Neural Networks Controler of a Lower Limbs Robotic Rehabilitation Chair

M. A. Mamou, N. Saadia

2014

Abstract

In this paper, we propose a new control law using a kinematic model based on a Feed forward neural network (FFNN). This controller is designed for the control of a robotic rehabilitation chair of the lower limbs designed and created in the LRPE laboratory, with high accuracy. The results of the validation tests, show that the lower limb joints trajectories of the proposed control law are similar to the physiological joints trajectories of a patient. This demonstrates that the proposed control law provides a high performance and a fast convergence with extremely low error.

References

  1. Akdogan, E., Adli, M, A., 2011. The disgn and control of a therapeutic exercise robot for lower limb rehabilitation: physioterabot. In MECHATRONIC, 21: 509-522.
  2. Anama, K., Al-Jumailyb, A, A., 2012. Active exoskeleton control systems: State of the art. In Procedia Engineering, 41: 988-994.
  3. Bhangale, PP., Saha, SK., Agrawal, VP., 2004. A Dynamic Model Based Robot Arm Selection Criterion. In Multibody System Dynamics, 12: 95-115.
  4. Corke, P., 2011. Robotics, Vision and Control Fundamental Algorithms in MATLAB. In Springer. ISBN: 978-3-642-20143-1.
  5. Dombre, E., Khalil, W., 2007. Robot manipulators, modeling performance and analysis and control. In ISTE, ISBN 10: 1-905209-10-X.
  6. Fu, K, S., 1987. Robotics: Control, Sensing, Vision, And Intelligence. The book,McGraw-Hill Book Company. 1987. ISBN: 0-07-022625-3.
  7. Jamwal, P, K., Xie, S., Aw, K, C., 2009.Kinematic design optimization of a parallel ankele rehabilitation robot using modified geneticalgorithm. In Robotics and Autonomous Systems. 57: 1018-1027.
  8. Jazar, R, N., 2010. Theory of Applied Robotics Kinematics, Dynamics and Control. In Springer. ISBN: 978-1-4419-1749-2.
  9. Khalil, W., Dombre, E., 2004.Modeling, identification and control of robots. In Kogan page science. ISBN: 1- 9039-9666-X.
  10. Khalil, W., 2010. Dynamic modeling of robots using recursive newton-euler techniques. In ICINCO2010, Portugal,7: 19-31.
  11. Lo, H, S., Xie, S, Q,. 2012. Exoskeleton robots for upperlimb rehabilitation: State of the art and future prospects. In Medical Engineering & Physics, 34:261- 268.
  12. Marchal-Crespo, L., Reinkensmeyer1, D, J., 2009. Review of control strategies for robotic movement training after neurologic injury. In Journal of Neuro Engineering and Rehabilitation, 6: 20,
  13. Merrouche, l, M., 2011. Conception d'orthèses fonctionnelles pour les paraplégiques. Mémoire, USTHB, Alger mars 2011.
  14. Moughamir, S., Deneve, A., Zaytoon, J., Afilal, L., 2005. Hybrid force/impedance control for the robotized rehabilitation of the upper limbs. In IFAC World Congress, 16: 2169-2169.
  15. Rahman, M. H., Kiguchi, K., Rahman, M, M., Sasaki, M., 2006. Robotic exoskeleton for rehabilitation and motion assist. In International conference on industrial and information systems, 2: 241-6.
  16. Reinkensmeyer, D. J., Emken, J. L., Cramer, SC., 2004. Robotics, motor learning, and neurologic recovery. In Annual Review of Biomedical Engineering, 6:497-525.
  17. Riener, R., Nef, T., Colombo, G., 2005. Robot-aided neurorehabilitation of the upper extremities. In Med Biol Eng Comput, 43(1):2-10.
  18. Saadia, N., Djezzar, K, B., Abdenbi, M., Ziri , N., Merrouche , L., Ababou , A., Ababou, N., 2009. Dispositif Automatique de Rééducation Fonctionnelle des membres inférieurs. In CGE, Alger,6.
  19. Schmitt, C., Métrailler, P., Al-Khodairy, A., Brodard, R., Fournier, J., Bouri, M., Clavel, R., 2004. The motion maker ™: a rehabilitation system combining an orthosis with closed-loop electrical muscle stimulation». In 8th Vienna International Workshop on Functional Electrical Stimulation.
  20. Seddiki, L., Guelton, K., Mansouri, B., Zaytoon, J., 2006. H-infinity Takagi-Sugeno fuzzy control of a lower limbs rehabilitation device. In International Conference on Control Applications. 06: 927-932.
  21. Spong, M, W., Hutchinson, S., 2005. Robot modeling and control. In JOHN WILEY & SONS, ISBN-10: 0471649902.
  22. Zeinali, M., Notash, L., 2010. Fuzzy logic based hybrid impedance/force control for upper limbs robotized rehabilitation. In Transactions of the Canadian Society for Mechanical Engineering. 34: 137-150.
Download


Paper Citation


in Harvard Style

A. Mamou M. and Saadia N. (2014). Neural Networks Controler of a Lower Limbs Robotic Rehabilitation Chair . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2014) ISBN 978-989-758-013-0, pages 65-71. DOI: 10.5220/0004700700650071


in Bibtex Style

@conference{biodevices14,
author={M. A. Mamou and N. Saadia},
title={Neural Networks Controler of a Lower Limbs Robotic Rehabilitation Chair},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2014)},
year={2014},
pages={65-71},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004700700650071},
isbn={978-989-758-013-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2014)
TI - Neural Networks Controler of a Lower Limbs Robotic Rehabilitation Chair
SN - 978-989-758-013-0
AU - A. Mamou M.
AU - Saadia N.
PY - 2014
SP - 65
EP - 71
DO - 10.5220/0004700700650071