 
1 100   1383.91 0.17 

Avg. 1556.94 0.65 1671.70 0.15 1233.51 0.57 

Secondly, when scanning the front obtained by SPR 
to identify the closest solution balance to the best 
solution balance found with MOEA, it appears that 
the MOEA solution is always dominated. For 
example, the right hand solution for instance 1 with 
MOEA is (618.22; 0.24). The closest solution in the 
SPR front (with respect to the balance criteria) is the 
solution (615.58; 0.22) which has a lower cost. This 
analysis suggests that the Pareto front with SPR 
could compete with the MOEA front. 

 

3.3.3 Front Analysis 

Our research has been directed first on the cost 
minimization and on the balance but not especially 
on the quality of the front. This quality varies from 
replications but on a wide majority of instances and 
replications, the solutions minimizing the balance 
are better that solutions reported by (Jozefowiez et 
al., 2009). This comment must be moderated since 
(Jozefowiez et al., 2009) does not provide any 
evaluation of the obtained fronts and only solutions 
for instances 1-5 and 9-10 are graphically presented.  

The solution (524.61;20.06) at the left is the best 
known solution of the problem considering the cost 
criteria, and it is retrieved by both methods. The 
solution (618.22; 0.24) is the best solution found by 
MOEA on the balance criteria. Table 4 gives the 
details of the right part of the front with solutions 
closed to the MOEA solution. On this particular run, 
the best balance achieved by SPR is related to the 
solution (1239.62;0.05) and the closest but better 
balance that MOEA brings is the solution 
(615.58;0.22) which dominates  the MOEA solution 
(618.22;0.24). 

Table 4: Details of the front. 

 Cost Balance 

1 524.611 20.06 
2 531.643 17.09 
… … … 
20 610.04 0.32 
21 615.58 0.22 
22 666.20 0.20 
23 690.79 0.17 
24 785.00 0.16 
25 791.00 0.15 
26 935.97 0.09 
27 1239.62 0.05 

4 CONCLUDING REMARKS 

In this paper we have proposed a split based 
algorithm for a bi-objective VRP, i.e. VRP with 
route balancing in which both the total length and 
the balance of the routes have to be minimized 
(VRPRB). The proposition encompasses all the 
well-known bi-objective VRP instances including 
instances with range vehicle constraints, which have 
not been addressed by previous papers. Preliminary 
experiments show that the proposition permits to 
obtain high quality solutions for the set of 14 
instances and competes for the subset of 7 instances 
with previous published works. Our research is now 
directed to the Pareto front and to definition of an 
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approach which could be validated on several bi-
objective routing problems. 
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