
Pattern-based Mapping of OCL Specifications to JML Contracts

Ali Hamie
Computing Division, Brighton University, Brighton, U.K.

Keywords: Constraint Pattern, OCL, JML, Contracts.

Abstract: OCL is a formal notation to specify constraints on UML models that cannot otherwise be expressed using
diagrammatic notations such as class diagrams. The type of constraints that can be expressed using OCL
include class invariants and operation preconditions and postconditions. However, since OCL constraints
cannot be directly executed and checked at runtime by an implementation, constraints violations may not be
detected or noticed causing many potential development and maintenance problems. This paper describes an
approach for deriving a JML specification for a java implementation (a contract) from a specification written
in UML and augmented with OCL constraints. This facilitates the checking of OCL constraints at runtime by
translating them to JML executable assertions. The approach is based on the concept of constraint patterns
that enable the reuse of commonly occurring constraints within a given context in software modelling. Each
OCL constraint pattern would be mapped to a corresponding JML pattern that can be used in the translation
process. The result is a library of JML constraint patterns that provides a seamless transition from UML/OCL
designs to Java implementations.

1 INTRODUCTION

The Unified Modeling Language (UML) (OMG,
2006) has been widely accepted as the standard
object-oriented modelling language and is supported
by a large number of CASE tools. The Object Con-
straint Language (OCL) (Warmer and Kleppe, 2003)
is an integral part of UML, and was introduced to ex-
press additional constraints on models that diagrams
cannot convey by themselves. For example a UML
diagram such as class diagram cannot express all the
relevant constraints about the application being mod-
elled. So class models must typically be refined
with textual constraints written in OCL. These con-
straints include invariants on classes, and precondi-
tions and postconditions of operations. The combina-
tion of UML/OCL in modelling results in more pre-
cise and abstract models. However, developing con-
straint specifications is not an easy task. Among other
things, one important aspect needs to be taken into
account: class diagrams can express complicated re-
lationships, including subtyping, reflexive relations,
or potentially infinitely large instances, and constrain-
ing such facts requires dealing with this complexity.
In order to facilitate and simplify the development
of constraints, the concept of specification patterns
has been introduced as constraint patterns in MDE
(Ackermann and Turowski, 2006; Wahler et al., 2006;

Davis and Bonnell, 2007). A constraint pattern cap-
tures and generalizes frequently used logical expres-
sions. It is a parameterizable constraint expression
that can be instantiated to solve a class of specifica-
tion problems. At a more formal level, a constraint
pattern with respect to a meta-model can be defined
as a function that maps a set of meta-model elements
to a constraint.

As a design notation, however, OCL is not ex-
ecutable and OCL constraints are not reified to im-
plementation artifacts. This could lead to develop-
ment and maintenance problems of constraints such
as inconsistency. One way to overcome some of these
problems is to map OCL constraints to source code in
a form that can be executed and checked at runtime.
Hamie (Hamie, 2004) has defined rules for translating
OCL expressions and constraints to JML expressions
and assertions. This translation was refined and im-
plemented in (Avila et al., 2008) by providing a JML
class libraries for OCL collection types that simpli-
fies the translation. JML is a behavioural interface
specification language that can be used to specify Java
classes and interfaces(Leavens et al., 2006), and a sig-
nificant subset of it can be can be checked at runtime
(Cheon and Leavens, 2002). JML is very specific
to the programming language Java and thus handles
many low-level details. What makes JML suitable

193Hamie A..
Pattern-based Mapping of OCL Specifications to JML Contracts.
DOI: 10.5220/0004698301930200
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 193-200
ISBN: 978-989-758-007-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



for the translation is that it supports several language
and tool features, in particular, specification only vari-
ables called model variables (Cheon et al., 2005) and
specification refinements.

Building on previous work, this paper proposes an
approach for translating a UML/OCL specification to
a specification for a Java implementation (a contract)
based on constraint patterns. The main components
of this approach are a set of JML constraint patterns
that can be used for the translation of OCL constraints
to JML assertions. Each OCL constraint pattern is
translated to a JML specification pattern described as
a JML template. The use of constraint patterns makes
the translation intuitive and traceable. It is also ex-
pected that the use of patterns facilitate automation of
the translation.

In addition of being used for the translation of
constraints, the JML constraint patterns are inspired
by those patterns used in OCL, and as such they are
useful for simplifying the development of assertions
for Java classes and interfaces. This is important since
assertions are recognised as a practical programming
tool and are said to be more effective when derived
from formal specifications such as OCL constraints.

The remainder of the paper is organised as fol-
lows. In Section 2 we briefly review OCL, specifica-
tion patterns, and JML through a small example that
will be used throughout the paper. In Section 3 we de-
scribe a way for translating an OCL constraint pattern
to a JML pattern. In Section 4 we apply the approach
to some OCL constraint patterns and our running ex-
ample. Section 5 provides the conclusion and future
work.

2 BACKGROUND

2.1 Object Constraint Language

The Object Constraint Language (OCL)(Warmer and
Kleppe, 2003) is a textual, declarative notation that
can be used to specify constraints or rules that ap-
ply to UML models. OCL can play an important role
in model driven software engineering because UML
class diagrams are not precise enough to enable the
transformation of a UML model to complete code. In
fact, it is an important component of OMG’s standard
for model transformation for the model-driven archi-
tecture (Frankel, 2002).

A UML class diagram alone cannot express
all relevant constraints about an application. The
diagram in Figure 1, for example, is a UML class
diagram modelling a video rental store. There are
various additional constraints on the model that

VideoRentalStore

*
1 members

store

catalog

store

*

1

rentals

*1

*

1

rentals

member

*

1

Rental

address: String

Title
name: String
noOfCopies : Integer

Member
name: String
id : Integer
age: Integer

Figure 1: A partial class model for video rental store.

cannot be expressed diagrammatically. For example,
a member can only rent one copy of a video title
at one particular time or the number of copies of
a title is greater than zero. It is very likely that a
system based only on diagrams alone will be incor-
rect. Such additional constraints can be precisely
described using the OCL which is based on predicate
logic and mathematical set theory. For example a
simple constraint stating that the number of copies of
a title is greater than zero can be expressed as follows.

context Title

inv : copiesGreaterZero : self:noOfCopies > 0

This constraint, called an invariant, states a fact
that should be always true in the model. The actual
invariant is represented as an OCL boolean expression
using the variable self that refers to an object of class
Title. copiesGreaterZero is the name of the invariant.

It is also possible to use OCL in order to specify
the behaviour of an operation. For example, the
following OCL constraints specifies the behaviour
of an operation Title::addCopies(n : Integer) using
a pair of predicates describing a precondition and a
postcondition.

context Title::addCopies(n: Integer)

pre : n > 0

post : noOfCopies = noOfCopies@pre + n

The pre and postconditions state that if invoked
with parameter n greater than zero the operation sets
the new number of copies of the title by adding n to
the previous number of copies. In the postcondition,
the @pre annotation denotes the value of a property
at the precondition time.

OCL supports several primitives types such as In-
teger, Real, Boolean, and String and collection types
such as Collection, Set, OrderedSet, Bag, and Se-
quence (Warmer and Kleppe, 2003). These types are

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

194



equipped with various operations that can be used for
writing OCL constraints. For example the collection
operation size returns the number of elements con-
tained in a collection, and the forAll operation checks
whether an expression is true for all objects in a given
collection.

2.2 Specification Patterns in OCL

Constraint patterns have been introduced in OCL to
simplify and speed up the development of constraints
and to ensure their consistency (Ackermann and Tur-
owski, 2006; Wahler et al., 2006; Davis and Bon-
nell, 2007). Common constraint expressions are gen-
eralised and captured as constraint patterns. These
patterns can then be instantiated in specific contexts
to generate the concrete constraints.

An example of a constraint pattern is the Attribute
Value Restriction pattern, which can be used to
restrict the attribute values of a class. It has three
parameters: property of type Property, denoting an
OCL property, operator and value of type OclExpres-
sion, denoting an OCL operator and an expression
respectively. This pattern is described in OCL by the
following template.

pattern AttributeValueRestriction(property: Property;

operator: OclExpression; value: OclExpression) =

self:property operator value

The Attribute Value Restriction pattern can be
applied by providing actual values for the formal
parameters. For instance, the constraint that each
member of the video store is over 18 can be stated as
the following invariant.

context Member

inv over18 : AttributeValueRestriction(age; >; 18)

The pattern has been applied in the context of
the class Member where the parameters property,
operator and value have been replaced by the values
age, > and 18 respectively. By unfolding the above
constraint one obtains the following invariant.

context Member

inv over18 : self.age > 18

A good tool can show an unfolded version of the
constraint on demand.

In (Wahler et al., 2006) an extensible library of el-
ementary constraint patterns was presented for OCL
modelling. The idea of elementary constraint patterns
is to identify a relevant set of atomic constraints that
covers frequently occurring restrictions on a model,
e.g. restrictions on attribute values or on relations
between objects. In addition to elementary con-
straint patterns, composite constraint patterns were in-
troduced in order to express complex properties by
combining an arbitrary number of other constraints.
The identified composite patterns include Negation,
If-Then-Else, Exists, Or, and And. Tool support for
specification patterns is provided in the form of a set
of plug-ins for the MDE tool IBM Rational Software
Architect (RSA) that enable consistency-preserving
refinement of UML class models with constraint pat-
terns (Wahler et al., 2006).

2.3 Java Contracts in JML

The Java Modeling Language (JML) (Leavens et al.,
2006) is a formal specification language that can
be used to specify Java classes and interfaces. As
such JML provides an extended Design-by-Contract
concept to the programming language Java. The
Design-by-Contract (DBC) concept includes conven-
tional clauses for preconditions and postconditions of
methods as well as class invariants. JML specifica-
tions or assertions can be added directly to source
code as a special kind of comments called annota-
tion comments, or they can live in separate specifi-
cation files. These assertions are usually written in
a form that can be compiled, so that their violations
can be detected at runtime. In addition, JML pro-
vides clauses for specifying exceptions, and its ex-
tensions include model and ghost variables which de-
scribe specifications only data and therefore allow the
modelling of abstract state space. The relationship be-
tween the concrete state space and the abstract one
is achieved by the use of ’represents’ clauses in the
concrete classes and thus formulate a data refinement
relation.

Figure 2 shows a sample Java code annotated with
JML specification written in a Java source (.java)
file. The annotation comments in the source code
are indicated by //@ and /*@ ::: @*/. It describes
the behaviour of class Title. The JML keyword
spec�public states that the private field noOfCopies
is treated as public for specification purpose; e.g., it
can be used in the specifications of public methods
such as addCopies. The example also shows the
specification of the method addCopies. A method
specification precedes the declaration of the method.
The requires clause specifies the precondition, the

Pattern-based�Mapping�of�OCL�Specifications�to�JML�Contracts

195



/ / F i l e : T i t l e . j a v a
p u b l i c c l a s s T i t l e f

/�@ s p e c p u b l i c @� / p r i v a t e i n t noOfCopies ;
/ /@ p u b l i c i n v a r i a n t t h i s . noOfCopies >= 0;

/�@ r e q u i r e s n >= 0;
@ a s s i g n a b l e noOfCopies ;
@ e n s u r e s noOfCopies == n o l d ( noOfCopies )+n
@� /

p u b l i c vo id addCopies ( i n t n ) fg

/ / t h e r e s t o f d e f i n i t i o n
g

Figure 2: Sample Java code with JML annotations.

assignable clause specifies the frame condition, and
the ensures clause specifies the postcondition. The
JML keyword old in the postcondition denotes the
pre-state value of its expression; it is mainly used in
the specification of a method such as addCopies that
changes the state of an object.

JML is widely accepted and supported by a range
of tools covering the different levels of program ver-
ification from runtime checking (Iowa State JML
tools, via (Leavens et al., 2003)) to static checking
(ESC/Java2, (Cok and Kiniry, 2004)) to ’real’ inter-
active verification (Loop project, (Jacobs and Poll,
2003)). Typically JML extensions are encapsulated in
specially formatted Java comments, so that any Java
tool can still handle the source code.

3 Mapping OCL Patterns to JML

A UML/OCL specification can be mapped to JML by
identifying constructs in the Java program that match
the modelling elements of UML/OCL. These include
types, expressions, operations and classes.

The Types in OCL are directly mapped to Java
types, i.e. Java interfaces providing the required
methods. For certain integer subsets that fit in Java0s
int range we will use that, otherwise we map them
also to interfaces that encapsulate JML0s nbigint.
Sets, relations, etc. can be mapped to JMLs model
classes, but we have to perform cast operations for
retrieving the original types since JML does not yet
support Java0s generics.

OCL expressions are rephrased as Java expres-
sions. Predicates in OCL are boolean expressions and
mapped to Java boolean expressions extended with
various forms of quantifications including universal
and existential quantifications.

In order to translate OCL constraint patterns to
JML patterns we make use of previous work done
on translating OCL into JML. For instance (Hamie,
2004) defines rules for mapping OCL expressions to
JML expressions. A library-based approach for trans-
lating OCL to JML is given in (Avila et al., 2008).
The latter approach aims at making the mapping eas-
ier by building a library of Java classes for the OCL
types and expressions. The current approach builds
on previous work and aims to make the translation
more intuitive and traceable.

3.1 Constraint Patterns in JML

The key idea of our approach is to introduce a set
of constraint patterns for JML corresponding to OCL
constraint patterns. That is the identified JML pat-
terns are directly inspired by OCL patterns. The se-
mantics of JML constraint patterns can be captured as
a JML template, i.e. a parameterizable JML expres-
sion. To be more specific, the template can be used
as macros because patterns are untyped. The syntax
of an JML template starts with the keyword pattern
followed by the name of the pattern and a set of typed
parameters in brackets. This is followed by an equals
sign and an arbitrary JML expression in which the
name of formal parameters can be used. This is sim-
ilar to the syntax of OCL templates. A JML pattern
can be defined as a function that maps a set of meta-
model elements to a Java constraint. In the follow-
ing, we define the Singleton design pattern using the
template language, assuming that there is a method
getInstances that returns the set of instances of a
Java class.

pattern Singleton(element:Class)=

element.getInstances().size()== 1

JML templates can be used as first-class lan-
guage elements of JML. When they are instantiated,
the formal parameters are replaced by the values of
the actual parameters. As an example, we instanti-
ate the Singleton pattern to constrain the number of
VideoRentalStore objects in a model state to one.
Note that in the following code the two listed invari-
ants of the class VideoRentalStore are semantically
equivalent.

p u b l i c c l a s s V i d e o R e n t a l S t o r e f
/ /@ i n v a r i a n t S i n g l e t o n ( V i d e o R e n t a l S t o r e ) ;
/�@ i n v a r i a n t

@ V i d e o R e n t a l S t o r e . g e t I n s t a n c e s ( ) . s i z e ( )==1;
@� /

g

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

196



The above example shows that constraint patterns
are concise means of hiding the syntactic and se-
mantic complexity of JML expressions and offering
a unique name and uniform interface to the program-
mer.

3.2 Translating OCL Patterns

The general form of an OCL constraint pattern is
given by the following template.

pattern patternName(p1 : Type1; :::; pn : Typen) = patternBody

patternName stands for the name of the pattern,
p1; :::; pn is the list of parameters for the pattern of
types Type1; :::;Typen respectively, and patternBody
is the body of the pattern represented as an OCL ex-
pression built using the parameters and OCL opera-
tions. The types of parameters Type1; :::;Typen are
types from the UML/OCL metamodel.

The corresponding JML pattern is obtained from
the OCL pattern by mapping the types of parameters
to types in the JML metmodel, and by translating the
body of the pattern into a JML expression. If Typei
is mapped to jmlTypei (i = 1; ::;n) and patternBody
is mapped to jmlpatternBody then the JML pattern is
given as follows.

pattern oclPatternName(p1 : jmlType1; :::; pn : jmlTypen)=

jmlpatternBody

Translating the body of the OCL pattern to a body
for the corresponding JML pattern can be achieved by
using the translation rules defined in (Hamie, 2004;
Avila et al., 2008). This process can be applied to
each OCL constraint pattern. The diagram in Figure 3
can be interpreted as saying that there are two ways to
obtain a JML assertion from an OCL constraint. The
starting point is applying an OCL constraint pattern.
Unfolding the definition of the pattern we obtain the
OCL constraint which can be mapped to a JML as-
sertion using the mapping defined in (Hamie, 2004).
The other way is not to unfold the OCL pattern but to
use the corresponding JML pattern to do the mapping.
Then the JML assertion can be obtained by unfolding
the definition of the JML pattern. Assuming appro-
priate mappings have been used, the two ways should
lead to semantically equivalent JML assertions.

4 APPLYING THE APPROACH

In this section we apply our approach to the video
rental store model. This will be based on some exist-

OCL�Pattern
f����! JML�Pattern

instantiate

??y ??yinstantiate

OCL�Constraint
y����! JML�Constraint

Figure 3: Constraint pattern mapping diagram.

ing OCL constraint patterns as introduced in (Wahler
et al., 2006).

4.1 Attribute Value Restriction

In background section (Section 2.1) on OCL, we in-
troduced the constraint copiesGreaterZero, which we
defined as follows.

context Title

inv : copiesGreaterZero : self:noOfCopies > 0

This constraint represents a common kind of
constraint, namely simple value restrictions for
attributes. So the Attribute Value Restriction pattern
was introduced in order to restrict the values of
attributes for all instances of the attributes’ class.
This pattern was introduced in the background
section (Section 2.2) of specification patterns, which
is defined by the following OCL template.

pattern AttributeValueRestriction(property: Property;

operator: OclExpression; value: OclExpression) =

self:property operator value

Translating the Attribute Value Restriction pattern
to a JML pattern involves mapping the parameters
of the OCL pattern into parameters of the JML
pattern with appropriate types. This assumes we
have in place metamodels for both OCL and JML.
In this case property is mapped to a JML field of
the same name and with type Field. The parameters
operator and value are mapped to JML expressions
with the same names of type JmlExpression. This
followed by mapping the body of the pattern which
an OCL expression. In this case the expression
self.property operator value is simply mapped to
this.property operator value. Therefore we
obtain the following JML pattern.

pattern oclAttributeValueRestriction(property:Field;

operator:JmlExpression; value:JmlExpression) =

this:property operator value

Pattern-based�Mapping�of�OCL�Specifications�to�JML�Contracts

197



In section 2.2 we applied the Attribute Value Restric-
tion pattern in the context of the UML class Member
and obtained the following invariant.

context Member

inv over18 : AttributeValueRestriction(age; >; 18)

Before translating this constraint to a JML asser-
tion, we need to implement the class Member and
its attributes in Java. In this case we map Member
to a Java class with the same name and map the at-
tribute age to a Java field age. The invariant of the
class Member is then translated by applying the cor-
responding JML pattern with actual parameters age,
> and 18. The class Member with the translated in-
variant is given as follows.

p u b l i c c l a s s Member f
/�@ s p e c p u b l i c @� / p r i v a t e i n t age ;
/�@ p u b l i c i n v a r i a n t

o c l A t t r i b u t e V a l u e R e s t r i c t i o n ( age , >, 1 8 ) ;
@� /

g

By unfolding the pattern definition, we obtain the fol-
lowing JML invariant:

p u b l i c c l a s s Member f
/�@ s p e c p u b l i c @� / p r i v a t e i n t age ;
/ /@ p u b l i c i n v a r i a n t t h i s . age > 18

g

4.2 Multiplicity Restriction

The multiplicities of properties (associations) can
only be roughly constrained in a diagrammatical way
in class models. However, there are situation where
the multiplicity of an association depends on the value
of an attribute. For example, an object of class Title
can have an arbitrary number of rentals which cannot
exceed the total number of copies for that title. So
there is a dependency between the association with
role name rentals and the attribute noOfCopies. Here
we are assuming that the model deals with current
rentals rather than past rentals. A constraint pattern
named Multiplicity Restriction is defined in (Wahler
et al., 2006) to capture this kind of constraints. This
pattern is presented as an OCL template as follows.

pattern MultiplicityRestriction (navigation : Sequence(Property);

operator: OclExpression, value: OclExpression) =

self.navigation�>asSet()�>size() operator value

This pattern has three parameters: navigation, rep-
resented as a sequence of properties, thus allow-
ing the use of OCL navigation expressions such as
self.catalog.rentals, operator, and value, which can be
arbitrary OCL expressions. value can be the name of
an attribute or an arbitrary OCL expression. Since
self.navigation may result in a bag, the OCL operator
asSet() is used to convert the resulting collection into
a set.

Using the Multiplicity Restriction pattern, we can
define the constraint RentalsRestriction as follows.

context Title inv: RentalsRestriction :

MultiplicityRestriction(rentals; <=; noOfCopies)

This is done by replacing the parameters navigation,
operator and value by rentals, <=, and noOfCopies
respectively.

The Multiplicity Restriction pattern can
be translated to the following JML pattern.

pattern oclMultiplicityRestriction (navigation:List<Field>;

operator:JmlExpression,value:JmlExpression) =

this.navigation.uniqueSet():size() operator value

The expression this.navigation represents
the translation of the OCL navigation expression
self.navigation built from the sequence of proper-
ties given as a parameter. Since the result of
self.navigation is a bag, we used the Java method
uniqueSet to convert a bag into a set.

The translation of the multiplicity restriction in-
variant for rentals property is given in the following
code.

p u b l i c c l a s s T i t l e f
/�@ s p e c p u b l i c @� / p r i v a t e i n t noOfCopies ;
/�@ s p e c p u b l i c @� / p r i v a t e Set<Ren ta l> r e n t a l s ;
/�@ p u b l i c i n v a r i a n t

o c l M u l t i p l i c i t y R e s t r i c t i o n ( r e n t a l s ,
<=, noOfCopies ) ;

@� /
g

The implementation of the class Title uses JDK
set with its multiplicity expressed as a class invari-
ant. The translation in this particular case uses pro-
gram variables (i.e. the rentals field) in the asser-
tion. One of the potential problems with this approach
is the maintenance of both OCL constraints and Java
programs. For example, changing the implementation
from sets to arrays will affect the whole JML asser-
tion. This might make it necessary to rewrite the JML

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

198



assertions in terms of the vocabulary of the new repre-
sentation, i.e. arrays. One way to overcome this prob-
lem is to use model fields (Cheon et al., 2005) which
are specification only variables. That is they can be
referred to only in assertions, but not in program code.
The pattern-based approach is useful maintaining as-
sertions since changing the body of a pattern would
apply to every assertion defined in terms of that pat-
tern.

By unfolding the above invariant we get:

p u b l i c c l a s s T i t l e f
/�@ s p e c p u b l i c @� / p r i v a t e i n t noOfCopies ;
/�@ s p e c p u b l i c @� / p r i v a t e Set<Ren ta l>r e n t a l s ;
/�@ p u b l i c i n v a r i a n t

t h i s . r e n t a l s . s i z e ()<= noOfCopies ;
@� /

g

4.3 Unique Identification

The Unique Identification pattern is very frequent.
For example, in the video rental model it is required
that the id for members is unique. That is any
members m1 and m2 should be distinguishable by
their membership identities. In OCL such constraint
is expressed as follows.

context Member

inv UniqueID: Member.allInstances->isUnique(id)

This constraint can be generalized to composite pri-
mary keys by using the OCL tuple type.

The Unique Identifier pattern (Wahler et al.,
2006) (referred to Semantic Key in (Ackermann and
Turowski, 2006)) captures the situation where an
attribute (or a group of attributes) of a class plays the
role of an identifier for the class. That is the instances
of the class should differ in their values for that
attribute (group). The corresponding OCL template
is given as follows.

pattern UniqueIdentifier (class: Class, property : Property) =

class.allInstances->isUnique(property)

This pattern has two parameters class which repre-
sents the context of the invariant, property, which
denotes a property that have to be unique for each
object of the context class. The body of the pattern
is defined in terms of the operation allInstances,
which returns the set of existing instances of the
class, and the operation isUnique. This pattern can be

generalised to more than one property by using the
OCL tuple type.

The corresponding JML pattern can be defined as
follows.

pattern oclUniqueIdentifier (class:Class, property:Field) =

(nforall class a1, a2; ncreated(a1) && ncreated(a2);

a1 != a2 ==> a1.property != a2.property)

The pattern Unique Identifier takes a class and a
property as parameters. It asserts that for any two dis-
tinct created instances a1 and a2 of class class, their
values for property are different. The JML keyword
ncreated restricts the range of the quantification to
created objects.

To make the correspondence between OCL and
JML simpler it is possible to introduce a primitive
quantifier (nunique that asserts the uniqueness of a
property or field. In that case the Unique Identifier
pattern can be concisely stated as follows.

pattern oclUniqueIdentifier (class:Class, property:Field) =

(nunique class a; ncreated(a);property)

Applying the Unique Identifier pattern in the con-
text of the class Member we get the following invari-
ant.

context Member

inv UniqueID: UniqueIdentifier(Member, id)

The following code shows the translated invariant
in JML.

p u b l i c c l a s s Member f
/�@ s p e c p u b l i c @� / p r i v a t e i n t i d ;

/�@ p u b l i c i n v a r i a n t
o c l U n i q u e I d e n t i f i e r ( Member , i d ) ;

@� /
g

By unfolding the above invariant we obtain:

p u b l i c c l a s s Member f
/�@ s p e c p u b l i c @� / p r i v a t e i n t i d ;

/�@ p u b l i c i n v a r i a n t
(n f o r a l l Member a1 , a2 ;

n c r e a t e d ( a1 ) && n c r e a t e d ( a2 ) ;
a1 != a2 ==> a1 . i d != a2 . i d ) ;

@� /
g

Pattern-based�Mapping�of�OCL�Specifications�to�JML�Contracts

199



Note that the translated JML pattern does not work
when the equality test is based on value equality be-
tween objects. This is the case when the type of
the field is String where the equality test should be
based on the method equals rather than ==. One
way to have another version of the JML pattern that
uses equals, so that the mapping chooses the right
pattern based on the type of the property.

5 CONCLUSIONS

We proposed an approach to translating OCL con-
straints to JML assertions based on the concept of
constraint pattern. The main component of our ap-
proach is a set of JML constraint patterns implement-
ing OCL constraint patterns. The possible benefits
of this approach is enhancing the quality of the trans-
lated assertions by expressing them in a more compact
way, and support automating the translation. With ap-
propriate tool support, the JML patterns can be used
stand alone to facilitate and simplify the development
of JML assertions. The pattern-based approach will
have to be evaluated with some real examples.

REFERENCES

Ackermann, J. and Turowski, K. (2006). A Library of OCL
Specification Patterns for Behavioral Specification of
Software Components. In Proceedings of the 18th in-
ternational conference on Advanced Information Sys-
tems Engineering, CAiSE’06, pages 255–269, Berlin,
Heidelberg. Springer-Verlag.

Avila, C., Flores, G., and Cheon, Y. (2008). A Library-
based Approach to Translating OCL Constraints to
JML Assertions for Runtime Checking. In Interna-
tional Conference on Software Engineering Research
and Practice, Las Vegas, Nevada, pages 403–408.

Cheon, Y. and Leavens, G. T. (2002). A Runtime Assertion
Checker for the Java Modeling Language (JML). In
Proceedings of the International Conference on Soft-
ware Engineering Research and Practice (SERP 02),
Las Vegas, pages 322–328. CSREA Press.

Cheon, Y., Leavens, G. T., Sitaraman, M., and Edwards,
S. (2005). Model Variables: Cleanly Supporting Ab-
straction in Design by Contract. Software-practice &
Experience, 35(6):583–599.

Cok, D. R. and Kiniry, J. R. (2004). ESC/Java2: Uniting
ESC/Java and JML - Progress and Issues in Building
and Using ESC/Java2. In Construction and Analysis
of Safe, Secure and Interoperable Smart Devices: In-
ternational Workshop, CASSIS 2004. SpringerVerlag.

Davis, J. P. and Bonnell, R. D. (2007). Propositional
Logic Constraint Patterns and Their Use in UML-
Based Conceptual Modeling and Analysis. IEEE
Trans. Knowl. Data Eng., pages 427–440.

Frankel, D. (2002). Model Driven Architecture: Applying
MDA to Enterprise Computing. John Wiley & Sons,
Inc., New York, NY, USA.

Hamie, A. (2004). Translating the Object Constraint Lan-
guage into the Java Modelling Language. In Proceed-
ings of the ACM Symposium on Applied Computing,
pages 1531–1535. ACM Press.

Jacobs, B. and Poll, E. (2003). Java Program Verification
at Nijmegen: Developments and Perspective. In Ni-
jmegen Institute of Computing and Information Sci-
ences, pages 134–153. Springer.

Leavens, G. T., Baker, A. L., and Ruby, C. (2006). Prelim-
inary Design of JML: A Behavioral Interface Specifi-
cation Language for Java. SIGSOFT, 31(3):1–38.

Leavens, G. T., Cheon, Y., Clifton, C., Ruby, C., and Cok,
D. R. (2003). How the design of JML accommo-
dates both runtime assertion checking and formal ver-
ification. In SCIENCE OF COMPUTER PROGRAM-
MING, pages 262–284.

OMG (2006). Unified Modeling Language Specification
2.0: Infrastructure. OMG doc. smsc/06-02-06.

Wahler, M., Koehler, J., and Brucker, A. D. (2006). Model-
Driven Constraint Engineering. In MoDELS Workshp.
on OCL for (Meta-)Models in Multiple Application
Domains, pages 111–125.

Warmer, J. and Kleppe, A. (2003). The Object Constraint
Language: Getting Your Models Ready for MDA.
Addison-Wesley, Reading, MA.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

200


