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Abstract: The problem of classifying a scalar Gaussian random field observation into one of two populations specified 
by a different parametric drifts and common covariance model is considered. The unknown drift and scale 
parameters are estimated using given a spatial training sample. This paper concerns classification 
procedures associated to a parametric plug-in Bayes Rule obtained by substituting the unknown parameters 
in the Bayes rule by their estimators. The Bayesian estimators are used for the particular prior distributions 
of the unknown parameters. A closed-form expression is derived for the actual risk associated to the 
aforementioned classification rule. An estimator of the expected risk based on the derived actual risk is used 
as a performance measure for the classifier incurred by the plug-in Bayes rule. A stationary Gaussian 
random field with an exponential covariance function sampled on a regular 2-dimensional lattice is used for 
the simulation experiment. A critical performance comparison between the plug-in Bayes Rule defined 
above and a one based on ML estimators is performed. 

1 INTRODUCTION 

It is known that for completely specified populations 
and loss function, Bayes Rule (BR) is an optimal 
classification procedure in the sense of minimum 
risk (expected losses) (Anderson, 2003). When this 
is not the case, the missing information is usually 
provided by a training sample. For parametrically 
specified populations, the training sample is used to 
obtain the estimators of statistical parameters and 
plugging them into the BR. The resulting 
classification rule is usually called a plug-in Bayes 
rule (PBR). Actual risk (ACR) or conditional risk is 
usually used as a performance measure for the PBR. 
Performance comparison of the PBR based on the 
different types of estimators can easily be done by 
the closed-form expression of the ACR. 

Many authors have investigated the performance 
of the PBR when the parameters are estimated from 
training samples consisting of dependent 
observations by using the frequentist approach for 
the estimation (Kharin, 1996; Saltyte-Benth and 
Ducinskas, 2005; Batsidis and Zografos, 2011). A 
closed-form expression for the ACR in supervised 
classification of Gaussian random field observations 
is derived by Ducinskas (2009). Only the ML 

estimators of the drift parameters and the scale 
parameter of covariance function are considered. 

In the present paper we use Bayesian estimators 
instead of the ML estimators for the classification 
problem described above. Proposed methodology is 
useful for classification of images corrupted by the 
Gaussian spatial correlated noise (Ducinskas, 
Stabingiene and Stabingis, 2011). 

The closed-form expression for the ACR 
associated with the PBR is derived. The estimator of 
expected risk is based on the derived actual risk and 
is used as the performance of the PBR which is 
measured by the average of the ACR usually called 
an empirical estimator of expected risk. 

This estimator of expected risk is a case of the 
stationary Gaussian random field on 2-dimentional 
regular lattice with an exponential covariance 
function. The dependence of the ACR values on the 
statistical hyperparameters is investigated. 
Numerical comparison for the case of ML estimators 
is implemented. 
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2 THE MAIN CONCEPTS AND 
DEFINITIONS 

This paper concerns classifying a Gaussian random 
field (GRF)   :

p
s s D RZ   observations into one 

of two populations denoted by 
1 2
, .   

The model of an observation  Z s  in a 

population j  is 

     jZ s s s    (1)

where  j s , is a drift (a deterministic function of 

locations) and  s  is the stochastic error term, 

j=1,2.  
Suppose the drift  j s  can be represented as 

 j js x  ,where x is a 1q  vector of non-

random regressors and jβ  is a 1q  vector of the 

parameters, 1, 2j  . 

The error term is generated by a zero mean 

stationary GRF   :s s D   with the covariance 

function defined by the model for all ,s u D  

      2cov ,s u C s u    , (2)

where 2  is the variance or the scale parameter and 

 C   is the spatial correlation function. 

In the case when the covariance function 
parameters are known, the model (1), (2) is called a 
universal kriging model (Cressie, 1993). 

For the given training sample, consider the 
classification problem of the 0 0( )Z Z s  into one of 

two populations when    0 1 0 2 0, .x s x s s D     

Denote by  ; 1,...,n iS s D i n    the set of 

locations where the training sample 

1' ( ( ),..., ( ))nT Z s Z s  is taken. It specifies the spatial 

sampling design or the spatial framework for the 
training sample (Shekhar et al., 2002). 

We shall assume the deterministic spatial 
sampling design and all analyses are carried out 
conditional on nS . 

Assume that each training sample realization T=t 
and nS  are arranged in the following way. The first 

1n  components are the observations of  Z s  from 

1  and the remaining 2 1n n n   components are 

the observations of  Z s  from 2 . So nS  is 

partitioned into a union of two disjoint subsets, i. e. 

(1) (2)
nS S S  , where ( )jS  is a subset of nS  that 

contains jn  locations of the feature observations 

from j , 1, 2j  . So each partition 

 (1) (2)( ) ,nS S S   with marked labels determines 

the training labels configuration (TLC). 
For TLC ( )nS , define the variable 

(1) (2)d D D  , where ( )jD  is a sum of distances 

between the location 0s  and the locations in ( )jS , 

1, 2j  . 

The 2n q  design matrix of the training sample 

T denoted by X is specified by 1 2X X X  , where 

the symbol   denotes a direct sum of the matrices 
and jX  is a jn q  matrix of the regressors for the 

observations from j , 1, 2j  . 

As it follows, we assume that nS  and TLC 

 nS  are fixed. This is the case, when spatial 

classified training data are collected at the fixed 
locations (stations). 

So the model of the training sample is 
T X E  , (3)

where  1 2,      is a 2 1q  vector of the 

regression parameters and E is the n - vector of the 
random errors that has a multivariate Gaussian 

distribution  20,n nN C . 

Here nC  denotes a spatial correlation matrix 

among the observations forming the training sample 
T . 

Denote by 0c  the vector of correlations among 

0Z  and the components of T. Let t denote the 

realization of T . 
Since 0Z  follows the model specified in (1), the 

conditional distribution of 0Z  given , jT t  , 

1, 2j   is Gaussian with the mean 

   0
0 0 0;lt j jE Z T t x t X           (4)

and the variance 

 2 2
0 0var ;t jZ T t      , (5)

where 0 0( )x x s  , 1
0 0 nc C   , 1

0 0 0(1 )nc C c   . 

Under the assumption of complete parametric 
certainty of populations and for known finite non-

negative losses   , , , 1, 2L i j i j  , BR minimizing 

the risk of classification is associated with the spatial 
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discriminant function (SDF) formed by a log ratio of 
conditional likelihoods (McLachlan, 2004). 

   

 

0 0
0 0 1 2

0 0 2
1 2

1
,

2

,

t t t

t t t

W Z Z  

   

      
 

  
 (6)

where  * *
1 2ln    and  2, 


  . 

Here     * ,3 ,j j L j j L j j    , 1, 2j  , 

where  1 2 1 2, 1      are prior probabilities of 

the populations 1  and 2 , respectively. 

Note, that in the present paper we implemented 
the following values of the prior probabilities 
ˆ / , 1, 2.j jn n j    

So the classification procedure based on the SDF 
allocates the observation in the following way: 

Classify the observation 0Z  given T t  to  the 

population 1  if  0 , 0tW Z   , and to the 

population 2 , otherwise. 

Definition 1. The risk for the classification rule 
based on the SDF  0;tW Z   is defined as 

 
2 2

0
1 1

,i ij
i j

R L i j P
 

  , (7)

where, for , 1, 2i j  ,     01 ; 0
j

ij it tP P W Z    . 

Here, for 1, 2i  , the probability measure itP  is 

based on the conditional distribution of 0Z  given 

T t , i  specified in (4), (5). 

Note that under the condition (3), the squared 

Mahalanobis distance between 
1

  and 
2

  in the 

location 
0

s  based on marginal distributions of 0Z  

and the same squared Mahalanobis distance given 

T t  are specified by  22 0 0 2
1 2 / )      and 

 22 0 0 2
0 1 2 /t t t     , respectively. 

From (4), (5) it follows that 2 2
0 0/    . In the 

population j , the conditional distribution of 

 0;tW Z   given T t  is the normal distribution 

with the mean    1 2
0 0; ( 1) / 2j

j tE W Z       

and the variance    2
0 0; , 1,2.j tVar W Z j     

By using the properties of normal distributions 
we obtain 

   2
*

0 0 0
1

2 1 ( , ) ,
j

j j
j

R L j j  


        

where     is the standard normal distribution 

function. 
In practical applications not all statistical 

parameters of populations are known. In such cases 
the estimators of the unknown parameters can be 
found from the training sample. When the estimators 
of the unknown parameters are plugged into the 
SDF, the plug-in SDF (PSDF) is obtained. In this 
paper we assume that the true values of the 
parameters   and 2  are unknown (complete 

parametric uncertainty). 

Let 2ˆ ˆ,   be the estimators of the  

corresponding parameters from the training sample. 

Put  2ˆˆ ˆ, . 


   After replacing the parameters 

with their estimates in (6) the PSDF gets the 
following form 

   
 

0 0 0 0

2
0 0

1ˆ ˆˆ;
2

ˆ ˆ( )

tW Z Z t X x H

x G

  

   

        
 

 

 (8)

with  ,q qH I I  and  ,q qG I I  , where qI  

denotes the identity matrix of the order q. 
Definition 2. The expectation of the ACR with 

respect to the distribution of T is called the expected 
risk (ER). 

Recall that the actual risk incurred by the PSDF 

is obtained by replacing   by the ML estimator ̂  
in (6) (Ducinskas and Dreiziene, 2011). 

Lemma 1. The actual risk for  0
ˆ;tW Z   

specified in (8) is 

      
2

*

1

ˆˆ ,A j j j
j

R Q L j j 


    , (9)

where 

    2
0 0 0 0 0

ˆˆ ˆ ˆˆ1 ( )sgn( ) / /
j

j jQ a b x G x G           

and 0 0 ( )j ja x t X      , 

0 0
ˆ ˆ ˆ( 2)b t X x H       for 1, 2j  . 

The proof of the lemma is presented in the 
appendix. 

The ACR is useful in providing a guide to the 
performance of the plug-in classification rule when 
it actually formed from the training sample. The ER 
is the performance measure to the PBDF similar as 
the mean squared prediction error (MSPE) is the 
performance measure to the plug-in kriging 
predictor (Diggle, Ribeiro and Christensen, 2002). 
The estimators of the MSPE are used for the spatial 
sampling design criterion for the prediction 
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(Zimmerman, 2006; Zhu and Zhang, 2006). These 
facts strengthen the motivation for the deriving of 
the estimators of the ER associated with the PSDF. 

In this paper we propose an empirical estimator 
of the ER incurred by the rule based on the proposed 
PSDF. The following steps are performed to 
construct this estimator: 
1. Simulate M training sample T realizations 

according to the model specified in (3). 

2. For each simulated realization of 
l

T t , 

1,l M  compute the appropriate estimates  
ˆ

l
  

and  
2ˆ
l

 , respectively. Set       2ˆˆ ˆ,
l l l

     

3. By using (9) compute the empirical estimator of 
the ER 

  
1

( ) ˆˆ
M

l

l

AR R M



  , (10)

where  - denotes the abbreviation of the estimator 
type, i.e. takes the values BA or ML. 

3 THE ESTIMATORS OF 
PARAMETERS 

It is known, that the ML estimators of   and 2  

based on T are   11 1ˆ
ML X R X X R T

   , 

   2 1ˆ ˆˆML ML MLT X R T X n     . 

Using the properties of the multivariate Gaussian 

distribution is easy to prove that  2
ˆ ~ ,ML qN    , 

  12 1X R X 
    2 2 2

2ˆ ~ 2ML n q n q     . 

The ML estimator of   and the bias adjusted 

ML estimator of 2  are used in the PLDF, i.e. 
ˆ ˆ

ML  ,  2 2ˆ ˆ 2MLn n q   (Ducinskas, 2009). 

In the Bayesian approach the likelihood is given 

by  2 2, ~ ,nT N R    . The conjugate prior are 

chosen for the parameters so 

     2 2 2,p p p     , where 

      0 02 2
2~ ,qp N      is the Gaussian prior 

for   conditional on 2 ,       0 02 ~ ,p IG u v  – 

the prior density for 2 , where    0 0, 0u v  . 
So the conjugate prior is the Normal–Inverse 
Gamma (NIG) and denotes as 

        0 0 0 0, , ,NIG u v  . Combining the prior with 

the likelihood gives a joint Normal–Inverse Gamma 
posterior (Diggle, Ribeiro and Christensen, 2002): 

     
 

        
2 2

1 1 1 12
, ,

, , , ,
p p T

p T NIG u v
p T

   
    

where 

           11 1
1 0 0 01 1T TX R X X R T 

 
     

,       11
1 01TX R X


    ,    1 0

2

n
u u  , 

                   1 1
1 0 0 0 0 1 1 111

.
2

v v T R T   
 

        
   

The marginal posterior for   on integrating out 
2  is a multivariate Student distribution 

    1~ ,pp T t   , where  12p u , 

      1 1 1v u   . 

The marginal posterior for 2  is 

      1 12 ~ ,p T IG u v , where  ,IG   . 

So the BA of   and 2  are  1ˆ
BA  , 

    1 12ˆ 1BA v u   , respectively. 

4 EXAMPLE AND DISCUSSIONS 

A numerical example is considered to investigate the 
influence of the parameter estimation methods to the 
proposed empirical estimator of the ER in the finite 
(even small) training sample case. With an 
insignificant loss of generality a case with 

 , 1 , , 1,2ijL i j i j    is considered. 

In this example, the observations are assumed to 
arise from the stationary Gaussian random field with 
the constant mean and the exponential correlation 

function specified by    expc h h    is 

considered. Here   denotes the range parameter. 

Assume that D is a regular 2-dimentional lattice with 
unit spacing. Consider the case of 0 (1, 1)s   and the 

fixed set of training locations 8S  containing 8 

second-order neighbours of 0s . This example also 

illustrates the comparison of two different TLC.  

Consider two TLC 1 , 
2

  for 
8

S  specified by 

    (1) (2)
1 (0, 2), (1, 2), (2,2), (2,1) , (2,0), (1,0), (0,0), (0,1) .S S   
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    (1) (2)
2 (0,2), (1, 2), (2, 2), (2,1), (2,0) , (1,0), (0,0), (0,1) .S S   

These are  illustrated in Figure 1. 

 

Figure 1: Two different TLC with 
 1

S and 
 2

S points 
marked as dots and asterisks. 

By the definition, variable d represents the 
asymmetry of the TLC with respect to the location 

0s . It is easy to obtain that 0d  and 
1

4n   for 1  

and 2 2d  with 
1

5n   for 
2
.  

So we can conclude that 1  is the symmetric TLC 

and 
2

  is the asymmetric one. Denote by ( )ˆ MLR  and 
( )ˆ BAR  the empirical estimators of the ER given in 

(10) with the implemented ML and BA parameter 
estimators, respectively. 

The values of the empirical estimators of ( )R̂   

are presented for 1  with 
1

0, 5  , and for 
2

  with 

1

5

8
   in Table 1. Two cases of the simulated 

realizations of the training sample are selected here, 

i.e. 210M   and 410M  . Analyzing the figures of 
the number of simulated realizations of the training 
sample in Table 1 we see that for all 

 0.5, 0.7, ..., 1.9  values ( ) ( )ˆˆ ML BAR R . So we 

can conclude that the BA case has an advantage 
against the ML case by the ER minimum criterion. 
The quantitative comparison of the two cases of the 
parameter estimators is also done by the values of 

the index ( ) ( )ˆ ˆML BAR R  . The values of this index 

are shown in Figure 2 for 410M   and , 1, 2.
l

l   

It is easy to see from Figure 2 that for both the 
TLC 1   and the values of this index increases 

when   increases. The same situation is for both 
TLC considered. 

5 CONCLUSIONS 

In this paper, the comparison of two approaches to 
parameter estimation is done based on the values of 
the ER incurred by the classification rule based on 
the PSDF. 

The proposed optimality criterion is based on the 
derived formula of the actual risk. 

The simulation experiment shows the advantage 
of Bayesian estimation approach against the 
frequentist (ML) approach. This advantage is greater 
for strongly separated populations (larger values of 
 ) than for the close populations. These 
conclusions are valid to the symmetric training 
labels configuration as well to the asymmetric one. 
Hence the results of this paper give us strong 
arguments to expect that Bayesian estimators of 
spatial population parameters could be effectively 
used in spatial Gaussian data classification incurred 
by plug-in Bayes rules. 

 

Table 1: Values of 
( )

1
R


for the different estimators and the TLC 

1
 and.

2
 . 

 
1
  

1
  

 ML BA ML BA ML BA ML BA 

\ M  2
10  

4
10  

2
10  

4
10  

0.5 0.352 0.335 0.365 0.349 0.359 0.340 0.328 0.315 

0.7 0.275 0.262 0.277 0.256 0.310 0.280 0.257 0.239 

0.9 0.195 0.177 0.201 0.180 0.196 0.182 0.189 0.171 

1.1 0.143 0.123 0.140 0.122 0.143 0.119 0.136 0.118 

1.3 0.094 0.083 0.098 0.083 0.097 0.085 0.097 0.081 

1.5 0.067 0.053 0.067 0.055 0.061 0.051 0.066 0.053 

1.7 0.049 0.035 0.047 0.036 0.044 0.034 0.047 0.035 

1.9 0.034 0.024 0.033 0.024 0.033 0.024 0.032 0.023 
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Figure 2: Values of  for different TLC. 
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APPENDIX 

Proof of Lemma. Recall that the actual risk (ACR) 

for PSDF  0
ˆ;tW Z   (Ducinskas and 

Dreiziene, 2011) is defined as 

   
2 2

1 1

ˆ ˆ,i ij
i j

R L i j P
 

   where for , 1, 2i j  , 

    0
ˆ1 ; 0

j

ij it tP P W Z    . 

In the population j , it is easy to derive that the 

conditional distribution of  0
ˆ;tW Z   given T t  is 

normal distribution with the mean 

     2
0 0 0

ˆ ˆˆ ˆ; /j t jE W Z a b x G       (14) and 

the variance     2
2 4

0 0 0 0
ˆˆ ˆ; /j tVar W Z x G    , 

1, 2j  . 

Then by using the properties of the normal 
distribution and we complete the proof of lemma 1. 
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