
An EMF-based Toolkit for Creation of Domain-specific Data Services

Andreas Bender, Stefan Bozic and Ivan Kondov
Steinbuch Centre for Computing (SCC), Karlsruhe Institute of Technology (KIT),

Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruher, Germany

Keywords: Metamodel, Eclipse Modeling Framework, Dataflow, Data Model, Workflow, Application Integration, Web
Service.

Abstract: Development of composite workflow applications in science and engineering is troublesome and costly due to
high heterogeneity of data representations and data access interfaces of the underlying individual components.
As an effective solution we present a generic toolkit enabling domain experts to develop data models and
automatically generate a self-contained data access service. We defined a custom metamodel based on Ecore
which can be readily used to create domain-specific data models. Using the generated data access service,
instances of the modeled data residing on heterogeneous and distributed resources, such as databases and
cloud data stores, are accessible from the individual application components via a language-independent Web
service interface. We discuss the framework architecture, the toolkit implementation, the deployment process,
as well as the performance of the data access service. Workflow designers as target users would benefit from
the toolkit by using it for rapid and cost-efficient application integration.

1 INTRODUCTION

The complexity of applications for simulation and
data analysis in science and engineering has increased
dramatically over the recent years. Such applications,
often designed in the form of generic workflows,
combine multiple software components originating
from diverse application domains. Thus, developing
such a composite application requires significant ef-
fort either for coordination of experts from these do-
mains or for learning multiple domain-specific pro-
gram codes by individual researchers. Scientists de-
signing workflow applications face a rapidly increas-
ing number of different programs which carry out
very often the same functions. Thus the time nec-
essary to implement changes, which are typically
made on a short notice and rather frequently, has
increased substantially. On the other hand, current
environments for simulation and data analysis pro-
vided at computing centers are still too complicated
for use by non-experts. Since computer simulations
and data analyses are typically planned and carried
out by scientists and engineers who are often non-
experts in the technical field of computer science and
software engineering, a corresponding easy-to-handle
software infrastructure has to be provided. For this
purpose, the paradigms of service-oriented architec-
ture (SOA) (Erl, 2005) and model-driven engineering

(MDE) (Schmidt, 2006) have been adopted to develop
systems at such a level of technical abstraction that
application domain experts can develop composite
applications by integrating existing components fol-
lowing their design rather than spending efforts with
the technicalities of the underlying computing envi-
ronment. For instance, the SOA concept has been re-
cently adopted to integrate multiple components into
workflow applications for multiscale materials simu-
lation (Kondov et al., 2011; Bozic et al., 2012) moti-
vated by demands in the community.

The major challenge we met with constructing a
workflow application is the handling of data exchange
between the workflow steps which is often referred
to as dataflow. Data modeling in workflow’s specifi-
cation has been shown to be very important to avoid
potential data flow problems (Sadiq et al., 2004). Al-
though complex data must be stored in such a way that
all workflow steps can easily access it, many program
codes usually cannot use the same data source in prac-
tice because they have mutually incompatible data
representations, heterogeneous data formats or non-
uniform data access interfaces. A common strategy
employed in multiple application domains bases on
format converters between the workflow steps which
operate for a limited set of supported formats. This
strategy was found unsatisfactory because it requires

30 Bender A., Bozic S. and Kondov I..
An EMF-based Toolkit for Creation of Domain-specific Data Services.
DOI: 10.5220/0004701900300040
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 30-40
ISBN: 978-989-758-007-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



tedious, frequent and error-prone reimplementation
of converters for each combination of simulation or
analysis codes in a workflow application (Bozic and
Kondov, 2012). Moreover, multiple conversions of
large data can become a bottleneck and even make the
workflow simulation unfeasible. Also, the converter
solution is usually restricted to storage on a file sys-
tem which introduces the need to manage additional
metadata along the workflow.

To treat the dataflow more efficiently different
domain-specific non-transferable solutions have been
developed in diverse application domains, e.g. in fu-
sion plasma engineering (Manduchi et al., 2008), nu-
clear magnetic resonance (Vranken et al., 2005; Fogh
et al., 2005; Nowling et al., 2011), computational
chemistry (Murray-Rust et al., 2011; Birkenheuer
et al., 2012), molecular engineering (Dubitzky et al.,
2004; Sild et al., 2005; Sild et al., 2006), oil and
gas industry (Rahon et al., 2012) and materials sci-
ence (Bozic et al., 2012; Bozic and Kondov, 2012),
whereby some of them have employed a model-driven
approach. For example, the integration of COSMOS,
a program code applied in the computational nuclear
magnetic resonance, into the CCPN data model was
straightforward (Schneider et al., 2012) while our at-
tempt to adopt the same data model in other domains,
e.g. in computational materials science, was less suc-
cessful. In particular, we realized that a generic data
model (a metamodel) and a generic tool is necessary
to allow any domain expert in the role of workflow de-
signer to develop domain-specific data models. More-
over, the data should be made accessible from each in-
dividual application code via a language-independent
interface, e.g. a Web service, for rapid implementa-
tion of pre- and post-processors and construction of
workflows from standard components.

In this paper we present a generic solution for
modeling and management of data in scientific work-
flows in a simple and uniform way. We report on a
development of the concept from (Bozic and Kon-
dov, 2012) resulting in a novel SOA- and MDE-based
framework using modern standards for Web services.
We will describe the implementation of the frame-
work and discuss its functionality and general appli-
cability. This service-oriented framework is based on
a custom metamodel and domain models from which
a complete service can be created with the Eclipse
Modeling Framework (EMF).

Elsewhere (Bender et al., 2013) we have demon-
strated the applicability and the practical benefits of
the framework in the use case of a composite multi-
scale modeling application in computational science.
Here, we will focus on the program architecture and
report on the technical implementation of the frame-

work as a toolkit for model-driven automatic genera-
tion of data access services. The paper is organized
as follows. In the next Section 2 we introduce the re-
quirements and then in Section 3 discuss the concep-
tual design and program architecture of the toolkit. In
Section 4 we discuss our specific selection of tech-
nologies which were used for the toolkit implementa-
tion and the generation process as described in Sec-
tion 5. Further, in Section 6, we outline the unique
advantages of our approach and analyze the perfor-
mance of the data access service generated for a spe-
cific use case. In Section 7 we review related ap-
proaches in the context of the present work. Finally, in
Section 8, we summarize the key results of this work
and suggest directions for future work.

2 REQUIREMENTS ANALYSIS

In order to develop and implement a concept for the
framework we have considered all lessons learned
from previous experience and the requirements of
data modeling in different domains. In the follow-
ing we will outline the essential requirements. The
framework should

� be generic and domain-independent so that it can
be used in different domains with no further mod-
ification.

� act as a bridge for access to heterogeneous and
distributed storage from distributed workflow ap-
plications thus providing two interfaces — one for
the storage and one for the application side.

� provide a modeling environment, containing a
graphical editor, for creation of data models for
domain-specific needs.

� provide utilities for fully automatic code genera-
tion of all components because it will only in this
case provide a low-effort and low-threshold solu-
tion for the end-user.

� provide a language-independent application ac-
cess interface, e.g. a Web service.

� provide an abstract storage access interface allow-
ing applications to connect to distributed and het-
erogeneous data storage resources e.g. relational
databases, simple files or cloud storage services
such as Amazon S3.

The implementation of the framework will be a
toolkit providing interfaces that assist the user in all
steps of the service creation: from the construction
of a data model, through code generation of a ser-
vice, up to the deployment as data access server. The
toolkit should be operating system-independent and

An�EMF-based�Toolkit�for�Creation�of�Domain-specific�Data�Services

31



NamedElement
-name : EString

DataEntity Reference

Attribute

*
*

«datatype»
EDataType

1

M3

M2

M1

M0

Ecore (EMOF)

Custom Metamodel

Domain Model

Objects of Reality

1

entities

attributeType

attributes

referenceType

references

*

Package
-nsURI : EString
-nsPrefix : EString

Figure 1: Custom M2-layer metamodel.

preferably based on open-source technology. In ad-
dition we aspire to use the modular service platform
OSGi which enables reuse of components, reducing
the complexity during developing components, ver-
sioning, simple deployment and dynamic updates.

3 FRAMEWORK
ARCHITECTURE

In this section we describe the architecture of the
framework starting with the selection of the meta-
model from which all domain-specific data models
will be instantiated. Afterwards the concept of a Ser-
vice Generator which transforms a given data model
into a set of kernel classes is explained. Finally we
will have a closer look at the generic kernel which
provides two interfaces connecting a storage resource
with arbitrary workflow applications.

3.1 Metamodel

The creation of individual domain-specific models, as
aimed by our framework, is part of an MDE process.
The Meta Object Facility (MOF) is an MDE standard
defined by the Object Management Group (OMG,
http://www.omg.org/) forming the base for building
custom metamodels as shown on the left hand side of
Fig. 1. The M3 layer is the most generic one and de-
fines a standard for the creation of meta-metamodels
which are needed to build metamodels. Metamodels
are resident in the M2 layer. The most prominent rep-
resentative of this layer is the Unified Modeling Lan-
guage (UML) (OMG, 2003). However, UML class
diagrams contain methods or other components be-
yond those needed to model data entities and rela-
tionships. This UML complexity should not be ex-
posed to the user constructing domain-specific mod-
els. To solve this problem we used the M3 (Ecore)
layer to create a custom simple data-centric meta-
model (in the M2 layer) as alternative to UML which
can be understood by domain experts having no IT

knowledge. This custom metamodel is restricted to
the minimum necessary for modeling and managing
data and forms the base for domain models which are
part of the M1 layer. Thus, the proposed custom meta-
model is innovative because it implements a practical
trade-off between genericity and instant usability. A
concrete instance of the M1 layer is a model that de-
scribes real objects and related data of the M0 layer.
The objects of reality pertinent to the M0 layer repre-
sent domain-specific data units that users would like
to make persistent in a storage instance. The mean-
ing and value of such data units depend on the corre-
sponding domain. For example, in computational ma-
terials science such objects could be atoms, molecules
and chemical bonds between atoms. We designed
the custom metamodel primarily for simulations and
data analysis in scientific and engineering applica-
tions. However, owing to capabilities of Ecore the
M2-layer metamodel can be readily extended to allow
typing of data structures such as e.g. data cubes.

The diagram in Fig. 1 shows the newly defined
metamodel which is based on Ecore. The main el-
ement of the metamodel is the DataEntity which is
used to model concrete data entities. These entities
contain Attributes of different data types and may also
contain References to other entities. With these refer-
ences relationships or dependencies between entities
can be defined. DataEntities are combined in a Pack-
age. A package is necessary to define identification
information, such as a URI, in order to distinguish
between different data models. It is planned to extend
the metamodel with the concept of inheritance allow-
ing the creation of more complex data models with
less effort. Also it is intended to further investigate
the applicability of the metamodel in different more
extensive domains.

3.2 Service Generator

Figure 2 depicts the generation process for a domain-
specific Data Access Service. A domain expert uses
a graphical editor to create a domain model based on
the metamodel. Additionally the user has to define

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

32



Service Generator

Metamodel

Domain Model

Domain Expert Properties Data Access Service

Storage

Application/ 
Workflows

Figure 2: From a domain model to a Data Access Service.

a set of properties that are needed to gain access to
the target storage resource, typically including a con-
nection URL and security credentials. Another set of
properties is mandatory to define the Web service in-
terface. The metamodel, the domain model and the
service properties are then used by the Service Gen-
erator to transform the model to the final Data Access
Service.

3.3 Data Access Service

To support a large number of applications and make
the Data Access Service accessible via the Internet
we adopted the SOA paradigm making use of Web
services technologies and open standards. The main
component of the Data Access Service is a kernel
that connects applications via a Web service with a
data storage. The kernel has a three-layer architec-
ture shown in Figure 3. The persistence layer han-
dles the mapping between data objects and storage
entities. A well known technology to realize this
is O/R (object-relational) mapping (Ambler, 2012).
Unfortunately this technology is limited to relational
databases and we decided to use a storage-type inde-
pendent solution for this part. The toolkit users should
be able to choose a storage type for their data which
fits best to their problem domain, for instance re-
lational, graph-based, web-based or document-based
data stores. The purpose of the representation layer is
to marshal/unmarshal data objects to a transport for-
mat, e.g. XML or JSON. The most complex layer is
the resource layer which defines the Web service in-
terface. The layer acts as controller mapping the Web
service operations to CRUD (Create, Read, Update,
Delete) operations of the persistence layer. Further-
more it is responsible to deliver and receive marshaled
data objects using the representation layer.

4 TECHNOLOGY SELECTION

Previously (Bender et al., 2013) we have briefly in-
troduced the technology stack which has been derived
from the requirements and the framework concept. In
this section we will discuss the pros and cons of dif-
ferent technologies available for the implementation.
We suppose that such a discussion is interesting in the
domain of model-based engineering and can be used
to improve existing modeling tools.

4.1 Model Development

The Eclipse Modeling Framework (EMF) has been
established within the Eclipse Modeling Project
(http://www.eclipse.org/modeling/) providing model-
based development technologies and a large collec-
tion of modeling tools for the Java programming en-
vironment, including graphical tools for construction
of models and metamodels, editors and for generation
of source code. Since we have the requirement to de-
fine a metamodel and corresponding graphical editors
as well as a code generator, therefore EMF seems to
be the technology of choice.

4.2 Model Transformation

The Eclipse Model To Text (M2T,
http://www.eclipse.org/modeling/m2t/) project
enfolds three generator tools which are capable of
transforming concrete models into text or source
code using different template languages: Java Emitter
Templates (JET), Xpand and Acceleo. JET uses a
language that is similar to Java Server Pages (JSP)
while Xpand uses a self-developed template language
and the template language of Acceleo is an imple-
mentation of the MOF Model to Text Transformation
Language standard (MOFM2T) of the OMG. Xpand
and Acceleo assist the template developer with

An�EMF-based�Toolkit�for�Creation�of�Domain-specific�Data�Services

33



Storage

Model

Persistence 
Mapping

View

Data Serialization
Controller

Web Service

Persistence LayerResource Layer Representation Layer

C
lie

n
t A

p
p

licatio
n

s

Figure 3: The Data Access Service encapsulates a kernel with a three-layer architecture.

rich text editors that provide syntax highlighting,
syntax validation and code completion. The standard
template editor of JET is yet not fully developed. The
template editors of Xpand and Acceleo look very
similar in respect of usability and function volume.
Because, in addition, Acceleo follows the MOFM2T
standard we decided to build our generator tool with
the help of Acceleo.

4.3 Editor Development

The Graphical Editing Framework (GEF) supports
developers in creating graphical editors for the
Eclipse Platform. Such editors provide convenient
means to create complex objects such as state dia-
grams and process flow editors. To simplify the cre-
ation of graphical editors based on EMF metamod-
els and GEF, the Graphical Modeling Project (GMP)
provides generation components and runtime infras-
tructure. Especially the Graphical Modeling Frame-
work (GMF) allows the development of diagram edi-
tors based on Ecore models without programming any
line of code.

4.4 Persistence Layer

A main requirement of the service is the possibil-
ity to save data in different kinds of storage. A
flexible way to handle this issue provides the stan-
dard Java Data Objects (JDO) (Oracle Corpora-
tion, 2013b). JDO is an annotation-driven frame-
work which maps Java objects to storage entities.
The reference implementation of JDO is DataNu-
cleus (http://www.datanucleus.org) which supports a
large set of various storage types such as RDBMS
(Oracle, MySQL), map-based (HBase, Cassandra),
document-based (MongoDB) and web-based (Ama-
zonS3, Google Storage) storages.

Several EMF-based frameworks address the topic
of persisting models in different ways. Connected
Data Objects (CDO, http://www.eclipse.org/cdo/) can
be used to store EMF models in a central repository.

Although the pluggable storage backend of CDO is
very promising, the variety of supported storage types
is very limited and covers mostly relational database
systems. A similar approach regarding the persis-
tence of models employs the framework Teneo. It
provides a model-relational mapping using Hibernate
and EclipseLink. Teneo is also used in the CDO Hi-
bernate Store and supports only relational databases.

A very interesting EMF-based framework, espe-
cially considering the resource layer which is dis-
cussed in the next section, is Texo. From a model
definition it builds a web server which uses the Java
Persistence API (JPA) (Oracle Corporation, 2013c) to
store model data in relational data stores. In addition
it provides a REST interface which allows clients to
retrieve and modify data objects over a network. For
this purpose the data objects are serialized in XML
or JSON. Unfortunately it also does not fulfill the
requirement that different types of data storage sys-
tems, e.g. document-oriented or cloud storage sys-
tems, should be supported. Therefore we decided
to develop an own flexible solution with JDO and
DataNucleus respectively.

4.5 Resource Layer

The resource layer should provide a programming
language-independent interface in order that differ-
ent applications can access data objects in a simple
and uniform way. As solution we chose a REST-
based Web service (Richardson and Ruby, 2007). We
decided to use REST over a SOAP-based Web ser-
vice (W3C, 2007) because the processing of domain
data will follow the CRUD functionality which is
represented by the standard HTTP methods (GET,
PUT, POST, DELETE). Furthermore the SOAP pro-
tocol has a significant overhead due to increased
data volume transferred by the service. REST ser-
vices with Java are defined by the JAX-RS specifi-
cation (Oracle Corporation, 2013d). We used Jersey
(http://jersey.java.net/) for the implementation of the
resource layer because it is the reference implementa-

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

34



tion of the JAX-RS specification which is widely used
by well-known Java projects.

4.6 Representation Layer

To combine the JDO technology with the REST
service, we needed to transform Java objects into
a language-independent representation format, e.g.
XML or JSON. A standard for this purpose is JAXB
(Java Architecture for XML Binding) (Oracle Corpo-
ration, 2013a) which can be used for binding XML
data to Java objects and vice versa. Thus, object in-
stances of the representation layer have dependencies
on the model and resource layer and transform the in-
coming data from the application layer to the corre-
sponding JDO objects of the storage layer.

4.7 Technology Stack

An overview of the chosen technologies is given in the
technology stack in Fig. 4. The stack has five layers of
components that we used to build a toolkit for gener-
ation of Data Access Services. The layers of the stack
have a fixed sequence owing to the dependencies be-
tween the layers. The sequence of the layers gives rise
to the specific build process that is explained in Sec-
tion 5.2. The first layer includes the definition of new
domain-specific models done with a simple graphical
editor based on EMF or a more complex diagram ed-
itor created with GMF. Acceleo templates are used to
transform the model definition to concrete Java source
code for the kernel API which is built with implemen-
tations of the specifications for JDO, JAXB and JAX-
RS. Then an Eclipse plug-in compiles the kernel API
to concrete Java bytecode. Finally the compiled ker-
nel code is packaged and deployed in a lightweight
runtime environment for Web services, for example
Apache Tomcat or Jetty from the Eclipse Foundation,
using Ant.

JAX-RS

JDO

Acceleo

EMF

GMF (optional)

Kernel API

Transformation

Modeling

Se
q

u
e

n
ce

Build
Ant

Runtime Jetty

JAXB

Eclipse

Figure 4: The technology stack used to build the toolkit.

5 TOOLKIT IMPLEMENTATION

One of the objectives is to provide a modeling envi-
ronment which supports domain experts with graphi-
cal editors for creating their models including a self-
explanatory GUI to manage the build process of the
Service Generator and to configure the application
and storage access layers. To tackle this task we
have implemented a toolkit based on the Eclipse
platform which in turn is based on the Equinox
OSGi (http://www.eclipse.org/equinox/) implementa-
tion and available for many operating systems. All
toolkit components were developed as Eclipse plug-
ins and made available on an Eclipse update site so
that users can install the toolkit with a few clicks into
their Eclipse installation.

The plug-ins can be classified in three categories:
The first category are the plug-ins that are based on
EMF and which are generated mostly automatically.
The second category contains the generation plug-in
which manages the model-to-text transformation pro-
cess. Here the Acceleo templates are specified which
are used to generate all source and configuration files
of the Data Access Service from a domain model. The
third category includes the main plug-in of the toolkit,
which we will discuss as well as the EMF-based plug-
ins in more detail below.

5.1 EMF-based Plug-ins

The first plug-in in this category specifies the Ecore
representation of the metamodel. Additionally a gen-
erator model automatically has been derived by EMF
from the metamodel which stores parameters for the
EMF code generator used to create source code for
other plug-ins described below. These two models
form the base for additional GMF models (gmfgraph,
gmftool, gmfmap, gmfgen) that are used to create a
high-quality diagram editor.

A plug-in whose content is based on the genera-
tor model is the edit plug-in. Its classes define the
base for graphical model editors. Some included
icons are used to mark the different model elements
in the editor view. To reduce the number of selectable
choices for the data type of an Attribute we made
some changes to this plug-in so that only the most
common used types, e.g. Boolean, Integer, Float and
String, are displayed in the editors.

Also based on the generator model an editor plug-
in has been generated. It contains classes for an entire
graphical editor consisting of multiple views (model
view and properties view). Additionally the plug-in
adds a wizard to the Eclipse platform which assists
users with the creation of new model files. We did not

An�EMF-based�Toolkit�for�Creation�of�Domain-specific�Data�Services

35



make any changes in the source code of this plug-in.
To provide a graphical model editor which is more

comprehensive than the one defined before we built a
diagram editor plug-in with GMF. The resulting dia-
gram editor looks similar to a simple UML class ed-
itor and facilitates a more sophisticated overview of
the data entities and the connections between them.

5.2 Main Plug-in

The main plug-in references the others to provide an
intuitive graphical interface and hides the details of
the generation process of the Data Access Service
from the users.

With the help of wizards users can create a new
project in Eclipse which contains a default model file
as well as a basic properties file which are starting
points for the users to define a new domain model.
When a model is designed the user can execute a
wizard which will guide them through the build pro-
cess. The user can choose if only a web applica-
tion file should be generated or a full-blown ready-
to-start web server with the web application already
installed. To make this possible we distribute a Jetty
web server with the toolkit. Although we provide
Jetty by default, the generated web application is
runnable on different servlet containers or Java appli-
cation servers, e.g. Apache Tomcat or GlassFish.

A wizard parametrizes and manages the build pro-
cess for the Data Access Service. The user has to
enter several properties regarding the storage and the
Web service layer that are mandatory to create a func-
tional kernel. If the user enters valid parameters the
wizard executes a sequential workflow which builds
the Data Access Service with the help of Ant.

Figure 5 shows the build process in more detail.
The initialization step creates a folder structure for the
generic Java source code, properties files and com-
piled classes. Then the code generation with Acceleo
from the user-generated domain model and a prop-
erties file is triggered. The generated Java classes
are stored in a package structure which reflects the
kernel architecture presented in Fig. 3. The usage
of DataNucleus implies an enhancement step which
is necessary to extend the byte code of the classes
from the resource package with additional function-
ality needed for persistence. In the deployment phase
the compiled and enhanced classes, constituting the
ready-to-run Data Access Service, are packed into a
WAR archive. Finally the WAR file and additional
storage drivers are copied to a Jetty web server which
is then zipped.

6 BENEFITS OF THE DATA
ACCESS SERVICE

In this section we discuss some aspects in our model-
driven Data Access Service that have been addressed
to obtain acceptance in the scientific community and
the industry.

6.1 Deployment

The Service Generator produces a standard WAR file
(Web application ARchive) containing the generated
kernel classes and configuration files that constitute a
web application which can be deployed on different
application servers. We have deployed and run the
generated WAR file successfully on an Apache Tom-
cat and a Jetty web servers. These servers can host
multiple instances of Data Access Services in paral-
lel. To increase the automation, the Service Genera-
tor has the ability to create a ready-to-use Jetty web
server containing the web application together with a
bunch of tested storage drivers.

6.2 Security

Security is always important when processing user
data especially when the service is available via the
Internet. Application servers provide a lot of func-
tionality in the area of security which covers en-
cryption, authentication and authorization. All web
servers support data encryption via the SSL protocol.
Since we are using REST technology all aspects of
authentication and authorization can be handled via
Basic-Authentication or Digest-Authentication which
are also supported well by the Web server vendors.
Beside that alternative authentication protocols, e.g.
Shibboleth, Public Key or Kerberos, can be used to
protect the service from unauthorized parties.

6.3 Evolutionary Design

Usually domain models are subject to permanent
changes. This increases the effort for developing
scientific workflows because changes in the domain
model require changes on all components of the simu-
lation infrastructure in particular on the client and the
storage side. Changes on the client side can be min-
imized by generating the client code using the Web
service description that is automatically published by
the Data Access Service. Our major advantage of
using JDO in the persistence layer is the support of
schemaless storages, e.g. the NoSQL database Mon-
goDB. Such databases keep untouched when chang-
ing the domain model because the structure of the

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

36



Initialisation Code Generation Compilation Enhancement Deployment

Figure 5: Build process for the Data Access Service.

stored documents can vary. However DataNucleus
can handle changes on the domain model even for re-
lational databases as long as the model changes are
limited to the addition of new entities or attributes.
DataNucleus will add new tables and columns au-
tomatically to the database schema. However, after
deletion or change of an existing entity or attribute
the database schema must be updated manually.

6.4 Service Access

The implementation of the application access layer as
a RESTful service allows access from applications
written in various programming languages which
have HTTP support. Furthermore the transport format
is based on XML or JSON which are also in common
use for many programming languages. The REST ser-
vice is described in a WADL file (Web Application
Description Language) including the URIs of the ser-
vice resources. An XSD schema file, also provided by
the service, describes the XML representation that is
used to transfer the data entities between a client ap-
plication and the service. In the Java environment, the
Jersey Client API and the JAXB API can be used to
create service stubs for clients basing on the WADL
and XSD files. On the one hand this reduces the ef-
fort of programming client code to a minimum and on
the other hand it even makes the integration of some
applications containing many components feasible at
all.

Applied to constructing workflows from standard
components the Data Access Service provides a bet-
ter alternative to the common practice of using format
converters between workflow steps by replacing m:n
transformations by a 1:n transformation. Even exist-
ing tools, which operate for a limited set of supported
formats, will benefit in such a way that they do not
have to exchange data in any other formats. Thereby,
the only remaining data transformation is the one be-
tween the internal representation and the one imposed
by the data model.

6.5 Performance

An important factor for the acceptance of the toolkit
is the performance of reading and writing data enti-
ties via the service. To get some insight we have car-
ried out performance measurements for three different

storage types, a document-based MongoDB, a rela-
tional database system PostgreSQL and cloud storage
Amazon S3 as persistence backends. For this purpose
we defined an example entity type named Atom repre-
senting an atom with some attributes such as position
coordinates, charge and element type. The perfor-
mance test was done with a Jersey client that wrote
Atom entities in XML format via HTTP POST re-
quests to the storage. Beside the number of trans-
ferred entities we distinguished whether the entities
are transferred bundled in one POST request (list) or
sequentially (seq) in several POST requests. With
these measurements we could examine the overall ef-
fort for writing data from the application to the stor-
age as displayed in Fig. 6.

For all measurements MongoDB outperforms the
PostgreSQL. For up to 10000 atom entities all write
methods scale almost linearly. Then there is a cross-
over point after which a steeper linear region is ob-
served. The difference between the MongoDB and
PostgreSQL is smaller as between the single and the
bundled write modes, i.e. the effect of the choice be-
tween MongoDB and PostgreSQL is minor. Further-
more, MongoDB seems to scale better with increasing
number of entities for single writes (the correspond-
ing curves diverge in Fig. 6). In contrast, for bundled
writes, MongoDB and PostgreSQL seem to converge
and for sufficiently large data might have the same
performance. Using the Amazon S3 storage, which
is about 100 times slower than the slowest local stor-
age and write mode (PostgreSQL/seq), the bundled
transfer of data entities is always more efficient. The
low performance is due to the used implementation of
JDO (DataNucleus) which executes additional service
requests to Amazon over the network. The bottleneck
seems to be either the network connection, the struc-
ture of the network communication or constraints of
the Amazon service. The possibility to choose be-
tween different storages depending on usage scenario
is a clear benefit of the Data Access Service.

7 RELATED WORK

In this section we outline some recent developments
which have much in common with our present work.
We are not aware of an environment satisfying all re-
quirements of the user communities as discussed in

An�EMF-based�Toolkit�for�Creation�of�Domain-specific�Data�Services

37



0

1

10

100

1000

10 100 1000 10000 100000

T
im

e
, 

se
co

n
d

s

Number of atom entities

MongoDB/seq

MongoDB/list

PostgreSQL/seq

PostgreSQL/list

AmazonS3/seq

AmazonS3/list

Figure 6: Throughput performance of the Data Access Service measured for three different storage backends.

Section 2. In specific scientific and engineering do-
mains (for instance, in materials science) the practical
benefits of the model-driven engineering and service-
oriented architecture is still limited. Existing solu-
tions, some of which are described in the following,
are either too generic, and hence inaccessible for such
communities, or too specific and difficult to transfer
to other application scenarios.

The MEMOPS (MEta-MOdel Programming Sys-
tem) (Fogh et al., 2010) code generation machinery
is a good example for a graphical modeling tool cre-
ated by the Collaborative Computational Project for
NMR (CCPN) (Vranken et al., 2005) and deployed
in the domain of the nuclear magnetic resonance.
MEMOPS offers a graphical tool where domain spe-
cialists can design their models in the UML (Unified
Modeling Language) notation. The MEMOPS frame-
work creates data access libraries (via APIs) and data
storage implementation automatically from the model
description. Unfortunately, the generated APIs are re-
stricted to Python, Java and C that limits the num-
ber of applications and the only supported storage
types are local XML files and SQL databases. There-
fore, the system is limited to non-distributed appli-
cations, i.e. running locally. In another approach for
biomolecular NMR data analysis, workflow models
and conceptual and logical data models (Ellis et al.,
2006) have been proposed which have led recently
to the CONNJUR integrated environment (Nowling
et al., 2011) aiming to support the entire process of
molecular structure determination.

In the framework of the Integrated Tokamak Mod-
eling Task Force (ITM), the Universal Access Layer
(UAL) (Manduchi et al., 2008) has been developed
to provide capability of storing and retrieving data
involved in a simulation using the Kepler workflow
system. The underlying hierarchical data structure is
based on the storage formats MDSplus and HDF5 and
the granularity in data access is defined by a set of so-
called Consistent Physical Objects.

The SIMPL framework architecture has been pro-
posed for access to heterogeneous data sources in sci-
entific workflows (Reimann et al., 2011). The SIMPL
framework has been designed as extension to exist-
ing scientific workflow management systems to pro-
vide abstraction for data management and data provi-
sioning in scientific and engineering simulation work-
flows. However, the SIMPL framework does not pro-
vide means for meta-modeling and data models for
the data structures.

Recently an approach called Morsa (Es-
pinazo Pagán et al., 2011) has been proposed
for scalable access to large models through load
on demand in which model persistence has been
realized using a NoSQL database. Performance
benchmarks with a prototype for EMF have shown
performance superior to CDO and XMI especially
in respect with reduced memory footprint achieved
by partial loading of the data. More recently, the
proposed language T� (Rabbi and MacCaull, 2012)
enables model-driven development and generation of
multi-component workflow applications. Thereby,
the aspects of the persistence component have been
less emphasized as in our present work. Rather,
the provided elaborated language syntax allows
for implementing procedural statements, ontology
queries, declaring user interfaces, applying access
control policy, and task scheduling via Web service
based access interfaces for client applications and
resources.

MDE Eclipse tools have been employed for indus-
trial development of distributed scientific workflow
applications in the oil and gas domain (Rahon et al.,
2012). Similar to the approach in our present work,
the EMF/Ecore is used for modeling and Acceleo for
code generation. Nevertheless, the realization does
not seem to allow the same variety of storage back-
ends and does not provide a language-independent
Web service as client application interface but a C++
library API.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

38



8 CONCLUSIONS

In this paper we presented a generic framework for
model-driven management of data in composite sci-
entific and engineering applications. The essential re-
sult of the realization of the framework is an EMF-
based toolkit, consisting of a set of Eclipse plugins,
which enables domain experts to develop data mod-
els and automatically generate self-contained data ac-
cess services. For this purpose we defined as a spe-
cialization of the Ecore meta-metamodel a custom
metamodel which is optimized for handling domain-
specific pure data models. A data access service is au-
tomatically created employing a generative approach
based on Acceleo and integrating JDO and JAX-RS
to the service kernel, containing a persistence layer, a
resource layer and a representation layer. The data is
then accessible from the individual client application
components via a language-independent Web service
interface of the data access service.

The proposed solution is especially suitable for
applications with high heterogeneity and complexity
of data representations, diversity of programming lan-
guages of the integrated components and data stor-
age resources used. The solution makes possible an
evolutionary design of dynamically changing appli-
cations. Thus the toolkit can be used in all applica-
tion domains of computational science for rapid de-
velopment of complex dynamic applications and ef-
fective deployment as Web services. Although the
toolkit strongly reduces the technical burden of data
modeling and management, it can be combined with
ontology-based frameworks such as the Apache Jena
framework (http://jena.apache.org/) to tackle model
complexity even more effectively.

Future work will focus on analysis of the scalabil-
ity of the data access service, in particular considering
applications for data-intensive analyses and evalua-
tion in production environments. Additionally we en-
visage exploitation of the modeling approach to steer
throughput performance optimizations. Also further
practical aspects such as model revisions and model
changes during service operation will be investigated.

As soon as the framework is released we will pro-
vide tutorials and example use cases to demonstrate
the operability.

ACKNOWLEDGEMENTS

This work has been partially funded by the 7th
Framework Programme of the European Commission
within the Research Infrastructures with grant agree-
ment number RI-261594, project MMM@HPC.

REFERENCES

Ambler, S. W. (2012). Mapping Objects to Re-
lational Databases: O/R Mapping In Detail.
http://www.agiledata.org/essays/mappingObjects.htm
[Online; accessed 6-August-2013].

Bender, A., Poschlad, A., Bozic, S., and Kondov, I.
(2013). A Service-oriented Framework for Integration
of Domain-specific Data Models in Scientific Work-
flows. Procedia Computer Science, 18:1087 – 1096.
2013 International Conference on Computational Sci-
ence.

Birkenheuer, G., Blunk, D., Breuers, S., Brinkmann, A., dos
Santos Vieira, I., Fels, G., Gesing, S., Grunzke, R.,
Herres-Pawlis, S., Kohlbacher, O., Kruger, J., Lang,
U., Packschies, L., Muller-Pfefferkorn, R., Schafer, P.,
Steinke, T., Warzecha, K.-D., and Wewior, M. (2012).
MoSGrid: efficient data management and a standard-
ized data exchange format for molecular simulations
in a grid environment. Journal of Cheminformatics,
4(Suppl 1):P21.

Bozic, S. and Kondov, I. (2012). Dataflow Management: A
Grand Challenge in Multiscale Materials Modelling.
In Cunningham, P. and Cunningham, M., editors,
eChallenges e-2012 Conference Proceedings, page
Ref. 38. IIMC International Information Management
Corporation.

Bozic, S., Kondov, I., Meded, V., and Wenzel, W. (2012).
UNICORE-Based Workflows for the Simulation of
Organic Light-Emitting Diodes. In Huber, V., Müller-
Pfefferkorn, R., and Romberg, M. R., editors, UNI-
CORE Summit 2012 Proceedings, May 30-31, 2012,
Dresden, Germany, volume 15 of IAS Series, pages
15–25. Forschungszentrum Jülich GmbH Zentralbib-
liothek, Verlag.

Dubitzky, W., McCourt, D., Galushka, M., Romberg, M.,
and Schuller, B. (2004). Grid-enabled data warehous-
ing for molecular engineering. Parallel Computing,
30(9-10):1019–1035.

Ellis, H., Fox-Erlich, S., Martyn, T., and Gryk, M. (2006).
Development of an Integrated Framework for Protein
Structure Determinations: A Logical Data Model for
NMR Data Analysis. In Third International Confer-
ence on Information Technology: New Generations,
2006. ITNG 2006., pages 613–618.

Erl, T. (2005). Service-Oriented Architecture: Concepts,
Technology, and Design. Prentice Hall PTR, Upper
Saddle River, NJ, USA.

Espinazo Pagán, J., Sánchez Cuadrado, J., and
Garcı́a Molina, J. (2011). Morsa: A Scalable
Approach for Persisting and Accessing Large Mod-
els. In Whittle, J., Clark, T., and Kühne, T., editors,
Model Driven Engineering Languages and Systems,
volume 6981 of Lecture Notes in Computer Science,
pages 77–92. Springer Berlin Heidelberg.

Fogh, R. H., Boucher, W., Ionides, J. M. C., Vranken, W. F.,
Stevens, T. J., and Laue, E. D. (2010). MEMOPS:
Data modelling and automatic code generation. J. In-
tegr. Bioinform., 7(3):123–145.

Fogh, R. H., Boucher, W., Vranken, W. F., Pajon, A.,
Stevens, T. J., Bhat, T. N., Westbrook, J., Ionides, J.

An�EMF-based�Toolkit�for�Creation�of�Domain-specific�Data�Services

39



M. C., and Laue, E. D. (2005). A framework for sci-
entific data modeling and automated software devel-
opment. Bioinformatics, 21(8):1678–1684.

Kondov, I., Maul, R., Bozic, S., Meded, V., and Wen-
zel, W. (2011). UNICORE-Based Integrated Appli-
cation Services for Multiscale Materials Modelling.
In Romberg, M., Bala, P., Müller-Pfefferkorn, R., and
Mallmann, D., editors, UNICORE Summit 2011 Pro-
ceedings, 7-8 July 2011, Torun, Poland, volume 9 of
IAS Series, pages 1–10, Jülich. Forschungszentrum
Jülich GmbH Zentralbibliothek.

Manduchi, G., Iannone, F., Imbeaux, F., Huysmans, G., Lis-
ter, J., Guillerminet, B., Strand, P., Eriksson, L.-G.,
and Romanelli, M. (2008). A universal access layer
for the Integrated Tokamak Modelling Task Force. Fu-
sion Engineering and Design, 83(2-3):462 – 466.

Murray-Rust, P., Townsend, J., Adams, S., Phadung-
sukanan, W., and Thomas, J. (2011). The semantics of
Chemical Markup Language (CML): dictionaries and
conventions. Journal of Cheminformatics, 3(1):43.

Nowling, R., Vyas, J., Weatherby, G., Fenwick, M., El-
lis, H., and Gryk, M. (2011). CONNJUR spectrum
translator: an open source application for reformatting
NMR spectral data. Journal of Biomolecular NMR,
50:83–89.

OMG (2003). UML 2.0 Infrastructure Specification.
Technical Report ptc/03-09-15, Object Management
Group.

Oracle Corporation (2013a). JSR 222: Java(TM)
Architecture for XML Binding (JAXB) 2.0.
http://jcp.org/en/jsr/detail?id=222 [Online; accessed
6-August-2013].

Oracle Corporation (2013b). JSR 243: Java(TM) Data
Objects 2.0 - An Extension to the JDO specifica-
tion. http://jcp.org/en/jsr/detail?id=243 [Online; ac-
cessed 6-August-2013].

Oracle Corporation (2013c). JSR 317: Java(TM) Persis-
tence 2.0. http://jcp.org/en/jsr/detail?id=317 [Online;
accessed 6-August-2013].

Oracle Corporation (2013d). JSR 339: JAX-RS
2.0: The Java API for RESTful Web Services.
http://jcp.org/en/jsr/detail?id=339 [Online; accessed
6-August-2013].

Rabbi, F. and MacCaull, W. (2012). T�: A Domain Spe-
cific Language for Rapid Workflow Development. In
France, R. B., Kazmeier, J., Breu, R., and Atkinson,
C., editors, Model Driven Engineering Languages and
Systems, volume 7590 of Lecture Notes in Computer
Science, pages 36–52. Springer Berlin Heidelberg.

Rahon, D., Gayno, R., Gratien, J.-M., Le Fur, G., and
Schneider, S. (2012). Migration to model driven en-
gineering in the development process of distributed
scientific application software. In Proceedings of the
3rd annual conference on Systems, programming, and
applications: software for humanity, SPLASH ’12,
pages 181–190, New York, NY, USA. ACM.

Reimann, P., Reiter, M., Schwarz, H., Karastoyanova, D.,
and Leymann, F. (2011). SIMPL - A Framework
for Accessing External Data in Simulation Workflows.
In für Informatik (GI), G., editor, Datenbanksysteme

für Business, Technologie und Web (BTW 2011), 14.
Fachtagung des GI-Fachbereichs “Datenbanken und
Informationssysteme” (DBIS), Proceedings, 02.-04.
März 2011, Kaiserslautern, Germany, volume 180 of
Lecture Notes in Informatics (LNI), pages 534–553.

Richardson, L. and Ruby, S. (2007). RESTful Web Services.
O’Reilly, first edition.

Sadiq, S., Orlowska, M., Sadiq, W., and Foulger, C. (2004).
Data flow and validation in workflow modelling. In
Proceedings of the 15th Australasian database con-
ference, volume 27 of ADC ’04, pages 207–214, Dar-
linghurst, Australia, Australia. Australian Computer
Society, Inc.

Schmidt, D. (2006). Guest Editor’s Introduction: Model-
Driven Engineering. IEEE Computer, 39(2):25–31.

Schneider, O., Fogh, R. H., Sternberg, U., Klenin, K., and
Kondov, I. (2012). Structure Simulation with Calcu-
lated NMR Parameters — Integrating COSMOS into
the CCPN Framework. In Gesing, S., Glatard, T.,
Krüger, J., Olabarriaga, S. D., Solomonides, T., Sil-
verstein, J. C., Montagnat, J., Gaignard, A., and Kreft-
ing, D., editors, HealthGrid Applications and Tech-
nologies Meet Science Gateways for Life Sciences,
volume 175 of Studies in Health Technology and In-
formatics, pages 162–172. IOS Press.

Sild, S., Maran, U., Lomaka, A., and Karelson, M. (2006).
Open Computing Grid for Molecular Science and En-
gineering. J. Chem. Inf. Modeling, 46:953–959.

Sild, S., Maran, U., Romberg, M., Schuller, B., and Ben-
fenati, E. (2005). OpenMolGRID: Using Automated
Workflows in GRID Computing Environment. In
Sloot, P., Hoekstra, A., Priol, T., Reinefeld, A., and
Bubak, M., editors, Advances in Grid Computing -
EGC 2005, volume 3470 of Lecture Notes in Com-
puter Science, pages 464–473. Springer.

Vranken, W. F., Boucher, W., Stevens, T. J., Fogh, R. H.,
Pajon, A., Llinas, M., Ulrich, E. L., Markley, J. L.,
Ionides, J., and Laue, E. D. (2005). The CCPN data
model for NMR spectroscopy: Development of a soft-
ware pipeline. Proteins: Structure, Function, and
Bioinformatics, 59(4):687–696.

W3C (2007). SOAP Version 1.2 Part 1: Messaging Frame-
work (Second Edition).

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

40


