Collaborative Editing of EMF/Ecore Meta-models and Models
Conflict Detection, Reconciliation, and Merging in DiCoMEF

Amanuel Koshima and Vincent Englebert
PReCISE Research Center, University of Namur, Namur, Belgium

Keywords:

Abstract:

EMF, DSML, Collaborative Modeling, Conflict Detection, Merging.

Despite the fact that Domain Specific Modeling tools become very powerful and more frequently used, the

support for their cooperation has not reached its full strength and demand for model management is growing.
In cooperative work, the decision agents are semi-autonomous and therefore a solution for reconciliating DSM
after a concurrent evolution is needed. Conflict detection and reconciliation are important steps for merging
of concurrently evolved (meta)models in order to ensure collaboration. In this work, we present a conflict
detection, reconciliation and merging framework for concurrently evolved meta-models and models. Besides,
we formally specify the EMF Ecore meta-model into set constructs that help to analyze the (meta)model and

operations performed on it.

1 INTRODUCTION

Domain Specific Modeling languages (DSML) have
matured and used as an efficient alternative to General
Purpose Modeling languages (e.g., UML, Petri Nets)
for modeling complex systems (Kelly, 1998). DSML
defines the structure, behavior and requirements of
software applications in specific domain by using
domain concepts rather than generic modeling lan-
guages (Schmidt, 2006). The benefits of using DSML
have been described in (Kelly and Tolvanen, 2008).
DSML describes concepts at different levels of ab-
straction using models, meta-models and meta-meta-
models. A model is an abstraction of a software sys-
tem and a meta-model is a DSL oriented towards the
representation of software development methodolo-
gies and endeavors (Gonzalez-Perez and Henderson-
Sellers, 2008). A meta-meta-model is a minimum set
of concepts which defines languages (i.e. MOF (Ob-
ject Management Group (OMG), 2002), MetalL (En-
glebert and Heymans, 2007), EMF/Ecore (Steinberg
et al., 2009)). A meta-meta-model specifies all the
concepts and constraints that are used and respected,
respectively, by the meta-model (a meta-model con-
forms to a meta-meta-model). Besides, a meta-meta-
model describes itself.

Since 90’s several metaCASE tools have been de-
veloped such as Atom3 (de Lara and Vangheluwe,
2002), GME (Ledeczi et al., 2001), MetaDone (En-
glebert and Heymans, 2007), or MetaEdit+ (Kelly,

Koshima A. and Englebert V..

1998). These tools give an ad-hoc environment that
enables method engineers to edit and manage models
and/or meta-models. However, most of these meta-
CASE tools consider the modeling process as a single
user task even though modeling of software systems
usually requires collaboration among members of a
group with different scopes and skills (i.e. middle-
ware engineers, human interface designers, database
experts, business analysts) (Koshima et al., 2011;
Koshima et al., 2013). Therefore, there is a need for
metaCASE tools to support sharing of modeling arti-
facts (i.e., model and meta-models) and managing and
synchronization of activities of the group members.

In collaborative modeling, different members of a
group could concurrently edit shared modeling arti-
facts throughout the development life cycle of a soft-
ware application. As a result, the shared modeling
artifacts might not seamlessly work together or the
final result may not be what users want. In other
words, these modeling artifacts become inconsistent
with each other. The main challenge of collaborative
modeling is to detect inconsistencies and conflicts and
to resolve them. These conflicts could be textual, syn-
tactic, or semantic (Mens, 2002). Although there are
some approaches for detecting conflict in text or tree
based documents, these approaches are not suitable
for models that have a graph based nature (Altman-
ninger et al., 2009; Mougenot et al., 2009). These
approaches might neglect the syntax and semantics of
models. Our work focuses on syntactic (structural)

55

Collaborative Editing of EMF/Ecore Meta-models and Models - Conflict Detection, Reconciliation, and Merging in DiCOMEF.

DOI: 10.5220/0004709500550066

In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 55-66

ISBN: 978-989-758-007-9

Copyright ¢ 2014 SCITEPRESS (Science and Technology Publications, Lda.)

MODELSWARD 2014 - International Conference on Model-Driven Engineering and Software Development

conflicts. Semantics conflicts are difficult to solve and
are considered in our approach as an extra layer on top
of the proposed framework.

The commonly adopted approach to ensure col-
laboration is a central repository with merge mech-
anisms and locking techniques (Mougenot et al.,
2009). However, the locking technique is not scal-
able for a large number of users who work in parallel
(Altmanninger et al., 2009; Mens, 2002) and it takes
much time to resolve conflicts in practice (Altman-
ninger et al., 2009; Pilato et al., 2008). This approach
also restricts users to be dependent on one repository
and it may introduce unnecessary access right bureau-
cracies that lead to dissatisfaction among members
of a group. For instance, MetaEdit+ (Kelly, 1998)
implements Smart Mode Access Restricting Technol-
ogy (Smart Locks (©) to support concurrent access
of shared modeling artifacts that are stored centrally.
EMFStore (Koegel and Helming, 2010) uses a cen-
tral repository with copy-merge techniques to ensure
collaboration.

There is another mode of collaboration that con-
sists of a group of people concerned by a cooperative
task that is large, transient, not stable or even non de-
terministic (Schmidt and Bannon, 1992). The inter-
action among members of a group could be dynamic
and users are semi-autonomous in their partial work.
Each member has his/her own copy of a shared mod-
eling artifact and carries on his/her activity in isola-
tion with other users or a central authority. Users
communicate their work by sending messages to other
members (Mougenot et al., 2009). This mode of col-
laboration gives users a better control over their data
and it mitigates being dependent on single repository
(modeling artifacts are distributed among members of
a group). But, it is challenging to keep all copies of
modeling artifacts consistent; because they could be
modified concurrently by users.

D-Praxis (Mougenot et al., 2009) is a peer-to-
peer collaborative model editing framework that re-
lies on Lamport clock and delete semantics to au-
tomatically solve conflicts. This framework has a
“lost-update” problem and we argue that final re-
sults of automatic reconciliation process could not re-
flect the intention of users. In this paper, we present
a distributed collaborative model editing framework
called DiCoMEF that ensures collaboration among
DSM tools (Koshima et al., 2011; Koshima et al.,
2013). DiCoMEF lets each member of a group to
have his/her own local copy of shared modeling ar-
tifacts. In DiCoMEF, modifications are controlled by
human agents (not automatic).

This paper extends our previous work (Koshima
et al.,, 2011; Koshima et al., 2013) by giving the

56

formal specification of (meta)models using set con-
structs. It also provides a detailed description of con-
flict detection and reconciliation processes. The pa-
per is organized as follows: Section 2 describes Di-
CoMEF framework. Section 3 gives a formalization
of EMF/Ecore (meta)model. In Section 4, the history
meta-model of DiCoMEF is described in section 4.1.
Section 4.3 presents the conflict detection strategy and
section 4.2 specifies the reconciliation framework.
Finally, section 5 describes the future work and con-
clusion.

2 DiCoMEF

DiCoMEF (Koshima et al.,, 2011; Koshima et al.,
2013) is a distributed collaborative model editing
framework for EMF (meta)models where each mem-
ber of a group has his/her own local copy of a
(meta)model. The main concepts used in DiCoMEF
are person, role, role type, model, meta-model, copy
model and master model. A master (meta)model is
the main (meta)model which has one or more copy
(meta)models that are distributed among editors and
observers. DiCoMEF uses a universal unique iden-
tifier (UUID) to differentiate (meta)model elements
(i.e. classes, attributes, references) uniquely. Two
(meta)model elements are considered as identical if
and only if they have the same UUID. Besides, a
person involved in collaborative modeling has a role,
which is typed as a controller; editor or observer. In
fact, there are two controller role types which are im-
plemented in DiCoMEF such as a model controller or
a meta-model controller.

Model (resp. meta-model) controllers are soft-
ware configuration managers who manage evolutions
of a master (resp. meta-) model. A controller role
type is flexible meaning that it can be assigned (dele-
gated) to other members of a group as long as there is
one unique coordinator per group. A person who has
an editor role can write and read his/her local copy
(meta)models, whereas an observer role only gives a
read access to a local copy (meta)models.

DiCoMEEF relies on two concepts such as Main-
line and branches in order to store models and meta-
models. Besides, it uses these two concepts to facili-
tate communications among members of a group (see
Fig. 1)!. The main-line stores different versions of
a copy (meta)model locally at each editors site. An
editor does not have a write access to modify a copy
(meta)model stored on the main-line. Rather s/he fist
creates a branch from the main-line and modifies the

! Although these terms are also used by SCM programs,
our framework does not rely on a central SCM.

Collaborative Editing of EMF/Ecore Meta-models and Models - Conflict Detection, Reconciliation, and Merging in

(meta)model there. In order to communicate local
modifications with other members, s/he sends her/his
local modifications to a controller as a change request.
The controller propagates accepted changes to all
members of the group and changes propagated from
the controller are applied on the main-line. For exam-
ple, Fig. 1 shows an evolution of a copy (meta)model
from version Vj to version V| on the main-line based
on changes propagated from a controller. Besides, it
indicates a local modification performed by an editor
on the branch that evolves a copy (meta)model from
version Vj to version Vjy 1; a branch was created be-
fore a copy (meta)model evolves from version Vj to
version V.

The communication framework of DiCoMEEF is
organized around the controller that acts as a central
hub wrt. his/her (meta)model he/she is responsible.
This could be a limitation of DiCoMEEF, but at the
same time it might be considered as its strength as
well. Indeed, DiCoMEF provides a technical frame-
work over which different communication strategies
can be employed using method engineering tech-
niques (e.g., delegation mechanisms, pooling). For
example, a token can be used and whoever has a to-
ken is a controller who can modify a (meta)model and
propagates changes.

In DiCoMEF, when members of a group modify
(meta)models locally, elementary change operations
(create, delete and updates) are stored locally in a lo-
cal repository. These elementary operations consti-
tute a history that is used to propagate local modifica-
tions to the controller and secondarily to other mem-
bers. Histories are defined by a history meta-model.
The history meta-model, conflict detection, and rec-
onciliation are discussed later. A detailed descrip-
tion of DiCoMEEF is found in (Koshima et al., 2011;
Koshima et al., 2013).

A change request is a set of local modifications
that are performed by an editor and sent to a con-
troller in order to share local modifications with other
members (commit changes). A change request could
be either accepted, rejected, or modified by a con-
troller before being committed to the main-line (
and then shared with other members). A controller
works by consulting a rationale of modification or
an editor who proposed the change request in case
of conflicts. Afterwards, if the change request is
accepted, the controller sends a change propaga-
tion to all members so as to evolve (meta)models.
(Meta)models on the main-lines evolve automatically,
whereas (meta)models on branch evolve when a user
updates a branch based on the change propagation.
For example, in Fig. 1, a copy (meta)model evolves
from version V; to version V| on the main-line based

DiCoMEF

% Editor (Edward)

Figure 1: Main-line and Branch.

on changes propagated from a controller. It also
shows a branch that is created by an editor to modify a
copy (meta)model locally from version Vj to version
Vo.1; a branch was created before a copy (meta)model
evolves from version V; to version V.

We have implemented DiCoMEF as an Eclipse
plug-in that captures the history of (meta)model
adaptation when the user edits tree views or uses
the GMF editor (Graphical Modeling Framework
(GME), 2013). The communication framework of Di-
CoMEF is implemented using Java Messaging Ser-
vice (Monson-Haefel and Chappell, 2000): users can
exchange modifications via email. DiCoMEF has
a MessageListnerImp that implements an IMessage-
Listner interface and checks whether there is a new
email message or not. If it receives a new email mes-
sage, it downloads the file and updates the DiCoMEF
repository automatically.

3 FORMALIZATION OF MODELS

Some research work has been done in the past to for-
mally specify an EMF meta-model using graph theory
(Taentzer et al., 2012). In (Monperrus et al., 2009),
the authors used a set theory to define an abstraction
level of MOF (Object Management Group (OMQG),
2002). This work used a set theory to formalize an
EMEF Ecore model (Steinberg et al., 2009) because we
believe that most people are familiar with the set the-
ory as a result it is easy for people to understand and
reason about models.

3.1 Notation

In this paper, we will use several ad-hoc notations
that are defined in this preliminary section. In a bi-
nary cartesian products, the identifying component
is underlined. If R C A x B then Va € A,Vby,b; €
B: (a,by),(a,by) € R = by =by and R(a) =b =
(a,b) € R. The presence of partial orders can be in-
dicated with the < superscript: R C A X B< means

57

MODELSWARD 2014 - International Conference on Model-Driven Engineering and Software Development

that tuples with a common element in first position
are ordered (a,b;1) < (a,b2) < (a,b3) wrt a and this
information can be abbreviated as R(a) = [by, b2, b3].
The position (index) of an element in the list is repre-
sented with pos function as follows pos(b2,R(a)) =1
and [e,...,es] —i 2 [e1,...,ei 1,€i11,-.-,en). If Ris
a binary relation C A x B, then we note R~ the in-
verse relation C B X A: (a,b) € R < (b,a) € R~ and
we note R* its transitive closure, i.e. {(a,b) T (a,b) €
RV3c: (a,c) € RA(c,b) € R*}. 25 denotes the pow-
erset of a set S and A — B a mapping function from
set A to set B.

3.2 The Ecore Meta-meta-Model

Eclipse Modeling Framework(EMF) is widely used
to build tools and applications. It generates codes
(i.e. classes for the meta-model and adapter classes
for viewing and editing models) based on the struc-
tured data model (Steinberg et al., 2009). A model can
be expressed using annotated Java interfaces, XML
Schema, or UML modeling tools. EMF provides a fa-
cility to generate one form of representation from the
other (using the EMF framework). EMF uses Ecore as
a meta-meta-model to define different DSL languages
and itself. Figure 2 shows the UML class diagram of
the Ecore meta-model. The association depicted with
blue color are derived associations where as the black
lines are non-derived associations.

The root element of an Ecore meta-meta-model
is an EPackage. An EPackage contains zero or
more sub-packages and EClassifiers (i.e. EClass,
EDataType, EEnum). A model class is represented
by using an EClass, which is identified by a name and
has zero or more attributes and references. A class
can have zero or more super types. It can have zero
or more operations. Properties (attributes) of a class
are modelled using an EAttribute, which has a name
and a type. Associations are modelled by ERefer-
ence(s). An EReference models an end of an asso-
ciation between two classes; it has a name and a type
(the EClass at the opposite end of the association). A
bi-directional navigable association is modelled us-
ing two references that are related to each other by
an eOpposite link. Besides, a composition associa-
tion is represented by setting a containment boolean
property of an EReference to true. The cardinality
of a reference is modeled by setting lowerBound and
upperBound values. Like references, an attribute’s
cardinality could be specified using lowerBound and
upperBound features. The Ecore meta-meta-model is

Zhttp://download.eclipse.org/modeling/emf/emf/javadoc/
2.6.0/org/eclipse/emf/ecore/doc-files/EcoreRelations.gif

58

attached in the appendix and we also invite interested
readers to refer to (Steinberg et al., 2009).

3.2.1 Semantics

The semantics of the Ecore meta-meta-model is for-
mally defined by a systematic mapping of its struc-
tural elements onto mathematical constructs.

We define a set ¥ that encompasses a set of con-
straints expressed in some language that is not rele-
vant here. For each class C in Ecore, we define a set
Ec. For each association r between classes A and B
in Ecore, we define a set p, C E4 x Ep. Let’s observe
that in all the Ecore meta-meta-model diagrams pub-
lished so far, the relations denote accessor methods
and not sets of tuples as specified in the UML stan-
dard (UML 2.0 superstructure, 2011). For this rea-
son, multiplicities in our mapping may not match the
cardinality of the accessor links in the diagrams pub-
lished so far. The product denoting this association is
annotated with the ... and < symbols depending on
its semantics in Ecore: is the association ordered? is
it one-to-many, or-many-to-many? For each attribute
a of type T in class C, a set o, C Ec x T is defined
where T € Ep.

Inheritance between classes is mapped to in-
clusion constraints between the corresponding sets,
hence, if A isa B, then the constraint E4 C Ep is added
to X. When the superclass is abstract, the inclusion is
replaced with the equality operator. We bootstrap first
the process by defining some sets:

Ep = {EString, Elnteger, ...}
EString ={",‘a’,‘aa’,‘ab’,...}
Elnteger = {Elnteger.min,...,—1,0,1, ..., Elnteger.max}

Ep elements are data types. In EMF, a data type
denote simple data types in Java, classes, interfaces,
and arrays that are not modeled using with E¢ ele-
ments (Steinberg et al., 2009). We define Val as the
union of all data type values: Val = Urcg,T.

Ecore classes in the meta-meta-model are mapped
to sets: Ec (aka EClass), Ep (aka EDataType), Ep
(aka EPackage), Er (aka EReference), E4 (aka EAt-
tribute), Eg (aka EEnum), E; (aka EEnumlLiteral),
Eo (aka EOperation), Epy (aka EParameter), Eay
(aka EAnnotation), E,, (aka ENamedElements), E,,.
(aka EModelElement), E. (aka EClassifier), E;, (aka
ETypedElement), Ess (aka EStructuralFeature) and
Eop (aka EObject). Lower case subscripts denote ab-
stract classes. For the sake of simplicity, EFactory
and EStringToStringMapEntry are not considered in
this work.

Collaborative Editing of EMF/Ecore Meta-models and Models - Conflict Detection, Reconciliation, and Merging in

DiCoMEF
EMadelElement
T
eodelElement SyetEAnnotation(source : String) : EAnnotation
0." | +eAnnotations $
I ‘ +eFactorylnstance
1
EAnnolat\Dn ENamedElement EFactory —
source : String ¢ e | B
@idetails | EStringToStringMapEntry 4 Screate(eClass | EClass) : EObject
$createFromString(eDataType | EDataType, literalalue : String) : EdavaObject
Z} convertToString(eDataType | EDataType, instancevalue : ElavaObject) | String
| +ePackage | 1
ETypedElement EClassitier EFackage
gordered | boolean = true @instanceClassName : String ensURI - String
¢unigue : boolean = true +eType | @instanceClass : ElavaClass onsPrefix | String
@lowerBound : int edefaultvalue : ElavaObject
¢upperBound :int =1 0.1 = . SyetEClassifier(name : String) | EClassifier
@many : boolean ®izlnstance(object : EJavaObject) : boolsan -
¢required : hoolean SygetClassifierD(: int L ! +e3ubpackages | U
* +2Package +aSuperPack
Q +eExceptions| 0.7 % 0. +eClazsifiers g BsUperrackage
| |
t +eOperation 0. EGla3 ER:t3Type
0 o gabstract - boolean serializable : boolean = true
o +eParameters ginterface : boolean
+e0perations +eContainingClass $icSuperTypeOfisomeClass © EClass) : boolean
SgetEStructuralF eature(featurelD : int) : EStructuralFeature 0. 1
+aAll0perations CqetEStructuralF eaturefeatureMarme - String) - EStructuralFeature EEnurmLiteral
0= galue ©int
ginstance : EEnumerator
+eAllStructuralFeatures |0.* 4 +eContainingClass 1| +eReferencelype +e3uperTypes
e : +eliterals | 0.*
ructuraiFeature +eStructuralFeatures +eAlContainments +eAllSuperTypes
gehangeable : boolean = true
oualatile : boolean Bieerence +eAttributeType
Giransient © boolean @rontainment : boolean 0
edefaultvalueliteral : String rcontainer - boolean oYY +eEnum
edefaultvalue : ElavaObject gresolveProxies : boolean = trug| TRAIMEleTENCes EEnum
gunsettable : boolean 0.
Gzt el +elipposite 0.1 +eReferences $getEEnumLiteral{narme : String) | EEnumLiteral
‘getFeatureIDO int 0+ +edllAdtributes @qetEEnumLiteralivalue - inf) - EEnumLiteral
®getContainerClass{) : EJavaClass EAttribute n* +eAdtributes
¢iD : boolean 0.1 +elDAttribute
Figure 2: Ecore Meta-model 2.
The inheritance relationship between non-abstract PeClassifiers © Ep X Ec~
class and its subtypes are modeled using set inclusion C Ep x Ep<
. . . PeSubPackages = EP P
constraints and the quality if the supertype is abstract. C B x En<
. X
The base class of all Ecore model elements is an PeSuperTypes = £C X Ec
EObJeCt PeSF Q EC X Esf< (eSF is a shortcut for eStructuralFeatures)

PeIDAttribute CEcxXEy

PeType c @ x E¢

Epne = Eop EAnUEp = Eye
Peopposite c E7R x ER
E.UE.UE,UEp =E,, EoUEPAUESf:Ete <
PeKeys CERXEp
EcUEp =E, EAUER:ESf <
Peoperations CEcXEp
Er CEp <
PeParameters g EO X [EPA}
In this formalization, we don’t consider associations PeExceptions < Eo X Ec
that denote derived associations or facilities to access . C Er xE; <
objects neither opposite associations. Each relevant PeLiterals = £E X EL
association is translated as a relation between its Peannotations C Eme X EAN™

ends. <
Pdetails C Ean X Ey

For sake of simplicity, we define owner(sf) =

p.sr(sf) and type(te) £ porype(te) as respectively
the owner of a structural feature and its type. X is

59

MODELSWARD 2014 - International Conference on Model-Driven Engineering and Software Development

completed with all the integrity constraints defined for
Ecore such as “EPackage must have unique names” or
“the values of the lowerbound attribute must less or
equal than the value of the upperbound attribute for a
same class”,

An Ecore meta-model MM is thus defined as a tu-
ple of sets:

(Ec, Ea,... »PeClassifierss PeSubPackagess - - - s Cname - - - ,Z)

Example: A simple Petri net meta-model (Fig. 3
depicts its class diagram) could be defined as:

Ec ={Pl,Tr,Nt,Ne}
Ej ={Ne.name, Pl.tokens}
Eg ={Pl.to,Pl.from,Tr.from,Tr.to,

Nt.places,Nt.transitions}
Ep ={PN}

Pesr (Ne) =[Ne.name]

Pesr (Pl) =[Pl.tokens, Pl.to, Pl.from|

Pesr (Tr) =[Tr.name, Tr.to,Tr. from)

Pesr (Nt) =[Nt.places, Nt .transitions)

OeClass.name =1 (PL, ‘Place’), (Tr, Transiton’),

(Nt,*Net’),(Ne, ‘NamedElement’),
(Ne.name, ‘name’), (Pl.tokens, ‘tokens’),
(Pl.to,to’),(Pl.from, from’),
(Tr.to,to”),(Tr.from, from’),
(Nt.places, ‘places’),
(

Nt transitions, ‘transitions’) }

3.3 Instantiation

If MM is a meta-model, a model M compliant
with MM (noted M/MM) is defined as a tuple
([Jes [-1a, [-1&, Za) where each component is defined
hereafter (Epp denotes an infinite set of objects):

o [Jc: Ec > 2F08 A class is modeled as a set of
objects.

o [Ju:Esr (Egp x T<) where T is the type of
the attribute (T € Ep). An attribute associates an
object with values of type T'.

e [.]r: Er — (Eop X Eop~) Same for references,
but with objects.

We define t(0) : Egp — Ec the function that maps
an object o to its class ¢ € E¢ such that o € [c] A
—3d € Ec : Pesupertypes(d,c) No € [d]..

60

H nemedtiement <
o name | EStrin
- 914
*
0 *| 1 EI..E . Frn:urr.1t.
ransition
H Place
o fokens @ Elnt

0. %[0 o*
a. 0.+ | from frangitions

plates L 2
- H met

Figure 3: Petri net meta-model.

Figure 4: Petri net instance model.

Example: A petri net instance model (depicted as
an object diagram in Fig. 4) can be formalized as:

[Nt]. = {ner}

[PI]. = {idle,busy,dead}

[Tr]. = {start, kill}

[Pl.name], = {(idle, ‘idle’), (busy, ‘busy’),
(dead, ‘deadlock’)}

[Tr.name, = {(start, ‘start’), (kill, ‘kill’) }

[Pl.tokens], = {(idle,1), (busy,0)}

[Pl.to],(idle) = [start kil

[PL.from], = {(dead,kill), (busy,start)}

[Tr.to], = {(start,busy), (kill,dead)}

[Tr.from], = {(start,idle), (kill,idle)}

[Nt.place],(net) = [idle, busy,dead)

[Nt .transition] (Nt .transition) = [start kil

As explained in Section 3.1, we used the notation

R(a) = [bl,b27b3] to resume (a,bl) < (a,bz) < (a,b3)
for the [] construct.

3.4 Reflexivity

Since the base class of all Ecore model elements is
EObject, this implies that the Ecore meta-meta-model
may specify itself (reflexive definition): the Ecore
meta-meta-model can then be modeled as an Ecore

Collaborative Editing of EMF/Ecore Meta-models and Models - Conflict Detection, Reconciliation, and Merging in

meta-model (e.g. MMgcore). We could expect to
observe the same property in our semantics frame-
work of Ecore. Because of space constraints, we only
present an partial definition of MMgcore:

E¢ = {Ene.Ep,Ec,Eg, ...}
Ej = {E,c.name,Ep.nsURI, Ep.nsPrefix,
E..instanceClassName, E..instanceTypeName}
Er = {Ep.eSubPackages,Ep.eClassifiers,
E.eStructural Features}
Ep = {Ecore}
Pesr = {(Ene, (Ene-name)),
(Ep, (Ep.nsURI,Ep.nsPrefix,
Ep.eClassifiers, Ep.eSubPackages)),
(E¢, (E. instanceClassName,

Eg.containment , E..eStructural Features)) }

Oe.name = {(Ene, ‘ENamedElement’),
(Ep,‘EPackage’),(E., ‘EClassifier’),
(Ene.name, ‘name’), (Ep.nsURI, ‘nsURI’),
(Ep.nsPrefix, ‘nsPrefix’),
(Ec.instanceClassName, ‘instanceClassName’),

(

E.instanceTypeName, ‘instanceTypeName’) }

PeType(Ene.name) = EString
PeType(Ec.insmnceClassName) EString
PeType(Ec.instanceTypeName) = EString
PeType(Ec.eStructural Features) = Egr

PeType(Ep.nsPrefix) = EString
Perype(Ep.nsURI) = EString
Perype(Ep.nsURI) = EString

PeType(Ep.eSubPackages) = Ep
Perype(Ep.eClassifiers) = E,
peSuperTyper(c) = Ene
peSuperTypes (EP) = Ene

)

PeClassi fiers(Ep

This process could be continued with the other
constructs of the Ecore meta-model and it shows that
we can seamlessly define an Ecore meta-model by us-
ing itself meaning that our formalization support the
reflexive nature of Ecore. Moreover, the constructs
are used to define the semantics of a meta-model MM
at the meta-model level or at the model level when it is
reified and consistent. This last point is not discussed
in this paper due to lack of space.

DiCoMEF

4 THE COLLABORATIVE
MODEL

In collaborative modeling as it was mentioned in Sec-
tion 1, (meta)models are concurrently edited by dif-
ferent members of a group. Later, these concurrently
edited (meta)models need to be integrated (merged),
but most of the time they might not seamlessly work
together as a result of inconsistent modifications (con-
flict). These conflicts should be identified and re-
solved.

DiCoMEEF uses a human controller to manage the
evolution of (meta)models. S/He is assumed to be a
business domain expert and who has a good model-
ing experience. Besides, s/he has a right to accept
or reject change requests received from users. Once
a new release is available, changes are propagated to
all users who must take them into consideration be-
fore their own operations. In DiCoMEF, the con-
troller role can be assigned or delegated to other mem-
bers. This could help to facilitate collaboration among
users with different expertise (database, user interface
design, business domain, ...).

In case of conflict with his/her local change, Di-
CoMEEF supports a semi-automatic conflict reconcil-
iation strategy. Later, a user can send his/her lo-
cal modifications merged with the last release of the
model as a change request to the model controller. Di-
CoMEF provides users a facility to compose changes
so as to put them in a same context (i.e., refactor-
ing changes). This could later help user to under-
stand changes during reconciliation process. It also
lets users to annotate rationale of changes with mul-
timedia files (i.e., audio, video, image, or text). Dur-
ing the reconciliation process, users can consult them
to better understand rationale of changes and resolve
conflicts.

4.1 Definition of History Meta-model

Change operations are wused to exchange
(meta)models modifications between users (Blanc
et al., 2009). Besides, they are also used to detect
conflicts and help the reconciliation process. Hence,
it is important to specify the change operations
unambiguously and formally.

A history meta-model has been defined to cap-
ture the information denoted by the change operations
(create, delete and updates®) of models: a model el-
ement can be created (or deleted), a value of a single
valued attribute or reference might be set. Besides,

3Let’s note that read operations are not taken into con-
sideration.

61

MODELSWARD 2014 - International Conference on Model-Driven Engineering and Software Development

a new value can be added (or removed) to a multi-
valued attribute or reference. Once this information
is captured locally by this meta-model, an history can
later be exchanged with other members.

Some works in the past have already used history
meta-models. Hismo (Demeyer et al., 2001; Girba
et al., 2005), a history meta-model based on a FAMIX
meta-model, is an artificial modification history. In-
deed, it transforms a snapshot model like UML or
FAMIX into a history rather than recording modi-
fications whenever they occur. It lacks preserving
their exact time sequences. EDAPT (Herrmannsdo-
erfer, 2009), previously called COPE, is a tool based
on EMF/Ecore meta-model that captures edit opera-
tions of meta-model adaptations whenever they occur.
EMFStore (Koegel and Helming, 2010) uses a history
meta-model to capture adaptation of instance models
but does not work well with meta-model adaptations.

Since the Ecore meta-model is reflexive, con-
structs used to define the Ecore meta-model can be
reused to define an Ecore model and its instances. The
same history meta-model can thus capture both meta-
model and model adaptations seamlessly. By the time
this research was conducted, the history meta-model
of EMFStore was tightly coupled with other compo-
nents of the EMFStore implementation. As a result,
EMFStore cannot be used/installed as an autonomous
component for capturing history of meta-model adap-
tation 4. Hence, we have extended EDAPT to capture
both the adaptations of model and meta-model as part
of the DiCoMEF implementation.

The history meta-model should fulfil the follow-
ing requirements in order to be efficiently used in
distributed collaborative (meta)model editing frame-
work.

(R1) Self Contained: it must not have links (refer-
ences) to model elements (surrogate technique
should be used to reference model elements).

(R2) Universal Unique Identifier (UUI): it should
have unique identifiers that identify change oper-
ations (create, set, delete, ...). Besides, it should
also have UUIs for identifying (meta)model ele-
ments uniquely.

(R3) Composition: it has allow users to create com-
posite of changes from other changes or compos-
ite changes.

(R4)Meta-model Adaptation: it has to capture
meta-model adaptation operations.

(RS5) Model Adaptation: it has to capture model
adaptation operations.

4Recently, EMFStore has had refactoring to reduce a

coupling between parts of the implementation that captures
history with rest of implementation.

62

Table 1: Comparison of EMFStore, EDAPT, DiCoMEF.
[[Rl | R2 [R3 | R4 [R5 | R6 | R/ | R8 | R9 |

EDAPT V v v
EMFStore Y/ Y/ V/ v v
DiCoMEF VIVIVIVIVIVIVIVIV

(R6) Understandability: users intention must be
easy to understand. For example, EDAPT repre-
sents a changing of a parent element of a model
element with a Move operation, which is eas-
ier to understand than EMFStore, which models
the same modification with a composite operation
that is composed of remove and add operations.

(R7) Multimedia Annotation: it has to give a user
with a facility to annotate his rationale with mul-
timedia files.

(R8) Cascade Operations: a delete operation
should capture cascade operations that are caused
by it. For example, when an EClass is deleted
from an EPackage, all the references that point
to the deleted EClass should be set to null. The
delete operation should contain reference opera-
tions (copy of them) that set null value (or remove
the deleted EClass from a collection). This could
help only to roll back conflicting operations
during merging process (to reconstruct references
that are set to null or deleted due to the deletion
of a model element). Roll back is different from
undo operation that store operations in the stack.
Roll back could be applied when an editor is
closed and re-opened again.

(R9) Who Performs Changes and When: it has to
provide facilities to identify an actor who per-
forms changes and when the changes are made.

Based on these requirements, we compare EMFStore,
EDAPT, and DiCoMEEF in Table 1. Indeed, EDAPT
provides a facility to create a composite change from
a set of primitive changes, but it does not support
creating a composite change from other composite
change(s).

For the rest, we define an operation trace ® as
the complete documentation of a transformation step
M'/MM = M/MM > ® where M'/MM is the new
model obtained after application of operation trace ®
— M denotes a model or a meta-model, that doesn’t
matter anymore. And a history could then be defined
as a sequence M/MM > ®; > 0 > 03 > 0. A
trace provides both the information about the precon-
dition and the postcondition of operations.

Figure 5 shows the history meta-model of Di-
CoMEF. We did not show a user model element in
Figure 5 for the sake of simplicity. The Create opera-
tion creates a model element in the context of a con-
tainer element. Delete operation deletes an existing

Collaborative Editing of EMF/Ecore Meta-models and Models - Conflict Detection, Reconciliation, and Merging in

model element from its parent element. Move opera-
tion changes the container of an element. Add opera-
tion adds a model element (data values) to a list of el-
ements. Remove operation removes a model element
from the collection. Movelndex operation changes the
index of an element in a collection. Set operation up-
dates a value of a single-valued attribute or reference.
Each operation step has been formally defined as a
transition between a state before and a state after (de-
noted by the ’ superscript). Definitions of Create and
Delete operations are provided below, the other op-
erations could also be defined seamlessly using the
formalization defined in section 3.

Create Operation: Create operation creates ob-
jects in the context of a container.

M/MM > create(eq, 7, e,i) > M /MM

reEpAey € EbB
A ltype(r)]e = [type(r)]e U {ea}
A (T(el) = owner(r) V (t(ey),owner(r)) € peSuperTypes*)
Al = [rlrU{(erse2)}
A pos(ea, Irll) = i N[l —i = [y
A [Eg.containment]4(r) = true’

T since Eg € Ec (see 3.4) and
type(r) = Egr and Eg.containement € E4 and
owner(Eg.containment) = Ep, expression
[Er.containment],(r) denotes if the reference r
must be considered as a containment or not. EMF
attaches importance to the organization of the in-
formation in a strict containment relationship and
many operations provided by the Ecore API depend

on this hierarchy. For sake of simplicity, we define
«(r) £ [Eg.containment],(r).

Example:create (net, Nt.place, start, 1)

Delete Operation : Delete operation deletes an ex-
isting model element along with its contents (child el-
ements) from its parent element.

M/MM > delete(eq,r,ez) > M /MM

r€ EgAex & Epg AX(r) = true

A ltype(r)l = [type(r)]c\{e2}

A (’c(el) = owner(r) V (t(e1),owner(r)) € pesu,,errypes*)

A Dy = [l \{(er,e2)}

Example: delete(net, Nt.place, start)

4.2 Merging

Merging is a process of fusion of the w” and ®° histo-
ries in such a way that conflicts are avoided. Some or-
der of execution of operations could be imposed to fa-
cilitate merging. For instance, if ®¢ must be executed

DiCoMEF

before %, then this would force ®* to be rolled-back,
next ¢ would be applied and finally @ could be re-
applied. But this process is time consuming (e.g., roll-
back a one day work for a propagated change that re-
names an Eobject). Another option could preserve o*
and next apply ®¢ while there is no conflict. When a
conflict is detected, o is rolled-back and the scenario
is reversed. A user can keep or drop some changes
from ! when it is re-applied. But this ordering is
also a time consuming process . The optimal option
is to consider M/MM:>> " >> @C. In this strategy, if a
conflict occurs while applying @, changes in @’ that
caused the conflict are rolled back.. This last strat-
egy has been chosen in DiCoMEF and relies on an in-
depth analysis conflicts and of the causal relationship
between the rolled back operations and other traces in
the histories. This is discussed in the next section.

4.3 Conflict Detection

Conflict detection techniques can be classified as
either state-based or operation-based (Altmanninger
et al., 2009; Lippe and van Oosterom, 1992; Mens,
2002). State-based techniques do not capture the time
sequence of operations that could be relevant to rec-
oncile conflicts and are thus not acceptable for our
objectives. Contrariwise, operation-based approach
records changes whenever they occur and can capture
refactoring changes (Mens, 2002).

A user might not be able to execute all operations
propagated from a controller on his local copy. For
instance, this could be the case when a user deletes a
model element and a controller propagates a change
which modifies the same model element (i.e., a delete
operation and a set operation). Hence, the deleted el-
ement needs to be re-created (with the same UUI).
DiCoMEF only rolls back the delete operation (re-
create) and the dependent operations (a copy of these
operations is stored in the delete operation). For in-
stance, let an editor and a controller work on the same
model instance described in section 4. The Editor
deletes the start model element (instance of a Tran-
sition class) and sets the name of the busy model ele-
ment (instance of a Place class) to “active”. A con-
troller sends a change propagation to rename a start
model element to “begin”. In order to apply the
change propagation, a deleted element (starf) must
be re-created. During rolling back, DiCoMEEF firstly
creates the start model element and afterwards it re-
establishes the relationships between the start and
the busy, and the idle and the start model elements
(see Figure 6). Rolling back only the delete opera-
tion is important, specially, if there are many changes
performed by a user after deleting a model element.

63

MODELSWARD 2014 - International Conference on Model-Driven Engineering and Software Development

rationales H Rationale

changes B o

0.+ 7| = uri : EString

Histoi
T mnj.eIFlllse :rEsn—mg o.* z ;:igleég;tfstmg D.‘: o rationaleType @ RatiohalaType
- changes
WEISI0N J
history | 1 1 <enumeration::>]
£ RationaleType
H CompositeChan
VErEInE | o clientDate : EDate = position : Elnt_|reverseChanges - TEXT
0.*% | 2 versionlD ; EString i — MACE
iy)
1
eChject ! 47
B contantth: H Valath cascadeChanges
o referencetame : EString o featureMame @ EString [, *
o dataalue © EString
i 2 isReferenca : EBoolaan —|
I |
'E‘ H Mave H valueChange'Withindex| H set ‘ H Delete
- | — o srcPosition : Ent o= aldDataValug @ EString ‘ % elementlDS : EString
[B add | [Hremave H Movelndesx
I I L T oldPosition : Elnt
0.1 |tmrget '
H Mode ElementiD|
Tid : EString . _|source ‘
w2t
0.1 aldreferencevalue ‘
referlenceyalue |
Figure 5: History Meta-model.
delete start model element | The - operator shows that one operation is succeeded
set busy.name to “active” | local (directly or indirectly) by another operation. For
- instance, create(ey,r;,ez,i) > delete(es,rp,e;) and
begin® delete(es, rp,e1) > create(ey,ri,en,i) gives different
set start.name to “begin — :
g prepagated result. In the first case, both operations execute and

delete start model element
set busy.name to “active
create start model element
add start.to to busy

add idle.to to start
setstart.name to “begin ¥

— loeal after merge

Figure 6: Change propagation and local operations.

Rolling back all changes to re-create a deleted model
element could be time consuming. Finally, it renames
start to “begin”.

We employ the Conflict (Table 2 and 3) and Re-
quire (Table 4) relations to detect conflicts between
HC and H' (Koegel et al., 2009). An operation &
is conflicting with another operation wf if the or-
der of serialization of these operations affects the fi-
nal state of the (meta)model (e.g., two set operations
that rename an EObject differently) (Koegel et al.,
2009). Besides, the execution of one of the opera-
tion could invalidate a precondition of another one.

64

the model element e; along with its child are deleted
from the model. But, in the second case, the create
operation cannot execute because the delete operation
deletes the target model element e¢; and makes the
precondition of the create operation invalid. There-
fore, create(ey,r1,ez,i) and delete(es,r,e1) are con-
flicting operations. A composite operation @, is in
conflict with another operation ® if at least one of its
member operation is conflicting with ®;. The seman-
tics of conflicts for other operations could easily be
expressed as well.

Conflict relation calculates a set of conflicting op-
erations. The level of severity of conflicts could vary
based on the type of conflicts meaning that some con-
flicts need user interactions whereas other conflicts
could be solved automatically (Koegel et al., 2009).
Hard conflicts require a user interaction. Soft conflicts
can be resolved automatically by employing some
conflict reconciliation strategies. Tables 2 and 3 show
the conflicting relation — h (resp s) denotes a hard
(resp soft) conflict.

An operation, ®;, requires another operation, ;,

Collaborative Editing of EMF/Ecore Meta-models and Models - Conflict Detection, Reconciliation, and Merging in

Table 2: Conflicting relation (ordered-multivalued).

H Create[Delete[Move [Movelndex [Add [Remove[Set l

Create s h S s s S

Delete h h h h h
Move S h h h s s
Movelndex S h h s s s

Add S h s s S s
Remove S s s s

Set h s

Table 3: Conflicting relation (unordered-multivalued).

l H Create [Delete [Move [Add [Remove [Setj

Create h

Delete h h h h
Move h h

Add h S

Remove S

Set h s

if and only if ®; must be executed before ®; so that the
precondition of ®; is entailed by the post-condition
of ®;. The require binary relation is transitive, but
it is not symmetric. For instance, a create operation
requires another create operation that creates a target
model element (container).

create(es, 2, ey, j) > create(ey,r1,e2,1)

Hence, the require relation is extended with that pat-
tern: (create(ej,ry,en,i),create(es,r,eq,j)). The re-
lation is resumed in Table 4. There is a relation be-
tween the require and conflict relationships: if opera-
tion ®; requires ®; and ®; conflicts with m3, then o,
also conflicts with ®3.

Meta-model adaptation could also lead to a pre-
condition violation, for instance, a reference feature
of a meta-model element could be deleted in a new
version of meta-model that results in violation of pre-
condition for Create, Set, Add, ... operations. In this
case, both the instance model and its respective his-
tory model needs to co-evolve with meta-model. But
model co-evolution and history migration are not in
the scope this paper.

When hard conflicts occur, the DICOMEF frame-
work shows the conflicting operations to the user with
all the required information and the rationale about
them. Once the user has solved the conflict, the merg-
ing process can continue.

S CONCLUSION AND FUTURE
WORK

To fully benefit from DSM tools, it is important to
ensure cooperation among DSML tools. DiCoMEF

DiCoMEF

Table 4: Requires relation.

H Create [Delete [Move[MoveIndex[Add [Remove [Setl

Create
Delete

Move

Movelndex
Add
Remove
Set

AR AN A A AN A

is a distributed model editing framework where users
(i.e., coordinators, editors, and observers) own their
own local copies and can work asynchronously by ex-
changing operation traces. Specifying EMF models
and the semantics of operations performed on models
is a necessary process to assure an unambiguous com-
munication between actors. This approach allows ac-
tors to better understand the rationale behind the evo-
lution of models and to detect conflicts.

Modifications management is important to have a
converging model after concurrent operations. In Di-
CoMEF, modifications are managed by a controller
(human agent). More importantly, a controller role is
flexible meaning that it could be easily assigned to an-
other member. This dynamic roles assignment could
lead people to implement more elaborated strate-
gies on top of DiCoMEF, i.e., a user can delegate
his/her role to another person. Although using a con-
troller to manage collaborative modeling may limit
the scalability, it could be possible to implement dif-
ferent method engineering techniques (e.g., delega-
tion mechanisms, pooling) and strategies on top of Di-
CoMEEF to address the problem. This article has pre-
sented a formalization of the conflicts that can occur
in concurrent histories as well as important require-
ments history based strategies must fulfil.

Although the result of this work is fully opera-
tional, the reconciliation process could take place in
the concrete syntax editors and meta-model seman-
tics (i.e. OCL rules for instance) should be tackled
in a future work. More advanced collaborative work-
flows should be also investigated and be defined on
top of DiCoMEF.

DiCoMEF is implemented as an Eclipse plugin
(54K LOC). The framework will be tested with mas-
ter students during the academic year 2013-2014.
Screenshots and other publications of DICoOMEF are
found in https://sites.google.com/site/dicomef.

REFERENCES

Altmanninger, K., Seidl, M., and Wimmer, M. (2009). A
Survey on Model Versioning Approaches. Technical

65

MODELSWARD 2014 - International Conference on Model-Driven Engineering and Software Development

report, Johannes Kepler University Linz.

Blanc, X., Mougenot, A., Mounier, 1., and Mens, T. (2009).
Incremental detection of model inconsistencies based
on model operations. In Eck, P., Gordijn, J., and
Wieringa, R., editors, Advanced Information Systems
Engineering, volume 5565 of Lecture Notes in Com-
puter Science, pages 32—-46. Springer Berlin Heidel-
berg.

de Lara, J. and Vangheluwe, H. (2002). Using atom as a
meta-case tool. In ICEIS’02, pages 642—649.

Demeyer, S., Tichelaar, S., and Ducasse, S. (2001). FAMIX
2.1- the FAMOOS information exchange model.

Englebert, V. and Heymans, P. (2007). Towards more exten-
sible metaCASE tools. In Krogstie, J., Opdhal, A., and
Sindre, G., editors, International Conference on Ad-
vanced Information Systems Engineering (CAiSE’07),
number 4495 in LNCS, pages 454—468.

Girba, T., Favre, J.-M., and Ducasse, S. (2005). Using
meta-model transformation to model software evolu-
tion. Electron. Notes Theor. Comput. Sci., 137:57-64.

Gonzalez-Perez, C. and Henderson-Sellers, B. (2008).
Metamodelling for Software Engineering. John Wi-
ley, New York.

Graphical - Modeling Framework — (GMF) (visited:
2013). Graphical Modeling = Framework.
http://wiki.eclipse.org/Graphical_Modeling_Framework.

Herrmannsdoerfer, M. (2009). Operation-based version-
ing of metamodels with cope. In Proceedings of the
2009 ICSE Workshop on Comparison and Versioning
of Software Models, CVSM ’09, pages 49—-54, Wash-
ington, DC, USA. IEEE Computer Society.

Kelly, S. (1998). Case tool support for co-operative work
in information system design. In Rolland, C., Chen,
Y., and Fang, M., editors, Information Systems in the
WWW Environment, volume 115 of IFIP Conference
Proceedings, pages 49—-69. Chapman & Hall.

Kelly, S. and Tolvanen, J.-P. (2008). Domain-Specific Mod-
eling. Enabling full code generation. Wiley-IEEE
Computer Society Pr.

Koegel, M. and Helming, J. (2010). EMFStore: a model
repository for emf models. In Kramer, J., Bishop,
J., Devanbu, P. T., and Uchitel, S., editors, ICSE (2),
pages 307-308. ACM.

Koegel, M., Helming, J., and Seyboth, S. (2009).
Operation-based conflict detection and resolution. In
Proceedings of the 2009 ICSE Workshop on Compar-
ison and Versioning of Software Models, CVSM ’09,
pages 43—48, Washington, DC, USA. IEEE Computer
Society.

Koshima, A., Englebert, V., and Thiran, P. (2011). Dis-
tributed collaborative model editing framework for
domain specific modeling tools. In ICGSE, pages
113-118. IEEE.

Koshima, A. A., Englebert, V., and Thiran, P. (2013). A
reconciliation framework to support cooperative work
with dsm. In Reinhartz-Berger, 1., Sturm, A., Clark,
T., Cohen, S., and Bettin, J., editors, Domain Engi-
neering, pages 239-259. Springer Berlin Heidelberg.

Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J.,
Thomason, C., Nordstrom, G., Sprinkle, J., and Vol-

66

gyesi, P. (2001). The generic modeling environment.
In Workshop on Intelligent Signal Processing.

Lippe, E. and van Oosterom, N. (1992). Operation-based
merging. In Proceedings of the Fifth ACM SIGSOFT
Symposium on Software Development Environments,
SDE 5, pages 78-87, New York, NY, USA. ACM.

Mens, T. (2002). A state-of-the-art survey on software
merging. [EEE Trans. Softw. Eng., 28:449-462.

Monperrus, M., Beugnard, A., and Champeau, J. (2009).
A definition of “abstraction level” for metamodels.
In Engineering of Computer Based Systems, 2009.
ECBS 2009. 16th Annual IEEE International Confer-
ence and Workshop on the, pages 315-320.

Monson-Haefel, R. and Chappell, D. (2000). Java Message
Service. O’Reilly & Associates, Inc., Sebastopol, CA,
USA.

Mougenot, A., Blanc, X., and Gervais, M.-P. (2009). D-
praxis: A peer-to-peer collaborative model editing
framework. In Proceedings of the 9th IFIP WG 6.1
International Conference on Distributed Applications
and Interoperable Systems, DAIS °09, pages 16-29,
Berlin, Heidelberg. Springer-Verlag.

Object Management Group (OMG) (2002).
Meta Object ; Facility(MOF) Specification.
http://www.omg.org/spec/MOF/1.4/PDF.

Pilato, C., Collins-Sussman, B., and Fitzpatrick, B. (2008).
Version Control with Subversion. O’Reilly Media,
Inc., 2 edition.

Schmidt, D. C. (2006). Guest editor’s introduction: Model-
driven engineering. /EEE Computer, 39(2):25-31.

Schmidt, K. and Bannon, L. (1992). Taking cscw seriously:
Supporting articulation work. Computer Supported
Cooperative Work, 1:7-40.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. (2009). EMF: Eclipse Modeling Framework 2.0.
Addison-Wesley Professional, 2nd edition.

Taentzer, G., Ermel, C., Langer, P., and Wimmer, M.
(2012). A fundamental approach to model version-
ing based on graph modifications: from theory to im-
plementation. Software and Systems Modeling, pages
1-34.

UML 2.0 superstructure (2011). OMG Unified Model-
ing Language (OMG UML), Superstructure. OMG.
formal/2011-08-06.

