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Abstract: This paper presents a two-level hierarchical approach to recognising intentional and non intentional mental 
tasks on a brain-computer interface. A clustering process is performed at the first recognition level in order 
to differentiate Non intentional Control state (NC) patterns from Intentional Control (IC) patterns. At the 
second level, the IC detected patterns are classified by means of supervised learning techniques, applied to 
the type of movement (left hand, right hand, tongue or foot imagery movement). The objective is to achieve 
high correct movement recognition scores, with a low percentage of wrong decisions (that is, low false 
positive rates), to avoid user frustration. Offline evaluation of the proposed prototype shows 84.5% 
accuracy, with a 6.7% false positive rate. 

1 INTRODUCTION 

Brain-Computer Interfaces (BCI) based on 
Electroencephalography (EEG) enable users to 
command computers just by measuring EEG signals 
associated with brain activity (Wolpaw et al., 2002). 
This kind of BCI requires a system to identify user 
brain activity patterns that are later translated into 
commands (Lotte et al., 2007). 

Most BCI systems are based on synchronous 
protocols where the subject must follow a fixed 
repetitive scheme to switch from one mental task to 
the next (Pfurtscheller and Neuper, 2001) (Wolpaw 
et al., 2002). In synchronous BCI systems, the EEG 
phenomena to be recognized are time-locked to 
diverse cues. A trial typically lasts from 4 to 10 s or 
more. In contrast, in asynchronous BCI systems the 
subject makes voluntary, self-paced decisions on 
when to stop performing a mental task and when to 
start the next one (Nooh, Yunus and Daud, 2011). 
Designing an asynchronous BCI system requires 
continuous analysis of EEG signals. This analysis 
should determine whether the user is in an 
Intentional Control (IC) state, that is, if (s)he is 
producing one of the brain activity patterns used to 
control the BCI, or if (s)he is in a Non Control (NC) 
state. Finally, if the user is in an IC state, the system 
also has to determine which kind of brain activity 

pattern is being produced. Therefore, to deal with 
asynchronous problems, it is necessary to be able to 
differentiate between known and unknown activity 
patterns. 

This paper presents the preliminary results of a 
study dealing with the problem of classifying 
patterns between the different types of IC states after 
an NC state discarding process. The approach has a 
two level hierarchical structure. The first level 
determines whether an activity pattern is present or 
not by applying a clustering process. The second 
level detects which of four mental tasks (left hand, 
right hand, tongue and foot imaginary movements) 
has been produced by the user. For this level a 
supervised classifier based on Support Vector 
Machine paradigm is proposed. 

The remainder of the paper is organized as 
follows. Section 2 explains the experimental 
protocol used, the data acquisition process and the 
pre-processing carried out. Section 3 presents the 
proposed system to classify the EEG signals into the 
four types of imaginary movements considered, 
discarding the NC states. Results are presented and 
discussed in Sections 4 and 5. Finally, some 
conclusions and references are presented. 
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2 EXPERIMENTAL PROTOCOL 

For our tests, we used the IIIa dataset from the BCI 
competition III (Blankertz et al., 2006). It contains 
data from 3 subjects: K3b, K6b and L1b, collected 
as follows (Schlögl et al, 2005) (see Figure 1). Each 
subject, sitting in front of a computer, was asked to 
perform imaginary movements of the left hand, right 
hand, tongue or foot during a specified time interval 
according to a cue. The order of cues was random. 
60 electrodes were placed on the subject's scalp 
recording a signal sampled at 250 Hz and filtered 
between 1 and 50 Hz using a Notch filter. Each trial 
started with a blank screen. At t = 2s, a beep was 
generated and a cross “+” was shown to attract the 
subject's attention. At t = 3s an arrow pointing to the 
left, right, up or down was shown for 1s and the 
subject was asked to try one of four imaginary 
movements until the cross disappeared at t = 7s. This 
was followed by a 2s break, and then the next trial 
began. The dataset contains 360 instances (cases) for 
subject K3b, 240 for K6b and 240 for L1b. Each 
instance was labelled as belonging to one of the four 
classes. Each dataset contains a balanced distribution 
of the classes. 

Comparing the subjects shows that K3b presents 
the highest accuracy and K6b the lowest (Lee et al., 
2005). This is attributed to the different amount of 
BCI training received by the subjects. K3b was the 
most experienced, L1b had less experience and K6b 
was a beginner. In this work, we have used the data 
corresponding to subjects with extreme skills: K3b 
and K6b.  

This dataset was designed for a synchronous BCI 
system, where the subject is aware of the time period 
to imagine the proposed activity. Therefore, this data 
was collected while the subjects were performing a 
cue-based (synchronized) task. A summary of the 
results obtained in this synchronous data logging 
exercise can be seen in (AlZoubi, Koprinska and 
Calvo, 2008). 

In this paper, we extended this experimental data 
by adding data associated to NC states to the dataset. 
We associated the first three seconds (t = 0-3s) of 
each trial with no intentional activity. Therefore, for 
subject K3b we get 720 instances: 360 instances that 
indicate one of the four different intentional 
activities (IC state), corresponding to processing 4-7 
seconds of each trial, and another 360 instances with 
non intentional brain activity (a new class: NC 
state), corresponding to the data obtained from 0-3 
seconds of each trial. We processed the data from 
subject K6b in the same way, and we obtained 480 
instances: 240 instances of intentional activity and 

240 instances of non intentional activity. 
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Figure 1: (a) EEG electrode placement, and (b) data 
acquisition paradigm (BCI Competition III). 

We applied the same pre-processing techniques 
applied by AlZoubi et al. in (AlZoubi, Koprinska 
and Calvo, 2008). Firstly, we applied the Common 
Spatial Patterns (CSP) method (Müller-Gerking, 
Pfurtscheller and Flyvbjerg, 1999) to the raw EEG 
data. The result of applying CSP to the original 60 
signals is a new set of 60 signals sorted by their 
ability to predict class. We selected the first 5 
projections, and then we applied 3 frequency band 
filters (for 8-12 Hz, 21-20 Hz and 20-30 Hz). 
Finally, we extracted 7 features: max, min and mean 
voltage values, voltage range, number of samples 
above zero volts, zero voltage crossing rate and 
average signal power. This process gives 525 
[5x5x3x7] (5 classes, 5 projections, 3 filters and 7 
features) discrete numeric values for each case of the 
dataset. 

After pre-processing the data corresponding to 
each subject, we split all the data into three sets: a 
training dataset for the clustering process at the first 
level (to detect the IC states), another training 
dataset for learning a supervised classifier at the 
second level (to distinguish between the four types 
of mental tasks) and a test dataset for evaluating the 
system's performance. Therefore, we created three 
datasets randomly for each subject, containing 240 
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cases for subject K3b (120 correspond to NC state 
and 120 to IC state, namely 30 cases for each 
imaginary movement), and 160 cases (80 for NC 
state and 80 for IC state: 20 cases for each imaginary 
movement) for subject Kb6. 

One of the most important problems in machine 
learning is the need to deal with high numbers of 
dimensions. This problem is known as the curse of 
dimensionality: small numbers of training instances 
but highly dimensional. In these cases, it is 
necessary to simplify the learning algorithm by 
reducing the dimensionality before starting the 
learning process. This can be done by selecting the 
problem's most informative features and discarding 
the most irrelevant and redundant features. In this 
work we applied the Correlation-Based Feature 
Selection (CFS) method (Hall, 2000) which is the 
same feature selection method used by AlZoubi et 
al. in (AlZoubi, Koprinska and Calvo, 2008). This 
method bases its selection on searching for features 
that are highly correlated with a specific class 
variable and least correlated with the other variables. 
We used the implementation provided by Weka 
data-mining platform (Witten and Frank, 2005). We 
used the best first (greedy) search option starting 
with an empty set of features and adding new 
features. It is important to note that feature selection 
was only performed using training data, and test data 
was not used in any way during feature selection. As 
a result, 45 and 40 features were selected for K3b 
and K6b, respectively. 

3 PROPOSED HIERARCHICAL 
SYSTEM: TRAINING PHASE 

As mentioned in the Introduction, the system 
proposed in this work has a hierarchical structure 
that can be seen in Figure 2. The first level 
determines the presence or absence of intentional 
activity in the EEG signal, applying clustering 
techniques. The second level determines whether the 
detected intentional activity is a left hand, right 
hand, tongue or foot imaginary movement. 

3.1 First Level: Detecting IC Activity 

We used the K-means algorithm (Weka 
implementation) with the Euclidean distance for the 
first level of the system. One key issue in this phase 
is how good the system is at rejecting the NC state. 
Hence, to design this level we transformed the five-
class dataset into a two-class dataset. 

It is critical to minimize the False Positive Rate 

of the NC class (FPR = FP / (FP+TN)). FPR 
depends on False Positives (FP, acceptance of an NC 
state as an IC state) and on True Negatives (TN, 
rejection of a true NC state). A high FPR tends to 
cause excessive user frustration making the resulting 
BCI unusable (e.g. if the system is used to control a 
wheelchair, an FP would imply undesirable chair 
movements implying high risk for the user). 
According to the literature, we have selected a 
maximum threshold of 10% for the system's first 
level FPR. This value is similar to the FPR used in 
(Lotte, Mouchère and Lécuyer, 2008) (Scherer et al., 
2008). After the clustering process, each cluster is 
labelled as belonging to one of the two classes, NC 
or IC, taking into account that the FPR (for the NC 
class) must be less than the selected threshold 
(10%). This has been done by establishing a 
minimum number of IC class patterns for the 
generated clusters (IC-threshold) to be labelled as an 
IC cluster. 

 

 

Figure 2: Structure of the proposed BCI system. 

Therefore, for this first stage of the system, we had 
to select the IC-threshold and the K value for the K-
means algorithm. We analysed 10 different values 
for the parameter K: 5, 10, 15, 20, 25, 30, 35, 40, 45 
and 50. This estimation was made by applying a 10-
fold cross-validation methodology using the first set 
of training data with patterns from the two-class 
system: NC state and IC state (grouping all patterns 
of each imaginary movement). Only clusters 
exceeding the IC-threshold were labelled as IC class. 
We calculated the nearest cluster for each unused 
pattern of the cross-validation fold using average 
linkage distance. As shown in Table 1, to maintain 
the FPR level under 10%, a 70% IC-threshold was 
necessary. The  best  results were  obtained with K =  
 

Electrode 
array 

clustering NC state: no movement 

 
supervised 

classification 

IC state

IC state 1: left hand movement

IC state 2: right hand movement

IC state 3: tongue movement

IC state 4: foot movement 

A�Hierarchical�BCI�System�Able�to�Discriminate�between�Non�Intentional�Control�State�and�Four�Intentional�Control
Activities

93



Table 1: FPR (NC class) and accuracy (10-CV) depending on the value of the K parameter and the IC-threshold. Grey 
shading for FPR under 10%, * shows the highest accuracy, and bold highlights the best option for each subject. 

IC- 
threshold 

10-CV 
K value 

5 10 15 20 25 30 35 40 45 50 

 
 
90% 

K3b 
 

FPR (%) 0.0 5.8 6.7 4.2 6.7 4.2 5 5.8 4.2 5.8 
Accuracy (%) 51.7 62.1 62.9 65.8 65 70 70.8 67.1 72.1* 70.8

K6b FPR (%) 0.0 6.3 5.0 5.0 8.8 7.5 10.0 13.8 13.8 13.8
Accuracy (%) 50.0 56.9 63.8 70.0* 64.4 61.3 59.4 63.8 66.3 66.9

 
 
80% 

K3b FPR (%) 10.8 12.5 10.0 8.3 10 8.3 8.3 8.3 6.7 10 
Accuracy (%) 74.6 75.0 74.6 77.9 72.9 80.4 79.2 79.2 81.3* 82.9

K6b FPR (%) 7.5 11.3 6.3 6.3 10.0 12.5 12.5 18.8 16.3 16.3
Accuracy (%) 67.5 68.8 73.8* 73.8* 72.5 70.0 68.1 73.1 73.1 73.8

 
 
70% 

K3b FPR (%) 10.8 12.5 10.8 11.7 15.8 8.3 10.8 13.3 12.5 13.3
Accuracy (%) 75.4 79.6 75.4 80.0 76.3 83.8 80.4 79.2 80.4 81.3

K6b FPR (%) 15.0 16.3 7.5 11.3 16.3 13.8 13.8 20.0 16.3 16.3
Accuracy (%) 78.1 76.3 77.5 76.3 74.4 76.9 70.0 73.8 731 73.8

 
 
60% 

K3b FPR (%) 15.8 19.2 10.8 14.2 19.2 15.8 18.3 20.0 15.8 19.2
Accuracy (%) 75.8 79.6 76.7 82.5 79.2 83.3 80.0 78.8 81.7 82.1

K6b FPR (%) 18.8 17.5 10.0 13.8 20.0 18.8 22.5 20.0 20.0 20.0
Accuracy (%) 81.9 79.4 80.0 78.1 75.0 80.0 75.0 75.6 76.3 74.4

Table 2: Accuracy (10-CV) of the classifiers. 

10-CV 
Accuracy (%) 

1R DT 1-NN 5-NN NB RBF SVM LR AdaB Bag RF 

K3b 45.8 60.8 77.5 82.5 80.8 77.5 84.2 74.2 72.5 74.2 77.5 

K6b 31.3 58.8 53.8 58.8 60.0 63.8 65.0 53.8 62.5 56.3 56.3 
 
30 for subject Kb3, and K = 15 for subject K6b. For 
these K values, the FPR (NC class) was 8.3% and 
7.5%, respectively. 

3.2 Second Level: Classifying the Type 
of Imaginary Movement 

We used supervised learning algorithms to 
implement this level. From the great variety of 
algorithms that have been applied in BCI systems 
(Lotte et al., 2007), we selected 11 algorithms: 1R 
rule, Decision Tree (DT), k-NN (1-NN and 5-NN), 
Naive Bayes (NB), Radial-bases Network (RBF), 
Support Vector Machine (SVM), Logistic 
Regression (LR), Ada Boost (AdaB, combining 10 
decision trees), Bagging (Bag, combining 10 
decision trees) and Random Forest (RF). We chose 
these algorithms because they represent different 
paradigms (rule-based, tree-based, distance-based, 
probabilistic, function-based, ensemble of 
classifiers) and they are state of the art in data 
mining. We use their Weka (Witten and Frank, 
2005) implementation by applying the default values 
for the parameters. 

All classifiers were trained using the second 

training set (120 cases, 30 cases of each imagery 
mental task). The best algorithm was estimated by 
applying a 10-fold cross-validation methodology. 
Table 2 shows the accuracy achieved by each 
classifier for both subjects. The best overall 
classifier was the SVM algorithm with an accuracy 
of 84.2% for subject K3b and 65.0% for subject 
K6b. 

Summarizing, the proposed hierarchical BCI 
system consists of a first level that differentiates 
between NC and IC states, based on clustering 
techniques; and a second level, based on a SVM 
classifier, that discriminates between the four types 
of mental tasks considered. The optimal number of 
first level clusters is different for each subject: 30 for 
subject K3b and 15 for subject K6b. 

4 EXPERIMENTAL RESULTS: 
EXPLOITATION PHASE 

Once the system has been trained, it can be used for 
classifying new EEG patterns, so far unknown to the 
system. The newly-designed system's performance 
was   tested  using  the  test  dataset.  As   previously 
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Table 3: Classification performance for the first level using the test dataset. 

 Confusion Matrix FPR (%) Accuracy (%) 

K3b 
(K-means, K=30) 

 IC-estimated NC-estimated  
6.7 

 
81.7 IC-real 84 36 

NC-real 8 112 

K6b 
(K-means, K=15) 

 IC-estimated NC-estimated  
2.5 

 
80.0 IC-real 50 30 

NC-real 2 78 

Table 4: Classification performance for the second level with the test dataset. 

 Confusion Matrix Accuracy (%) 

 
 
K3b 
(SVM) 

 Left-
estimated 

Right-
estimated 

Tongue-
estimated 

Foot-
estimated 

 
 
 

84.5 
Left-real 6 7 0 2 
Right-real 2 26 0 0 
Tongue-real 1 0 18 1 
Foot-real 0 0 0 21 

 
 
K6b 
(SVM) 

 Left-
estimated 

Right-
estimated 

Tongue-
estimated 

Foot-
estimated 

 
 
 

64.0 
Left-real 2 9 0 0 
Right-real 1 11 1 0 
Tongue-real 3 3 1 0 
Foot-real 0 0 1 18 

 
explained, the test set for subject K3b comprises 240 
cases (120 corresponding to NC state and 120 cases 
for IC state), while the test set for subject K6b 
consists of 160 cases (80 of each state). Considering 
only the IC patterns, subject K3b's test set consists 
of 30 cases of each of the 4 types of mental tasks, 
whereas, subject K6b's test set consists of 20 cases 
of each type of movement. 

Table 3 summarizes the results obtained for the 
first level of the system when the new patterns were 
processed. This table shows the confusion matrix 
obtained, as well as the FPR (NC class) and the 
accuracy of this first level. There are 8 cases of NC 
patterns misclassified into clusters labelled with 
some kind of movement (i.e. intentional activity) 
leading to 6.7% FPR (NC class) for subject K3b. 84 
cases (from the initial 120) corresponding to activity 
patterns (IC state) will be classified in the second 
level of the system. On the other hand, they are only 
2 cases of misclassified NC patterns; yielding a 
2.5% FPR for subject K6b, 50 cases (from the initial 
80) correspond to activity patterns. 

Table 4 shows the confusion matrix for the 
second level of the system. The patterns are 
classified in the 4 possible imaginary movements 
(right, left, tongue, foot) using a Support Vector 
Machine (SVM) classifier. The accuracies obtained 
from the two subjects are 84.5% and 64.0%, 
respectively.  

Analysing the confusion matrix shows that it is 
more difficult for both subjects to detect the left 
hand movement. The number of patterns reaching 
the second level of the system for this movement is 
clearly lower than for all other movements, and, 
there is a bias in the system that classifies these 
patterns as belonging to the right imaginary 
movement. In general, subject K6b obtained worse 
results and presented specific difficulties with the 
tongue movement (only 7 patterns reached the 
second level, and, only one was correctly classified). 

Analysing the overall system's performance in 
terms of classifying the five different patterns (NC 
class + 4 imaginary movements), the accuracy for 
subject K3b is 76.3% and 68.8% for the other 
subject. The differences in results obtained for each 
subject confirmed the description of subject K6b as 
a less trained (beginner) user, and, as a consequence, 
the system had greater difficulty dealing with this 
subject's EEG patterns. 

Although it is difficult to compare the results 
obtained with other works, mainly because we have 
included a class for the Non Intentional Control 
state, we can say that the results obtained are similar 
to the work presented by AlZoubi et al. in (AlZoubi, 
Koprinska and Calvo, 2008). They obtained a 78.5% 
average result for both subjects, whereas in our case 
the accuracy was 72.6% (taking into account the 
difficulty of introducing the NC class). 

A�Hierarchical�BCI�System�Able�to�Discriminate�between�Non�Intentional�Control�State�and�Four�Intentional�Control
Activities

95



Table 5: Accuracy (10-CV) of the classifiers (one-level system). 

10-CV 
Accuracy (%) 

1R DT 1-NN 5-NN NB RBF SVM LR AdaB Bag RF 

K3b 40.4 63.9 75.8 79.6 75.7 77.1 81.1 69.9 76.0 72.5 73.3 

K6b 37.0 50.0 44.0 46.5 52.0 50.5 60.0 47.5 56.0 57.0 56.0 
 

5 COMPARISION WITH AN 
ONE-LEVEL SYSTEM 

In order to test the validity of the proposed 
hierarchical system, we also implemented a one 
level system without the clustering phase. We 
analysed the performance of the same classifiers 
used in Section 2 to develop the second level 
classifier for the five classes (NC, left hand, right 
hand, tongue or foot). All the classifiers were now 
trained using the two previously defined training 
data sets: 300 cases (60 cases of each class) for 
subject K3b and 200 cases (40 cases of each class) 
for subject K6b. The best algorithm was estimated 
again by applying a 10-fold cross-validation 
methodology. Table 5 shows the accuracy achieved 
by each classifier for both subjects. The best overall 
classifier was again the SVM algorithm, with an 
accuracy of 81.1% for subject K3b and 60% for 
subject K6b. 

The system performance was tested with the 
same test data set used for the hierarchical proposal: 
240 cases for subject K3b and 160 cases for subject 
K6b. The obtained accuracy using the SVM 
classifier was lower than the one obtained with the 
two-level system: 74.5% for subject K3b and 66.9% 
for subject K6b. These results confirm that the two-
level approach has higher performance than the one-
level system. 

6 CONCLUSIONS 

In this paper we proposed a two-level hierarchical 
approach to recognise mental tasks including 
intentional and non intentional states on a brain-
computer interface. At the first level, the proposal 
performs a clustering process in order to 
differentiate patterns of Non intentional Control 
state (NC) from patterns of Intentional Control (IC). 
At the second level, the IC detected patterns are 
classified by movement type (left hand, right hand, 
tongue or foot imaginary movement) by a supervised 
learning classifier. 

After a pre-processing phase and reducing the 

number of dimensions of the problem, we applied 
the K-means algorithm for the first level of the 
system, obtaining the best results with K = 30 
(accuracy of 81.7%) and K = 15 (accuracy of 80.0%) 
for subjects K3b and K6b, respectively, using BCI 
III Competition dataset IIIa. The best results 
obtained for the second level were achieved with the 
Support Vector Machine classifier with 84.5% and 
64.0% overall accuracy, respectively. These results 
were obtained maintaining the False Positive Rate 
for the NC class under 10% (achieving 6.7% and 
2.5% rates for the subjects participating in the 
experiment). The classification phase results 
encourage us to apply Support Vector Machine 
based algorithms in the clustering phase. 

This work takes advantage of the good results 
obtained in synchronous experiments to apply them 
in a more realistic but more demanding 
asynchronous environment. In the asynchronous 
case, the data includes inactivity periods along with 
activity states. Our work firstly distinguishes activity 
from non-activity status. Once voluntary activity is 
found, we detect the type of virtual movement 
associated with it. In this way, our research proposes 
a step forward towards practical asynchronous 
detection. 

Nevertheless, this work did not deal with the 
problem of detecting IC states in a continuous EEG 
signal (asynchronous or self-paced BCI). We just 
introduced the NC state as a new class. This may 
explain why our results are generally better than 
presented in other works (Scherer et al., 2008) (Satti, 
Coyle and Prasad, 2009). We plan to apply our 
proposal to the asynchronous BCI problem in order 
to be able to compare both approaches. 

ACKNOWLEDGEMENTS 

This work was funded by the University of the 
Basque Country (Aldapa, GIU10/02), by the Science 
and Education Department of the Spanish 
Government (ModelAccess project, TIN2010-
15549), and by the Department of Education, 
Universities and Research of the Basque 
Government (IT395-10 research group grant). 

PhyCS�2014�-�International�Conference�on�Physiological�Computing�Systems

96



REFERENCES 

Wolpaw, J., Birbaumer, N., McFarland, D., Pfurtscheller, 
G., Vaughan T., 2002. Brain-computer interfaces for 
communications and control. Clinical 
Neurophysiology, 113 (6): 767-791. 

Lotte, F., Confgedo, M., Lécuyer, A., Lamarche, F., 
Arnaldi, B., 2007. A review of classification 
algorithms for eeg-based brain-computer interfaces. 
Journal of Neural Engineering, 4:R1-R13. 

Pfurtscheller, G., Neuper, C., 2001. Motor imagery and 
direct brain-computer communication. Proc. IEEE, 
vol. 89, pp.1123-1134. 

Nooh, A. A., Yunus, J., Daud, S.M., 2011. A review of 
Asynchronous Electroencephalogram-based Brain 
Computer Interface Systems. International Conference 
on Biomedical Engineering and Technology, 
Singapore, vol. 11. 

Blankertz, B., Müller, K. R., Krusienski, D., Schalk, G., 
Wolpaw, J. R., Schlögl, A., Pfurtscheller, G., Millan, 
J., Schröder, M., Birbaumer, N., 2006. The BCI2000 
Competition III: Validating Alternative Approaches to 
Actual BCI Problems. IEEE Transactions on Neural 
Systems and Rehabilitation Engineering, vol. 14, no. 
2, pp. 153-159. 

Schlögl, A., Lee, F., Bischof, H., Pfurtscheller, G., 2005. 
Characterization of four-class motor imagery EEG 
data ffor the BCI competition 2005. Journal of Neural 
Engineering, 2: L14-L22. 

Lee, F., Sherer, R., Leeb, R., Neuper, C., Bischof, H., 
Pfurtscheller, G., 2005. A Comparative Analysis of 
Multi-class EEG Classification for Brain-computer 
interface. 10th Computer Vision Winter Workshop 
(CVWW). Technical University of Graz, Austria. 

AlZoubi, O., Koprinska, I., Calvo, R.A., 2008. 
Classification of Brain-computer Interface Data. 7th 
Australasian Data Mining Conference (AusDM), 
Adelaide (Australia), pp. 123-132. 

Müller-Gerking, J., Pfurtscheller, G., Flyvbjerg H., 1999. 
Designing optimal spatial filters for single-trial EEG 
classification in a movement task. Clinical 
Neurophysiology, vol. 110, no. 5, pp. 787-798. 

Hall, M., 2000. Correlation-based feature selection for 
discrete and numeric class machine learning. 17th 
International Conference on Machine Learning 
(ICML), 359-366, Morgan Kaufmann. 

Witten, L. H., Frank, E., 2005. Data Mining: Practical 
Machine Learning Tools and Techniques. Morgan 
Kaufmann, San Francisco. 

Lotte, F., Mouchère, H., Lécuyer, A., 2008. Pattern 
Rejection Strategies for the Design of Self-Paced 
EEG-based Brain-Computer Interfaces. 19th 
International Conference on Pattern Recognition, 
Florida (USA), pp. 1-5. 

Scherer, R., Lee, F., Schlögl, A., Leeb, R., Bischof, H., 
Pfurtscheller, G., 2008. Towards self-paced brain-
computer communication: Navigation through virtual 
worlds. IEEE Transactions on Biomedical 
Engineering, vol. 55, no. 2, pp. 675-682. 

Satti, A., Coyle, D., Prasad, G., 2009. Continuous EEG 

Classification for a Self-paced BCI. 4th International 
IEEE EMBS Conference on Neural Engineering, 
Turkey, pp. 315-318. 

A�Hierarchical�BCI�System�Able�to�Discriminate�between�Non�Intentional�Control�State�and�Four�Intentional�Control
Activities

97


