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Abstract: Today’s aging population has recently become a significant problem, requiring a wearable health monitor-
ing system for the elderly who are living alone. One of the focuses of this monitoring system is human ac-
tivities recognition. We propose a wearable sensing method that is based on muscle’s crosstalk information 
that uses only one sEMG channel (a pair of electrodes) to recognize five basic finger motions (thumb flex-
ion, index flexion, middle flexion, ring & little flexion, and rest position) related to daily human activities. 
In the first step, an inter-electrode distance (IED) experiment was conducted to define the suitable IED for 
crosstalk information collection. In this experiment’s recognition part, a conventional feature extraction 
method was adopted. The accuracy of each IED was compared and a suitable IED was defined (50 mm). In 
the second step, we propose two new features, the summit foot range (SFR) and summits number (SN), to 
represent the different patterns of finger motions’ sEMG signals and adopted the minimal Redundancy 
Maximal Relevance (mRMR) feature selection method to improve the accuracy. An accuracy of over 87% 
was achieved using the improved recognition methodology compared to 81.5% when using the conventional 
one. 

1 INTRODUCTION 

The number of elderly is rapidly increasing, and 
there is an urgent need for a wearable health moni-
toring system that is both safe and comfortable for 
the elderly who are living alone. One of the focuses 
of this monitoring system is human activities recog-
nition. Most of our daily life activities require us to 
use our fingers. The motions of the five fingers of a 
human hand play a leading role in detailed static 
activities such as typing, reading, writing, and using 
a mobile phone. Therefore, if the features of the 
motions of our fingers can be accurately extracted, it 
would be possible to recognize almost all human 
activities from only this five fingers’ activity infor-
mation. In particular, as the flexion motions are 
often the start of the finger motions while the exten-
sion motions are those that return back to the normal 
state, the five fingers’ flexion motions need to be 
focused on first. 

Two kinds of sensing approaches have mainly 
been proposed in the field of finger motion recogni-
tion, vision sensor based and non-vision sensor 
based. 

There are several vision sensor based approaches. 
Lee et al., 2011, for example, have developed a 
finger motion recognition method that detects the 
finger’s angle change using a video sensor. Finger 
motions like moving, clicking, or pointing can be 
recognized by analyzing the contour of the tracked 
finger. However, because of the immobility of the 
video sensor, it is difficult to use this approach for 
outdoor recognition and other kinds of moving activ-
ities recognition. 

On the other hand, there are mainly two kinds of 
sensors for the non-vision sensor based approach. 
One is the gyroscope sensor. For example, 
Schaechter et al., 2006, have developed a device to 
detect finger motions based on a Micro Electro Me-
chanical Systems (MEMS) gyroscope sensor that is 
positioned on the fingers. However, using plenty of 
gyroscope chips and cables will decrease the flexi-
bility of the fingers and greatly affect the user’s hand 
activities. 

The surface electromyography (sEMG) sensor is 
becoming an exciting tool for use in finger motion 
recognition because it can efficiently and accurately 
collect the signal from a finger’s detailed motion. 
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However, previous researches could only achieve an 
acceptable level of accuracy for finger motion 
recognition using multiple sEMG channels (Ishika-
wa et al., 2010; Tenore et al., 2009; Nagata et al., 
2007). The excessive use of channels not only makes 
the subjects uncomfortable but also takes lots of 
time for the electrodes’ placement. They used more 
than one sEMG channel (a pair of electrodes) be-
cause the accuracy when using only one sEMG 
channel was not acceptable. For example, Nagata et 
al., 2007, have developed a finger motion recogni-
tion system that is based on 96 pairs of electrodes, 
which can recognize 18 kinds of finger motions and 
achieve an average accuracy of 95%. However, 
when the number of electrodes was reduced to one 
pair, the accuracy dropped to 33%. Therefore, how 
to increase the portability without affecting the accu-
racy has become a significant research topic. 

According to the above statement, we propose a 
new finger motion recognition methodology using 
one sEMG channel that is wearable and convenient. 

This paper is organized as follows. The benefit 
of using a muscle’s crosstalk information, which is 
the basis of our sensing method, is described in 
Section 2. The signal acquisition protocol is de-
scribed in Section 3. The recognition methodology 
adopted in the inter-electrode distance (IED) exper-
iment is illustrated in Section 4. In Section 5, the 
IED experiment is described and a suitable IED is 
defined based on the recognition results. In Section 
6, the improved recognition methodology is intro-
duced. The recognition results of the improved 
recognition methodology are discussed in Section 7. 
Finally, the conclusion and future works are present-
ed in Section 8. 

2 MUSCLE’S CROSSTALK 

A pair of electrodes is usually placed close to each 
other, aiming to collect one specific muscle’s sEMG 
signal without much crosstalk from the other mus-
cles. If the IED (inter-electrode distance) becomes 
larger, other muscles’ crosstalk information will be 
recorded. However, it was previously found that the 
crosstalk can produce unique sEMG signals’ pat-
terns that are useful for classification. In addition, a 
large IED can make the negative effect of elec-
trodes’ displacement smaller by detecting a signal 
that contains multiple muscles’ activity information 
(Hudgins et al., 1993). 

In our case, as we only use one sEMG channel to 
collect the finger motions’ signals, we need to record 
the signals of multiple muscles together. So, we 

enlarged the IED, and thus, the crosstalk information 
of the muscles can be recorded. 

3 SIGNAL ACQUISITION 
PROTOCOL 

Eight intact-limbed subjects (3 females and 5 males, 
21-46 years old) with no injury history or nerve 
problems on their right forearms participated in our 
research. 

After their right forearms were wiped with first 
an alcohol tissue and then a dry tissue, a pair of 
Ag/AgCl adhesive electrodes was attached in the 
area around the flexor pollicis longus muscle, the 
flexor digitorum superficialis muscle, and the flexor 
digitorum profundus muscle, which mainly are asso-
ciated with the fingers’ flexion motions, as shown in 
Table 1 (Moore et al., 2010). The center of the two 
electrodes is on the midline of the forearm’s palmer 
surface, and 0.75 of the distance from the wrist to 
the olecranon. This placement ensures that we can 
collect clear and stable signals from all three mus-
cles, which can be easily segmented. 

Table 1: Forearm muscles and their corresponding fingers’ 
flexion motions. 

Muscle Finger motions 

Flexor pollicis longus Flexion of thumb 

Flexor digitorum superfi-
cialis 

Flexion of index, middle, 
ring, and little finger 

(proximal interphalangeal 
joints) 

Flexor digitorum profun-
dus 

Flexion of index, middle, 
ring, and little finger (dis-
tal interphalangeal joints) 

The sEMG signal is collected by sEMG active 
dipole (emgPLUX) sensor, which is connected to a 
wearable signal acquisition device (BioPLUX1 re-
search unit) sampling at 1 kHz with a resolution of 
12 bits. This device can send the signal (in real-time) 
via Bluetooth to the computer. The sEMG signal is 
visually inspected on the computer to ensure that it 
is stable (MonitorPlux v2.0, PLUX - Engenharia de 
Biosensores, Lda.). 

The five basic finger motions related to daily ac-
tivities performed by the eight subjects are: thumb 
flexion, index flexion, middle flexion, ring & little 
flexion, and rest position. As we seldom flex our 
ring or little finger separately in daily life, the com-
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bination of the ring and little fingers’ flexion was 
performed. 

The subjects were asked to perform their finger 
motions at a relatively fast speed like they usually 
would in daily life activities. In order to cut only the 
flexion motion’s signal out in the signal segmenta-
tion step, the final position of each flexion motion 
was held for a period of approximately 1 s, resulting 
in some muscles’ contraction signals. As to avoid 
the effect of muscle fatigue, each motion was re-
peated 10 times, and the subjects had to relax for 
approximately 1 min before the next motion started. 
A total of 400 finger-motion data were collected. 

4 CONVENTIONAL 
RECOGNITION 
METHODOLOGY 

In this section, we illustrate a conventional recogni-
tion methodology adopted in the IED experiment, as 
shown in Figure 1. 

 

Figure 1: Conventional recognition methodology of IED 
experiment. 

4.1 Signal Segmentation Method 

In order to cut only the flexion motion’s signal out, 
we manually segmented each motion. As shown in 
Figure 2, we set the signal length at 400 ms, which 
ensured that we cut the flexion motion’s entire sig-
nal out. It is worth noting that the signal segmented 
also contained some muscles’ contraction signals as 
the subjects performed their flexion motions at dif-
ferent speeds. However, since the flexion motion’s 
signal is much larger than the contraction’s signal, 
the extracted features mainly belong to the flexion

 motion. 

4.2 Conventional Feature Extraction 
Method 

 

Figure 2: Example of sEMG signals’ segmentation pro-
cess. Each window size in the figure at the top is 400 ms. 
The signal segmented in the bottom figure shows that it 
also contains the muscles’ contraction signal. 

It has previously been demonstrated that Time Do-
main (TD)-Autoregressive (AR) features are useful 
and efficient when extracting the features of finger 
motions’ sEMG signals (Al-Timemy et al., 2013; 
Hargrove et al., 2007; Hudgins et al., 1993). Har-
grove et al., 2007, showed that the TD-AR features 
could achieve higher performance than that of other 
feature extraction methods such as Fourier transform 
and wavelet transform for the detection of hand 
motions with sEMG signals. 

The TD-AR features we adopted were the AR 
model coefficients (order 6), root mean square 
(RMS), mean absolute value (MAV), waveform 
length (WL), zero crossings (ZC), and slope sign 
changes (SSC). It is worth noting that the dead-zone 
of the zero crossings and the slope sign changes was 
set to 12 mV because the noise became a little larger 
after we enlarged the IED. 

We adopted the overlapping window method to 
extract each feature. The window size was 200 ms 
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and the interval of the adjacent window was 40 ms. 
The average value of each feature for all the win-
dows was calculated, resulting in 11 features for 
each sample. Each time domain feature was linearly 
normalized to [0,1] before inputting the classifier.  

4.3 Classification and Validation 
Method 

The probabilistic neural network (PNN) was select-
ed as the classifier (Specht et al., 1990). PNN is a 
kind of artificial neural network, which has an excel-
lent performance reputation for complex biological 
signals like sEMG signals.  

As for the validation, we adopted the leave-one-
out-cross-validation (LOOCV) since we have a 
relatively small database (400 samples)(Cawley, 
2006). In our case, LOOCV involves using a single 
observation from the original samples as the valida-
tion data, and the remaining observations as the 
training data. The validation was repeated 400 times 
and the average accuracy was calculated. 

5 INTER-ELECTRODE 
DISTANCE EXPERIMENT 

In this section, we compare the recognition accuracy 
of different IEDs using the conventional recognition 
methodology to define a suitable IED. 

5.1 Inter-electrode Distance Selection 

 

Figure 3: Placement of pair of electrodes on forearm for 
IED experiment. The center of the two electrodes is on the 
midline of the forearm’s palmer surface, and at 0.75 of the 
distance from the wrist to the olecranon. The IED increas-
es from 30 to 80 mm at an interval of 10 mm. 

We selected IEDs of 30, 40, 50, 60, 70, and 80 
mm as shown in Figure 3. These IEDs correspond to 

the amount of crosstalk information collected rang-
ing from only a few to large amount. In addition, 30 
mm means that the two electrodes were placed very 
near to each other, which is the conventional place-
ment method. 

We separately collected each finger motion’s 
sEMG signals from six different IEDs. 

5.2 Recognition Results 

The accuracy of the six different IEDs using the 
conventional recognition methodology are shown in 
Figure 4.  

 

Figure 4: Recognition results from six different IEDs. 

5.3 Discussion and Conclusion 

As shown in Figure 4, the accuracy at 30 mm was 
81.5%, which is not very satisfying. However, when 
we enlarged the IED to 50 mm, the accuracy in-
creased to the highest level of 86%. So, we defined 
50 mm as the suitable IED for collecting a wide 
range of crosstalk information without too much 
noise, while still maintaining the unique pattern of 
each motion’s signal. If the IED is smaller than 50 
mm, the crosstalk information of multiple muscles 
cannot be fully recorded. And if the IED is larger 
than 50 mm, the recorded crosstalk information is 
too universal for creating unique signal patterns. In 
addition to the crosstalk information, the enlarged 
IED is insensitive to the variations in anatomy of the 
subjects, which often causes individual differences. 

6 IMPROVED RECOGNITION 
METHODOLOGY 

As the effectiveness of the features and the over-
training of the classifier may significantly affect the 
accuracy, apart from defining the suitable IED (50 
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mm), we also started to think about proposing some 
new features and adopting a feature selection meth-
od to improve the level of accuracy. 

Our improved recognition methodology with the 
50-mm IED mainly contains two new features for 
the features extraction and a feature selection meth-
od adopted to decide the optimal feature set. 
In this section, we introduce the methodology that is 
shown in Figure 5. 

 

Figure 5: Improved recognition methodology. 

6.1 Newly Proposed Features 

In this sub-section, we propose two new features to 
represent the different patterns of finger motions’ 
sEMG signals. 

6.1.1 Summit Foot Range (SFR) 

We inspected the different motions’ sEMG signals, 
and found that the foot ranges of the summits are 
different for different motions, as shown in Figures 6 
and 7. The foot ranges can be interpreted as the 
frequency information of the summits. Therefore, a 
feature called the summit foot range is proposed to 
represent the frequency information of these sum-
mits. 

The SFR in an overlapping window is defined as 
the following formula:  

SFR = ∑  (Foot2 – Foot1) / N, (1)

where Foot2 and Foot1 are the two feet of each 
summit, and N represents the number of summits 
found in an overlapping window. 

 

Figure 6: Example of different patterns of finger flexion 
motions’ sEMG signals. Ri&Li represents the ring & little 
flexion motion. 

 

Figure 7: Example of summits and two feet of one summit 
(Foot1 and Foot2), which is 50– 250 ms of middle flexion 
motion’s signal in Figure 6. 

A MATLAB function called findpeaks2 is adopt-
ed to find the summits. 

We defined several parameters in this function 
so that the patterns of different motions’ sEMG 
signals can be clearly extracted. 
 MINPEAKHEIGHT: In order to avoid extracting 

noise’s features, the minimum height of a sum-
mit should be set. The rest position’s signal can 
indicate that the amplitude of noise is 12 mV. So, 
the MINPEAKHEIGHT was set to 12 mV. 

 MINPEAKDISTANCE: The minimum distance 
between summits was set to 3 ms to avoid mis-
detecting small peaks that occur in the neighbor-
hood of a summit. 
We adopted the zero crossing method to find the 

feet that are near 0 mV when the foot’s amplitude is 
not exactly 0 mV (Hudgins et al., 1993). 

6.1.2 Summits Number (SN) 

The average number of summits found in all the 
overlapping windows was also introduced as a fea- 
ture  to  strengthen  the  SFR  by  complementing the 
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Figure 8: Example of the rest position’s signal, which 
indicates the amplitude of noise. The red and dashed lines 
show the MINPEAKHEIGHT of 12 mV. 

frequency information of the summits. This feature 
is called the summits number. 

6.2 Feature Set Optimization by 
mRMR 

The minimal Redundancy Maximal Relevance 
(mRMR) feature selection method can increase the 
recognition accuracy by ranking the importance of 
the features in regards to both their relevance and 
information content (Peng et al., 2005). 

We ranked all 13 features by adopting the 
mRMR, and compared the accuracy by increasing 
the number of input features from a ranking of 1 to 
13, as listed in Table 2. 

7 DISCUSSION 

As listed in Table 2, the accuracy was the highest 
when eliminating AR4, which is ranked as the low-
est feature when using the mRMR. So, the optimal 
feature set is: SN, AR1, RMS, SFR, WL, AR2, ZC, 
MAV, AR6, SSC, AR3, and AR5. The highest accu-
racy we have found thus far is 87.3%, compared to 
81.5% for the conventional methodology with the 
conventional placement method of IED of 30 mm. 

In addition, when we used our improved meth-
odology to recognize the motions’ signals collected 
when the IED is 30 mm, the accuracy decreased a 
little, as listed in Table 3. This may be because our 
newly proposed features are not very suitable for 
sEMG signals collected when the IED is 30 mm. 

The detailed improvement of each finger mo-
tions’ accuracy is proven by the confusion matrixes 
noted in Tables 4 and 5. We determined from the 
confusion   matrixes   that  our improved recognition

 

Table 2: Features’ ranking using mRMR. 

Ranking Feature Cumulative accuracy 
1 SN 57.8% 
2 AR1 71% 
3 RMS 75.8% 
4 SFR 76% 
5 WL 78.3% 
6 AR2 84% 
7 ZC 84.8% 
8 MAV 84.8% 
9 AR6 84.8% 
10 SSC 87% 
11 AR3 86.8% 
12 AR5 87.3% 
13 AR4 86.8% 

Table 3: Comparison of recognition results of convention-
al and improved methodology with IED of 30 and 50 mm. 

IED 
(mm)

Conventional methodology Improved methodology

30 81.5% 81.3% 
50 86% 87.3% 

methodology contributed to a universal increase in 
almost all the motions’ accuracy. In particular, an 
increase of 17.5% was achieved for the flexion of 
the middle finger. This shows that our improved 
recognition methodology can generally improve the 
accuracy of almost all the motions, indicating that 
other motions besides the five basic motions can be 
accurately recognized as well. 

Table 4: Finger motion recognition confusion matrix of 
conventional recognition methodology (IED = 30 mm). 

Motion Accuracy (%) 
Thumb Index Middle Ri&Li Rest 

Thumb 71.3 10 1.2 17.5 0 
Index 8.8 90 0 1.2 0 

Middle 3.7 0 75 21.3 0 
Ri&Li 7.5 3.7 17.5 71.3 0 
Rest 0 0 0 0 100 

The confusion matrix in Table 5 helped us de-
termine that the recognition error mainly comes 
from the adjacent fingers. There are basically two 
explanations for this phenomenon. One is that the 
subjects often could not flex a single finger without 
moving the adjacent fingers, causing other finger 
motions’ sEMG signals to be collected. The other 
explanation is that the crosstalk information of the 
adjacent muscles may still be a little universal for 
creating the different patterns of the finger motions’ 
sEMG signals. 

 

 

 

 

 

0.20.1
-15

-5

10

0

-10

t (s)

sE
M

G
 (

m
V

)

0.40.3

5

15

Finger�Motion�Detection�for�Human�Activities�Recognition�using�Single�sEMG�Channel

65



Table 5: Finger motion recognition confusion matrix of 
improved recognition methodology (IED = 50 mm). 

Motion Accuracy (%) 
Thumb Index Middle Ri&Li Rest 

Thumb 81.3 13.8 1.2 3.7 0 
Index 5 91.3 0 2.5 1.2 

Middle 0 0 92.5 7.5 0 
Ri&Li 6.2 2.5 20 71.3 0 
Rest 0 0 0 0 100

The two new features (SFR and SN) and the 
mRMR together contributed to a 1.3% increase in 
accuracy (87.3% compared to 86%), which is a 
relatively small improvement. However, as noted in 
Table 2, the mRMR ranks the SN and SFR in 1st 
and 4th place, respectively, showing they are very 
effective features of the sEMG signals for finger 
motion recognition. Since we did not normalize the 
amplitude of the signals, SFR and SN can have a 
robust performance regarding the individual differ-
ences because they are not related to the amplitude 
information. 

However, although the recognition results by 
adopting the mRMR show that only AR4 should be 
eliminated, it also indicates that if we do not need to 
have the highest level of accuracy, a more compact 
feature set can be selected (SN, AR1, RMS, SFR, 
WL, and AR2), resulting in an accuracy of 84%. 
This result shows us that by adopting the mRMR, 
we can determine a relatively suitable feature set 
that can significantly reduce the computing time 
with only a slight decrease in accuracy. 

8 CONCLUSIONS 

We proposed a wearable sensing method based on 
the muscle’s crosstalk information that uses only one 
sEMG channel to recognize five basic finger mo-
tions (thumb flexion, index flexion, middle flexion, 
ring & little flexion, and rest position) related to 
daily human activities. A suitable inter-electrode 
distance was defined (50 mm) from the inter-
electrode distance experiment to improve the accu-
racy. In addition, two new features were proposed 
and a feature selection method was adopted, result-
ing in an accuracy of 87.3% compared to 81.5% 
when using the conventional methodology with an 
IED of 30 mm. Our results show that the improved 
recognition methodology is not only effective for 
detecting finger motions, but also is insensitive to 
individual differences. 

The recognition methodology still needs im-
provement. The effectiveness of our methodology in 

recognizing other motions besides the five basic 
motions should also be reexamined. As for its appli-
cation, we need to adopt the wearable sensing meth-
od and the improved recognition methodology for 
recognizing daily human activities like typing, read-
ing, writing, and using a mobile phone. 
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