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Abstract: In this work, a novel adaptive approach to co-design of embedded systems is presented. The approach is 
based on developmental genetic programming. Unlike most of existing algorithms, presented methodology 
involves evolving co-synthesis process, not the system architecture directly. Genotype is a tree which nodes 
include system construction options. The system can adapt to the environment by increasing chromosomes 
which give better results in each situations. Half of the next populations is created using genetic operators 
(crossover, mutation, reproduction). Second half is obtained by generating additional solutions but with 
different probability of the options. 

1 INTRODUCTION 

Nowadays we are surrounded by many embedded 
systems: SoC systems, modern cars, mobile phones, 
digital cameras, etc. Thus it is necessary to find 
effective design methodologies. Co-design (De 
Micheli and Gupta, 1997) is a process which 
automatically gives an architecture of embedded 
system. The goal of the process is to optimize 
parameters such time, cost or power consumption. 
Most of existing solutions (eg. Jiang, Eles and Peng, 
2012) assume distributed target architecture 
consisting of many processing elements (PE), which 
can be divided into two groups: programmable 
processors (PP) and hardware cores (HC).  
Co- design process consists of: 1. allocation – choice 
of number and types of resources and 
communication channels;2. assignment – choice of 
PE for each task and transmission between 
resources; 3. task scheduling – determining when 
each task should begin its execution. 

Most of existing methods are iterative 
improvement algorithms (Yen and Wolf 1995; 
Deniziak, 2004) which start from sub-optimal 
solution and, by local changes, try to improve the 
system quality. Usually, as the initial solution, the 
fastest architecture (where each task is executed on 
different PE) is selected, but the results are still sub-
optimal. Constructive algorithms (Bharat, 

Lakshminarayana and Jha, 1997) build system step 
by step by choosing PE for each task separately. 
Those methods tend to stop in local minima of 
optimizing parameters.  

Probabilistic algorithms, especially genetic 
algorithms (Chehida and Auguin, 2002; Purnaprajna, 
Reformat and Pedrycz, 2007), can escape from local 
minima. This group of algorithms is represented for 
example by simulated annealing (Eles, Peng, 
Kuchciński and Doboli, 1997). Good results were 
obtained  using developmental genetic programming 
(Deniziak and Górski, 2008). This algorithm builds 
initial population and generates next populations 
using genetic operators. 
The most important weakness of this methodology is 
that probability of choosing each option is constant. 
In some cases obtaining better solutions is possible 
only after changing the probabilities. Therefore in 
computer system design adaptive algorithms are 
more and more popular (Shankaran, Roy, Schmidt, 
Koutsoukos, Chen and Lu, 2008). 

Genetic programming (Koza, Bennett III, Lohn, 
Dunlap, Keane and Andre, 1997) is an extension of 
genetic algorithms (Holland, 1992). The main idea 
of genetic programming is the evolution of computer 
programs. The most important difference between 
genetic algorithm and genetic programming is the 
difference between genotype (the tree) and 
phenotype (the final solution). Each node in 

125
Górski A. and Ogorzalek M..
Adaptive GP-based Algorithm for Hardware/Software Co-design of Distributed Embedded Systems.
DOI: 10.5220/0004696601250130
In Proceedings of the 4th International Conference on Pervasive and Embedded Computing and Communication Systems (PECCS-2014), pages
125-130
ISBN: 978-989-758-000-0
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



genotype represents parts of computer programs. 
In this article a new self-adaptive approach based 

on developmental genetic programming (Koza, 
2010) is presented. The main advantage of proposed 
solution is the possibility of making changes of 
probabilities when the algorithm is running. Thus 
the algorithm can adjust to the behaviour without 
manual modification of initial conditions. 
Probability of stopping in local minimum is 
decreasing. Algorithm is described in section 3. 
Sections 4 and 5 present experimental results and 
conclusions. 

2 PRELIMINARIES 

Embedded system is specified by an acyclic directed 
graph called the task graph. Each node vi   V 
represents task, and edge ei   E presents 
dependence between tasks.  Every edge has a label 
dij which describes the amount of data that has to be 
sent between two connected tasks. Example of a task 
graph is presented on fig. 1. The graph includes 
7 tasks. 
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Figure 1: Example of task graph. 

Table 1 presents an example of a resource database 
for the graph on figure 1. Here we proposed to use 
two programmable processors (PP1 and PP2), two 
Hardware cores (HC1 and HC2) and two 
communication links (CL1 and CL2). Every task is 
defined by time of execution (t) and an area 
occupied by this task. Areas occupied by the tasks 
mean the size of memory needed to execute these 
task. Each communication link is defined by 
a bandwidth (b) and an area (s) occupied by the link 
connected to PE. HC can only execute one task. 

Table 1 also includes the area (S) occupied by each 
PE. The area of the tasks implemented in HC 
includes the area occupied by the core. Task T2 is 
not compatible with PP1, and task T5 can’t be 
implemented in HC2. Communication link CL2 is 
not compatible with PP1. 

Table 1: Resource database. 

Task
PP1 

S=200 
PP2 

S=300 
HC1 HC2 

t s t s t s t s 
T0 150 4 120 6 50 180 30 250 
T1 40 3 35 2 14 100 10 140 
T2 - - 320 17 250 200 150 650 
T3 235 10 220 15 140 160 90 200 
T4 165 8 150 10 65 100 40 140 
T5 70 4 40 5 25 100 - - 
T6 23 2 20 1 5 40 2 80 

CL1, 
b=6 

s=2 s=2 s=10 

CL2, 
b=15 

- s=2 s=15 

Target architecture of the system described by 
the above graph consists of n processes, 
m programmable processors and p communication 
links (CLs) selected from available resources as 
specified in table 1. Overall area (So) of the 
constructed system is described by the following 
formula:  
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T is the time when execution of the last task is 
finished. Parameters u and q are set manually. 
The fitness function (F) is described below: 

T*q + S*u = F  (2)

The goal of co-design is to find an architecture 
with the lowest F value.  

3 THE ALGORITHM 

In accordance with genetic programming rules the 
genotype is evolving. It is based on task graph, each 
node in the tree corresponds to equal system 
constructing function. The embryo is 
an implementation of the first task on randomly 
chosen PE. At the beginning initial population is 
created containing randomly generated genotypes. 
П is the size of initial population:  

p*n* =  (3)
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where: n – number of tasks in task graph,  
p – number of possible PEs, α – parameter which 
controls the number of individuals in populations; it 
is set manually. 

Table 2: Options for constructing system. 

Step Option 
PE a.min (s*t) between used PEs 

b. PE with the lowest time of 
execution of all allocated tasks 
c. the fastest 
d. min (s*t) 
e. the lowest cost 
f. not used from kind of the rarest 
used 

CL  a. the lowest cost 
b. the highest b 
c. last used 

Task scheduling list scheduling 

The system is constructed by executing functions 
in order corresponding to the level of the node in the 
genotype tree. Then solutions are sorted by the 
lowest fitness function. Algorithm counts how many 
times each function appears in first rank list, the 
percentage result is a new value of the probability of 
a chosen option.  New populations are obtained  
using genetic operators: crossover, mutation and 
selection (half of the population) and by generating 
new individuals using options in table 2 but with 
modified probability. The number of individuals 
obtained by using genetic operators is given: 
 Φ = β*П/2 –individuals obtained by selection; 
 Ψ = γ*П/2 –individuals obtained by crossover; 
 Ω = δ*П/2 –individuals obtained by mutation; 
 β + γ + δ = 1 – this condition should be 

satisfied to have the same number of 
individuals in each population. 

The values of parameters β, γ, δ are set manually. 
They control the evolution process. 

Selection copies the Φ solution from the current 
population. Individuals are chosen randomly but 
with different probability  dependent on the position 
in rank list: 





r

P  (4)

Crossover chooses randomly the Ψ solutions. To 
prevent the algorithm from stopping in local 
minima, the best of chosen individuals are crossed 
over with the worst.  The crossing point is selected 
randomly - the same for both genotypes and then 
substitutes the sub-trees.  

Mutation randomly selects one individual and one 
node, afterwards changes option in this node to a 
different one from the option list, but with 
probability currently selected in the population. 

The process is stopped when solution with lower 
function F wasn’t found in next ε steps (last 
ε generations). Parameter ε is set manually. 

Figure 2  shows an example of genotype for the 
task graph of figure 1. 
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Figure 2: Example of genotype. 

Implementation of the first task (the embryo) is 
chosen randomly on PP1. Second task is executed on 
HC2 as the fastest. For the transmission between T0 
and T1 CL1 is chosen. Third task can be 
implemented on PP2 choosing option min (s*t) and 
CL1 is used for the transmission. Fourth task can be 
assigned to HC2 (PE with the lowest time of 
execution of all allocated tasks), CL2 is chosen for 
the transmission (the highest b). Next task can be 
executed on PP1 using option the lowest cost. Sixth  
task can be assigned on PP2 (min (s*t) between used 
PEs). For the last task the fastest implementation 
(HC2) was chosen, and CL2 was used for the 
transmission (the highest b). 

4 EXPERIMENTAL RESULTS 

Because of  very large computational complexity of 
the co-design problem, the only way to check 
effectiveness of the proposed methodology is to 
compare the performance with other existing 
methods. All experiments were carried out on 
randomly generated graphs with 10 and 30 nodes.  

In table 3 the results are compared with DGP

Adaptive�GP-based�Algorithm�for�Hardware/Software�Co-design�of�Distributed�Embedded�Systems

127



 algorithm (Deniziak and Górski, 2008) and  
Yen-Wolf (Yen and Wolf, 1995) for co-design. 
Algorithm DGP was compared with algorithm 
Ewa (Deniziak, 2004). Part of the results were also 
obtained using the task graphs presented in the 
present work. Algorithm Ewa was proved to be more 
effective than MOGAC (Dick and Jha, 1998). 
In every experiment the parameters were set to: u=8, 
q=1, ε=5, β = 0,1, γ = 0,3, δ = 0,6. 

Table 3: Experimental results. 

graph 
Yen 
Wolf 

DGP ADGP 

min F Average F min F Average F

10 12899 9017 9247 8179 8538 

30 28301 18835 19067 16439 21402 

For the graph with 10 nodes, the min. function 
F value obtained by ADGP was 8179, while for 
DGP it was 9017, and for Yen-Wolf it was 12899. 
The average value of function F, for probabilistic 
algorithms, was also obtained by ADGP – 8538 
while for DGP it was 9247. For bigger graph (with 
30 nodes) the best average function (18835) was for 
the DGP algorithm (21402 for ADGP). However 
comparing the best results the ADGP gives better 
results for both presented graphs (8179 for graph 
with 10 nodes, and 16439 for graph with 30 nodes) 
when compared with DGP (9017 for graph with 10 
nodes, and 18835 graph with 30 nodes) and  
Yen-Wolf (12899 for graph with 10 nodes, and 
28301 for graph with 30 nodes). 

 

Figure 3: Percentage range of results for α=10. 

 

Figure 4: Percentage range of results for α=20. 

 

Figure 5: Percentage range of results for α=30. 

 

Figure 6: Percentage range of results for α=50. 

Comparison of obtained results for a graph with 
30 nodes with different value of parameter α is 
presented in table 4. The last column presents 
percentage difference between average values of 
DGP and ADGP. 

The average results, as presented in table 4, 
indicate that the algorithm DGP gives solutions with 
lower F function value but the best individuals are 
obtained by the methodology presented in this work. 

Table 4: Comparison of the results for different size of population. 

α 
DGP ADGP 

Δ[%] 
min F average F min F average F max F 

10 19131 19249 16884 23549 30030 22 
20 18835 19105 17278 24101 40514 26 
30 18835 19008 16673 19953 28046 5 
50 18835 18915 16439 19977 28857 6 
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Figures 3, 4, 5 and 6 indicate that the algorithm is 
not random. When parameter α was 10  most of the 
best results in each trial had the F value between 
24000 and 29000 but a large group of best 
individuals had the value of function F lower than 
20000. So it was not accidental that best system was 
found by using our presented algorithm. Analysis of 
other figures with bigger value of parameter 
α allows to notice more dependencies. In almost 
every situation  most of the best results (60-70% of 
obtained individuals) are in first (the lowest) area 
and number of best results in last area (the highest 
value of F function) is decreasing. When parameter 
α was 10 the average value of function F was 23549 
for ADGP, while the function value for DGP was 
19249. Similar results were obtained for α=20 
(24101 for ADGP and 19105 for DGP). For α=30 
the average function F was 19953 for ADGP and 
19008 for DGP. The bigger parameter α the smaller 
the difference between average values of DGP and 
ADGP (parameter Δ). When value of α was at least 
30 that difference was only about a 5%. However 
the best solutions (with the smallest function 
F value), in every cases, were obtained using ADGP 
(16884, 17278, 16673 and 16439 for adequate 
values of α). What is more the percentage difference 
of the best solutions obtained with presented 
methodology and DGP is much bigger than average 
values of function F. This indicates that ADGP can 
be more effective than DGP. With increasing α the 
maximum value of  function F is also reduced. 

5 CONCLUSIONS 

In this work a new approach based on 
developmental genetic programming for co-
synthesis of distributed embedded systems specified 
by task graphs has been presented. The main 
innovation of the approach is that the algorithm is 
based on statistics adaptive to the environment. This 
is achieved by changing the probability of selection 
of options constructing the system. First 
experimental results show that results obtained by 
the presented methodology are better than those 
obtained using other known approaches. It should be 
noted however that in some relatively rare cases 
results can be worse because of the probabilistic 
nature of the algorithm. 

To compare DGP and ADGP some test like  
t-test, Mann-Whittey test or Wilcoxon test (Ruxton, 
2006) can be made, but we were afraid that they may 
underestimate the true significance of results.  

The future work will concentrate on examining

 another chromosomes, genetic operators. We will 
also test different representations of genotype tree. 
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