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Abstract: This paper surveys the learning algorithms of visual features representation and the computational modelling
approaches proposed with the aim of developing better artificial object recognition systems. It turns out that
most of the learning theories and schemas have been developed either in the spirit of understanding biological
facts of vision or designing machines that provide better or competitive perception power than humans. In this
study, we discuss and analyse the impact of notable statistical approaches that map the cognitive neural activity
at macro level formally, as well as those that work independently without any biological inspiration towards
the goal of developing better classifiers. With the ultimate objective of classification in hand, the dimensions
of research in computer vision and AI in general, have expanded so much so that it has become important to
understand if our goals and diagnostics of the visual input learning are correct or not. We first highlight the
mainstream approaches that have been proposed to solve the classification task ever since the advent of the
field, and then suggest some criterion of success that can guide the direction of the future research.

1 INTRODUCTION

Artificial object recognition has for long remained an
important problem in computer vision because of its
wide applications and the persistent gap in the perfor-
mance between the humans and artificial scene recog-
nition systems. The capability of human visual sys-
tem supersedes machine vision in many respects. For
example thevery largenumber of object categories
that humans learn and recognizeaccuratelydespite
the variability in their position, size, viewpoint, il-
lumination, clutter and distractions, motivates us to
understand the functionality of human perception and
emulate it in artificial systems. However, it is not easy
to accomplish this task because of the limited neuro-
physiological findings on how brain learns and orga-
nizes the visual input. Fortunately, the advances in
both vision algorithms and hardware have made prac-
tical visual object recognition within reach, as can be
seen in systems deployed on airports and highways
for security and risk assessments. However, a com-
prehensive solution to this problem where machines
are as good as humans in terms of accuracy and speed
of recognition, still evades the reach of even the best
researchers with only partial solutions and limited
success in constrained environment being the state of
the art (Aggarwal et al., 1996).

One of the straightforward ways of refuting a the-
ory of how humans learn is to show that the machine
predictions do not match the given data. This is why
many recognition algorithms are assessed based on
theirprediction accuracyandprecisionon benchmark
data sets. Another approach to deal with this issue is
to check whether theinternal representationsof vi-
sual input match that of the brain. This line of thought
has lead to various biologically inspired feature de-
tectors, graphical models and learning algorithms that
learn features resembling physiological signals of the
brain. In this paper, we first of all provide a survey of
the mainstream approaches of object recognition al-
gorithms and then suggest some cues that might help
in guiding the progress of object recognition systems
in future.

2 EARLIER COMPUTATIONAL
MODELS OF OBJECT
RECOGNITION-ERA 1930-2005

Some of the early ideas on computational mod-
elling of visual object recognition can be traced back
to Gestalt’s work in the 1930s (Wertheimer, 1938),
(Fulcher, 2003) that describes how visual objects can
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be separated from each other and from the back-
ground. The Gestalt psychologists maintained that
humans constantly search for a ‘good fit’ between
the visual image and the stored memories of visual
objects that are naturally organized in the brain as
patterns based on their continuity, similarity, closure,
proximity and symmetry. These defined principles of
perception that assist grouping of stimuli and were
minimally effected by an individual’s past experience
are known as theLaws of Pragnanz. Gestalt theory
laid much of the groundwork for the study of object
recognition, however it was criticized heavily because
of being moredescriptivethanexplanatoryenough to
clarify the functioning of human vision. More tan-
gible work that draws ideas from the study of neural
processing in computational form, comes from Hubel
and Wiesel (Hubel and Wiesel, 1962), (Hubel and
Wiesel, 1965), who by observing the cat’s visual cor-
tex introduced the concept of hierarchical visual in-
formation processing in the receptive fields that are
regions where the action of light causes reflex in the
neurons. According to their findings, the receptive
fields of cells at one level of the visual system are
formed from input by cells at a lower level of the vi-
sual system. In this way, small,simplereceptive fields
could be combined to form large,complexreceptive
fields thus accounting for a progressive increase in the
complexity of physiological receptive fields of cells.
It was this discovery of receptive fields andfeed for-
ward architecturethat later on lead to the develop-
ment of many different hierarchical models of ma-
chine vision (Fukushima, 1988), (Wallis and Rolls,
1996), (Riesenhuber and Poggio, 1999), (Deco and
Rolls, 2006).

One of the most influential work on understand-
ing visual scene analysis after Hubel and Wiesel is
that of David Marr, who proposed hierarchical mod-
elling of the visual system from simple to complex
at three independent levels of abstraction:computa-
tional, algorithmic and implementationallevels. In
computer analogy, these can be roughly understood
as task, software and hardware levels. According to
Marr, separating the three levels allow those inter-
ested in cognition to focus on the level they are most
interested in, while simultaneously allowing those not
specially interested in cognition (like computer scien-
tists) to provide valuable insight from their specific
point of view. Thetri-level hypothesisis not with-
out any objections, but it remained a valuable tool
to aid in the study of cognitive science (and cogni-
tion in general). Apart from thetri-level hypothesis,
Marr also proposed an intermediate stage of informa-
tion representation - the 2-1/2D sketch - between the
2D image on the retina and a 3D description of the

world in cortex (Marr and Poggio, 1979), (Grimson,
1981). The idea of a primal sketch is similar to a
pencil drawing by an artist in which different areas
of a scene are shaded to give depth to it. Thisbot-
tom up hierarchical processinginsight although sem-
inal, has now been modified by the recent research
(Serre et al., 2007b), (Rolls et al., 2009). However,
it highly influenced the state of the art object recog-
nition systems circa 1965-1980, giving birth toobject
centered/shape based modelsthat focused on finding
the correct representation for visual primitives, and
represented objects hierarchically in terms of their
structural properties. Marr and Nisihara’s idea of part
based structural representation was based on hierar-
chically stored three dimensional volumes of general-
ized cones (or cylinders) and their spatial relationship
to one another (Marr and Nishihara, 1978). This ap-
proach of using geometric primitives was an attempt
to reconstruct the shape of objects, in a similar vein to
how some other inspired approaches in parallel line
of work (Nevatia and Binford, 1973) were trying to
reconstruct the scene, however, they did not provide
any empirical support for the proposed model. Com-
pared to this initially proposed model by Marr, the
most well received structural descriptive model was
the recognition by components (RBC)model by Bie-
derman (Biederman, 1987) who refined Marr’s model
of object recognition in important ways and provided
empirical support for the proposed theory : First and
foremost improvement was the psychophysical sup-
port of the RBC model (Biederman, 1986), (Bieder-
man and Cooper, 1991). Another defining factor of
the recognition by components (RBC) theory was its
ability to recognize the objects regardless of the view-
ing angle, known asviewpoint invariance. Although
this model made sensible assumptions of how human
visual system may parse a scene, it was not without
caveats in practice. The main disadvantages of such
shape-based methods are: the dependency on reliable
extraction of geometric primitives (lines, circles, etc.),
the ambiguity in interpretation of the detected prim-
itives (presence of primitives that are not modelled),
the restricted modelling capability owned by a class of
objects which are composed of few easily detectable
elements, and the need to create the models manually
(Matas and Obdrzalek, 2004).

In contrast to the view point independent method
proposed by Biederman, the decade of 1990s saw
the evolution ofappearance/view based modelsin
which the objects are represented with respect to their
viewpoint, thus entailing multiple representations that
place higher demands on memory capacity; however
it does potentially reduce the degree of computation
necessary for deriving higher-level object represen-
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tations in object centered models. Based on the de-
rived features, these methods can be sub-divided into
two main classes, i.e., local and global approaches.
A local approach grabs a feature from a small re-
gion of an image (object) which is ideally a distinc-
tive property of the object’s view/projection to the
camera. Examples of local features of an object are
the color, mean gradient or mean gray value of pixels
from small region. In contrast, the global approaches
grab features that cover the information content of
the whole image. This varies from simple statisti-
cal measures (e.g., mean values or histograms of fea-
tures) to more sophisticated dimensionality reduction
techniques, i.e., subspace methods, such as princi-
ple component analysis (PCA), independent compo-
nent analysis (ICA), or non negative matrix factoriza-
tion (NMF). Some of the popular methods that come
into this category of models were proposed by (Turk
and Pentland, 1991), (Linsker, 1992), (Lades et al.,
1993), (Ojala et al., 1994), (Murase and Nayar, 1995),
(Bell and Sejnowski, 1997), (Lowe, 1999). The ques-
tion of whether the human visual system uses aview
basedor anobject centeredrepresentation has been
a subject of much controversy (for reviews see ref-
erences (Logothetis and Sheinberg, 1996) and (Tarr
and Blthoff, 1998)). We will just mention here the
fact that the psychophysical and physiological data
from humans and monkeys actually supports a view
based approach. View/appearance based approach is
attractive since it does not require image features or
geometric primitives to be detected and matched. But
their limitations, i.e. the necessity of dense sampling
of training views and the low robustness to occlu-
sion and cluttered background, make them suitable
mainly for certain applications with limited or con-
trolled variations in the image formation conditions,
e.g. for industrial inspection (Matas and Obdrzalek,
2004).

In order to address the issues faced by object cen-
tered and appearance based models,feature based
methodswere proposed next, in which the objects
are represented by a set of view independent local
features which are automatically computed from the
training images and stored as a database for probing
the class of the test images later. Putting local fea-
tures into correspondence is an approach that is ro-
bust to object occlusion and cluttered background in
principle. Thus, when part of an object is occluded by
other objects in the scene, only features of that part
are missed and as long as there are enough features
detected in the unoccluded part, the object can be rec-
ognized. Examples of such features that have been
widely used for object recognition are scale invari-
ant feature transform (SIFT) (Lowe, 2004), histogram

of gradients (HoG) (Dalal and Triggs, 2005), haar
wavelet feature set (Viola and Jones, 2001), etc. Such
local patch based methods hold biological plausibil-
ity and tend to show benefits over global approaches
when supported by mathematical models and neural
network frameworks in object categorization (Leibe
and Schiele, 2003).

One of the most popular ways of transforming a
set of low level features extracted from an image into
a high level image representation is thebag of vi-
sual words (BoW)inspired by the traditional bag of
words technique for text analysis. The BoW algo-
rithm constructs a codebook analogous to a dictionary
from the collection of orderless patch based features,
where each codeword in the codebook is a represen-
tative of several similar patches attained through the
clustering process; consequently the test image can
be represented by the histogram of the codewords.
Several state-of-the-art visual object recognition sys-
tems (Csurka et al., 2004), (Zhang et al., 2007), (Li
et al., 2008), (Wu and Rehg, 2011) fit into this gen-
eral framework of codebook based object recognition
models. After the image features are represented in
the codebook of bag of words model, learning and
recognition can be done in agenerativeor discrimi-
nativeway. One of the greatest challenges in building
up a codebook based model is the computation time
required for clustering million of feature data points.
(Ramanan and Niranjan, 2010) proposed a solution to
this problem by presenting a sequential one-pass al-
gorithm that creates the codebook in a drastically re-
duced time.

From a computational scientist’s point of view,
it goes without saying that this continuous research
effort of developing bio-inspired architecture, learn-
ing algorithms and features was only taking place be-
cause the machines had not achieved human compat-
ible speed and accuracy of detecting scenes. In this
respect, the first researcher to quantify the timing of
the visual scene understanding in humans was Simon
Thorpe (Thorpe et al., 1996), who explained through
event related potentials (ERP) analysis, the amount of
time it takes to categorize the visual scene in cortex,
which is 150ms. Progress towards understanding ob-
ject recognition was driven by exploring and linking
phenomenon at different levels of abstraction. At one
end, where hierarchical generative models and learn-
ing algorithms inspired from the cortex were being
improved, statistical methods independent of the biol-
ogy of the visual system were also being developed in
parallel. One popular paradigm which gathered a lot
of attention since mid 1990s was the Vapnik theory
of support vector machines (SVM) which showed im-
pressive classification performance on many bench-
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mark data sets. SVMs utilize a principle calledkernel
trick that computes dot products in high dimensional
feature spaces using simple functions calledkernels
defined on pairs of input patterns. This trick enables
us to get a linearly separable hyperplane for the data
which is otherwise nonlinearly separable in the input
space. Not only did the SVM classifier work suc-
cessfully with the state of the art BoW feature space
(derived from the BoW model discussed just above),
but also with Fisher kernels (Jaakkola and Haussler,
1998) that combined the benefits of generative and
discriminative approaches to pattern classification by
deriving a kernel from a generative model of the data.
Kernel classifiers like SVM proved their significance
in various applications but they require a large amount
of labelled training data as well as aprior definition
of a suitable similarity metric/feature space in which
naive similarity metrics suffice the classification to
perform well. This requirement invites criticism by
the researchers who are of the view that arranging a
large amount of labelled data for many objects is ex-
pensive/impractical.

Although most of the proposed object recognition
systems are inspired from the hierarchical nature of
the primate cortex, it is worth mentioning that the
neural connectivityand learning algorithmsof these
models have evolved with time. Earlier, most of the
computational efforts were focussed on feed forward
processing of information but since these feed for-
ward connections just constitute a small fraction of
the total connectivity in cortex, researchers shifted
their attention towards the development of systems
that made use of the back projection feedback too
(Rumelhart et al., 1986). Feedback using back pro-
jection provides the opportunity of using previous
knowledge, memory and task dependent expectations
in a system (Kreiman, 2008), (Karklin and Lewicki,
2005). This change in neural connectivity revolution-
ized the learning algorithms used in undirected graph-
ical models (Rumelhart et al., 1986), directed graph-
ical models (Hinton et al., 1995) and non graphical
models (Rumelhart et al., 1986). Although these the-
ories failed to answer the scientific question of how
the brain learns visual features, they produced two
neat tricks: one for learning directed graphical models
(Thulasiraman and Swamy, 1992) and the other one
for undirected models (Karklin and Lewicki, 2009),
(Hinton et al., 2006). Another influential fact that was
established was that individual neurons are not suffi-
cient for discriminating between objects; ratherpopu-
lation of neurons should be analysed - a neuronal be-
havior also pointed out by the Wilson-Cowan model
(Wilson and Cowan, 1972) in early 1970s and later
addressed in many computational neuroscience prob-

lems (Sejnowsky, 1976), (Amit and Brunel, 1997),
(Brunel, 2000), (Hertz et al., 2004).

3 RECENT COMPUTATIONAL
MODELS OF IMAGE
UNDERSTANDING-ERA
2006-PRESENT

Much of the progress experienced in the last decade
has produced an overwhelming body of object recog-
nition results without explaining anything significant
about the perception and vision phenomenon in hu-
man visual system. The success of these artificial sys-
tems is determined by the overall recognitionaccu-
racyand thetimethey take to categorize these images.
In order to cater the speed of recognition, it is worth
mentioning the spectacular success of Poggio and
Serre (Serre et al., 2007a) for developing animme-
diate recognition system, which is the fastest known
form of computer object recognition against humans.
In this system, the parallel processing paradigm was
implemented rather than the conventional serial pro-
cessing machine learning. When analysed with ani-
mal presence/absence test with humans, the computer
did as well as the humans, and thus better than the
best machine vision programs available so far. Im-
mediate object recognition laid a new foundation of
overall visual recognition and extending this theory
to solve harder perception problem requires recruiting
higher levels of brain function which would take more
time and computational complexity for implementa-
tion. This extension has already began to spread in
the Neuroscience community; an example being Stan
Bileschi who applied this model to scene recognition
(Bileschi, 2006), which is a derivation of higher order
judgements, like it is a farm, a barn, a forest, etc.

As far as the goal of gaining better accuracy is
concerned,deep learning and representationhas been
the subject of much recent research ever since the pro-
posed breakthrough in feature learning by Hinton in
2006 (Hinton et al., 2006). The central idea of his
greedy layer wise pre-training procedure is based on
training each layer of the graphical model indepen-
dently in an unsupervised way and then taking the fea-
tures learnt at the previous layer as input to the next
level. The features learnt by the deep model can ei-
ther be used as an input to a standard supervised ma-
chine learning predictor such as support vector ma-
chines or as an initialization for a deep supervised
neural networks like multi-layer perceptron (MLP).
This idea of greedy layer wise unsupervised train-
ing was followed up quickly by the rest (Hinton and
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Nair, 2009), (Taylor and Hinton, 2009), (Krizhevsky
et al., 2012) as deep architectures showed potential
of progressively learning more abstract features at
higher levels of representation, yielding better classi-
fication error (Larochelle and Bengio, 2008), (Erhan
et al., 2010) quality of samples generated by the prob-
ability distributions (Hinton and Salakhutdinov, 2009)
and the invariance of properties learnt by the classi-
fier . The recent work of (Krizhevsky et al., 2012)
also shows that with proper initialization of param-
eters and choice of non linearity, it is not necessary
to do unsupervised pretraining of the model as re-
quired by other deep networks.This finding reinforces
the hypothesis that the unsupervised pretraining acts
as a prior that brings little/no improvement over pure
supervised learning from scratch when training data
is large. The deep learning algorithms first proved
their dominance over the MNIST digits data set by
breaking the SVMs classification supremacy, and then
moved on to object recognition in natural images. The
latest breakthrough has been achieved on the Image
net data set, bringing the error rate of the state of
the art algorithms from 26.1% to 15.3% (Krizhevsky
et al., 2012) on 10K classes of objects. While deep
learning algorithms are making influential progress,
another impressive approach making its mark in par-
allel is that of Fisher kernels with SVMs (Jaakkola
and Haussler, 1998). The Fisher kernels made a
successful come back by first showing its classifica-
tion advantage over the state of the art bag of words
approach (Perronnin and Dance, 2007), (Perronnin
et al., 2010), and then showing its successful use with
large scale data sets like PASCAL VOC 2007 (Csurka
and Perronnin, 2011), CALTECH-256 (Sanchez and
Perronnin, 2011) and ImageNet-10K (Sanchez et al.,
2013). Currently, the second best performance after
deep convolution network (Krizhevsky et al., 2012)
achieved on the Image Net 10K classification task is
shown by the Fisher kernels (Sanchez et al., 2013)
derived from a gaussian mixture model designed for
SIFT, local binary pattern (LBP) and GIST descrip-
tors of the data.

4 SOME GUIDING PRINCIPLES
FOR THE PROGRESS OF
OBJECT RECOGNITION

In this section, we point out some misleading prac-
tices by the research community in the field of com-
puter vision and introduce some novel aspects of re-
search that have either been ignored completely or
given less attention so far. We maintain that taking

care of these aspects might improve the progress of
artificial object recognition systems in the future.

• Evaluation of the Benchmark Data Sets
In order to evaluate the strength of the learn-
ing algorithms and performance of classifiers, the
experiments are usually conducted on standard
benchmark data sets for comparison. Pinto (Pinto
et al., 2008) argued that publicly available data
sets such as Caltech-101 and PASCAL VOC im-
age sets lack in several aspects that can actually
mislead the progress in the long-term interest of
being able to achieve near human levels of recog-
nition. To prove this claim, he carried out the ex-
periments on a V1 like model which was based on
the known properties of simple cells of primate
visual cortex. The model was a population of
locally normalized, thresholded Gabor functions
spanning a range of orientations and frequencies.
This model contained no explicit mechanism to
tolerate variation in object position, size/pose and
shape. A standard one-versus-all approach was
used to generate the multi-class SVM classifier
from the training images. It was found that this
V1 like model performed remarkably well on the
Caltech-101 data set but when tested on a care-
fully controlled object recognition task that just
consisted of two classes, the problem proved sub-
stantially harder for the V1 like model, exactly
as one would expect for an incomplete model of
object recognition. This proved that the V1 like
model performed well previously not because of
it being a good model of object recognition but
because the natural image sets were inadequate.
Ponce et al. (Ponce et al., 2006) also pointed out
some of the issues present in the current standard
data sets (i.e. UIUC, Caltech-4 and Caltech-101)
used for judging the performance of developed
object recognition systems. The most commonly
observed problems in all these data sets were the
limited range of variability in viewpoint, orienta-
tion of different instances in each category, no oc-
clusion and background clutter. We have not seen
any work that objects these claims about the in-
adequacy of these standard data sets or provides a
counter solution to this problem. We suggest that
there should be a formal mechanism of assigning
achallenging scoreto each of the benchmark data
sets in practice; based on this measure, the ones
that are too simple should be discarded for ex-
perimentation in the future. Such an initiative is
important to provide a uniform test bed to all the
competing algorithms on fair basis of evaluation
defined explicitly through the challenging score.
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• Impact of Learning Algorithms, Features and
Amount of Training Data
The object/scene classification approaches often
focus on one of the three aspects of the recogni-
tion problem: the amount of training data, the ef-
ficiency of learning algorithm and the quality of
feature representations. It is important to know
which of these factors are responsible for humans
superior classification performance. The answer
to this question was investigated by (Parikh and
Zitnick, 2010), who compared the human and ma-
chine responses on similar problems to evaluate
which of the three factors: learning algorithm,
amount of training data and features, are respon-
sible for better performance. They found no evi-
dence that human pattern matching algorithms are
better than standard machine learning algorithms.
Also humans do not take advantage of increased
amount of data, thus the main factor impacting the
accuracies is the choice of features. we maintain
that these observations should be further investi-
gated and not ignored in order to focus the efforts
in the right direction.

• Integration between Physiological Recordings
and Empirical Results of Object Recognition
Learning systems inspired by the biology and
evaluated by their classification performance have
become much more sophisticated in the last few
decades. However, there is a need to directly
verify the empirical results of machine recogni-
tion algorithms with the physiological recordings.
Physiological data may offer an avenue for rec-
ognizing aspects of recognition that may be less
obvious for humans but more suitable for com-
puters. Such recognized cues could be integrated
within a machine’s control architecture to make
it more capable of responding to visual signals in
real time.

• Addition of Time Dynamics
Most of the well known computational models re-
viewed here do not take into explicit account the
fact that the retinal input usually has a time com-
ponent associated to it. It is important to con-
sider the time dynamics of the neural circuit as
the objects in our surroundings move and the eyes
show movement as well. Thus, measured neu-
ronal responses are functions of time and even
for an image presented in a flash, different types
of information is carried out over time (Perrett
and Oram, 1993), (Sugase et al., 1999) or in the
time structure of the neuronal response. Incorpo-
rating the time dimension in neuronal models of
recognition is a challenge that began in the last
decade and is now actively being persued (Re-

ichert et al., 2011b), (Reichert et al., 2011a). One
of the interesting work in this regard is of (Nishi-
moto et al., 2011) who experimented on recon-
structing the visual brain activity elicited by natu-
ral scene movies in humans. The time dynamics
of the system is captured through a motion-energy
model that describes how spatial and temporal
information are represented in voxels through-
out the visual cortex and then uses a Bayesian
approach to combine estimated encoding models
with a sampled natural movie prior for movie re-
construction. Under the Bayesian framework, the
probability that the images evoked responser, is
given by the posterior distribution,p(s|r) as fol-
lows: p(s|r) ∝ p(s)∏i pi(r i |s). To produce a re-
construction,p(s|r) is evaluated for a large num-
ber of images. The image with the highest pos-
terior probability,p(s|r) is selected as the recon-
struction, a method commonly known asmaxi-
mum a posteriori(MAP)estimate. Much of the
excitement surrounding this work is motivated by
the ultimate objective of directly picturing subjec-
tive mental phenomenon such as visual imagery
(Thirion et al., 2006) or dreams. We argue that
timeis an interesting dimension of the data, which
if added to the existing models, can assist in mak-
ing interesting discoveries about the human vision
that could be deployed in the artificial systems.

5 CONCLUSIONS

The huge successes of theAnnual Meeting on Object
Perception, Attention, and Memory(in its 21st year),
Proceedings of the Neural Information Processing
Systems(in its 26th year) and theAnnual Meeting of
Vision Sciences Society(in its 13th year) serve as a
measure of how far the field has come and what con-
sistently stays unexplored. With many of the theo-
ries already presented by various researchers, it is now
high time to integrate all the efforts from various com-
munities of machine learning, neuroscience and phys-
iology to reassure the objectives of learning efficient
visual representations in machines. With joint efforts,
one may discover the explanation for the underlying
factors of image understanding in the visual cortex,
as well as initiate significant debate on those areas
where theories from different disciplines mismatch.
It is anticipated that future advances in brain signal
measurement and the development of more sophisti-
cated encoding models of visual information will lead
to a better apprehension of the complete neural model
of human visual system, thus paving a way for human
competitive object recognition systems.
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