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Abstract: This work presents algorithms to resample and filter point cloud data reconstructed from multiple cameras
and multiple time instants. In an initial resampling stage, a voxel or a surface mesh based approach resamples
the point cloud data into a common sampling grid. Subsequently, the resampled data undergoes a filtering
stage based on clustering to remove artifacts and achieve spatiotemporal consistency across cameras and time
instants. The presented algorithms are evaluated in a view synthesis scenario. Results show that view synthesis
with enhanced depth maps as produced by the algorithms leads to less artifacts than synthesis with the original
source data.

1 INTRODUCTION

Stereoscopic video that allows for depth perception
through two view points is already a mass market
technology and means for acquisition, transport, stor-
age and presentation are broadly available. Auto-
stereoscopy is targeted towards a more immersive
viewing experience with glasses-free display tech-
nology and an increased freedom of viewer position
(Smolic et al., 2006). The necessary rich scene rep-
resentations consist of camera or camera views from
more than two view points. Out of this large data
set, only two suitable camera views are visible to a
spectator at a given time to achieve depth perception
(Dodgson, 2005). Transmitting the necessary amount
of camera views may challenge the available infras-
tructure, e.g. with respect to capacity. A solution may
be the transmission of a limited set of camera views
with their associated depth information, referred to as
depth maps, to allow synthesis of additional camera
views at the end device without sacrificing transmis-
sion capacity (Vetro et al., 2008).

However, the quality of synthesized views de-
pends on the quality of the provided depth informa-
tion, i.e. its accuracy and consistency, which may
be degraded, e.g through compression or estimation
errors (Merkle et al., 2009). In (Scharstein and
Szeliski, 2002) and (Seitz et al., 2006), the authors
give an extensive taxonomy and evaluation of tech-
niques for multiview reconstruction algorithms that
distinguishes global methods, e.g. graph-cuts based
optimization algorithms as in (Vogiatzis et al., 2005)
or (Starck and Hilton, 2005) and local methods such

as depth map fusion (Merrell et al., 2007). Camera
view point, image noise as well as occlusions, texture
characteristics, motion or other influences challenge
multiview reconstruction algorithms. As illustrated
in Fig. 1 on the widely used ballet data set (Zitnick
et al., 2004), estimated depth maps may suffer from
object boundary artifacts across camera view points
(a), movement artifacts at static areas over time (b) or
artifacts at revealed occlusions from edge view points
of the camera setup (c).

Another aspect that can make the representation
and processing of multiview data cumbersome is the

(a) (b)

(c)

Figure 1: Various types of depth map artifacts: (a) across
cameras, (b) over time, (c) caused by occlusions.
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Figure 2: Illustration of the sampling grid of two cameras
C1 andC2 capturing a scene and the perspective transforma-
tion of the sampling grids into each other.

distribution of samples across multiple camera sam-
pling grids. A camera sensor constitutes a discrete,
rectangular and uniform sampling grid. Using multi-
ple cameras to capture a common scene as illustrated
in Fig. 2, samples taken by a first cameraC1 can be
transformed to the sampling grid of a second camera
C2 with a different camera view point and vice versa.
The resulting spatial distribution of transformed sam-
ples on the target camera sampling grid is typically
continuous and projectively distorted. Reconstruct-
ing a point cloud from camera sensor samples, the
individual 3D points are structured through a 3D pro-
jection of the 2D sampling grid of the camera. This
sampling grid in 3D space is thereby determined by
the camera position, orientation and properties, i.e.
the intrinsic and extrinsic camera parameters. Us-
ing multiple cameras for point cloud reconstruction,
the respective sampling grid projections are superim-
posed and the spatial distribution of 3D points is nei-
ther rectangular nor uniform. A representation that
conforms to a single sampling grid but preserves as
much of the captured information as possible simpli-
fies subsequent processing, e.g. filtering of the incon-
sistencies illustrated in Fig. 1.

We build our work on the algorithms presented
in (Belaifa et al., 2012) that resample and filter point
cloud data reconstructed by multiple cameras to cre-
ate a consistent representation across cameras. In
this work, we enhance the presented algorithms and
extend them to resample and filter multiview video
over time and across cameras. Furthermore, an objec-
tive evaluation scenario is presented in order to ob-
jectively evaluate the performance of the presented
algorithms. Therefore, the source camera views to-
gether with the enhanced depth maps are tested in a
view synthesis scenario against synthesis results of
the original source material.

Section 2 presents the algorithms while the eval-
uation procedure and results are given in section 3
followed by a short summary and conclusion in sec-
tion 4.

2 POINT CLOUD RESAMPLING
AND FILTERING

The presented algorithms operate in two consecutive
stages, i.e. resampling and filtering as illustrated in
Fig. 3. First, in the initial resampling stage, samples
of moving objects are removed from the source data
for temporal filtering and a color matching scheme is
applied. Two separate approaches for alignment of
3D points to a common 3D sampling grid are pre-
sented, i.e. either through sampling voxels in 3D
space or reconstructed surface meshes. Second, the
resampled data undergoes a filtering stage based on
clustering to remove artifacts by a weighting thresh-
old and achieve spatiotemporal consistency across
cameras and time instants. From the resampled and
filtered point clouds, enhanced depth maps can be
produced through projection to the target camera im-
age plane. The algorithms intend to preserve details
captured only by single cameras while filtering arti-
facts of the depth estimation. The following subsec-
tions describe the algorithms in detail.

2.1 Voxel and Mesh based Resampling

In the initial resampling stage, each sample at 2D
sampling point(u,v) taken from each cameraCi , with
i = 0 ... (n − 1) in a n camera data set, is projected
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Figure 3: Algorithm flow chart.
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Figure 4: Schematic of the voxel-based approach with a
sampling volume constituted by aCre f sampling grid pro-
jection.

to point(X,Y,Z) in 3D space by means of central pro-
jection with the appropriate camera parameters. The
third componentZ, i.e. the depth component in 3D
space, is determined by a non-linear mapping of the
associated sample value in the corresponding depth
map.

In the voxel-based resampling approach, the com-
mon 3D sampling grid is established by projecting
the borders of the 2D sampling grid of a reference
cameraCre f to 3D space as illustrated through dashed
lines in Fig. 4. The volume enclosed by the scene
depth range and the projected borders of a given 2D
sampling point(u,v) of Cre f to 3D space constitutes
a sampling voxel. 3D points reconstructed from a
contributing cameraCi , exemplary annotated asPCi in
the figure, that are located within the respective voxel
constitute the sampling setA(u,v) for each(u,v) of
Cre f . This approach is referred to asvoxel resampling
in the following sections.

A more complex method to resample the point
cloud data uses a generated 3D surface mesh for each
individual cameraCi as illustrated as dashed lines in
Fig. 5. The surface mesh is generated by projecting all
samples ofCi to 3D space and constructing triangles
across each pair of neighboring sample rows. The in-
tersection of the surface mesh with the projection of
each sampling position(u,v) of Cre f is used as ba-
sis to linearly interpolate the depth value at the inter-
section and constitute the sampling setA(u,v). This
approach is referred to asmesh resamplingin the fol-
lowing sections.

2.2 Color Discontinuities

When reconstructing a point cloud from multiple
cameras, depth discontinuities at object boundaries
tend to vary notably between camera view points.
Figure 6 provides an example of this observation,
with (a) depicting a point cloud reconstruction of a
foreground detail fromCre f source data only and (b)

surface mesh

for Ci

image plane
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u
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camera centre
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intersection

Figure 5: Schematic of the mesh-based approach. Sampling
points are generated from the intersection of the projected
reference sampling point and the 3D surface mesh of each
cameraCi .

showing a point cloud reconstructed from all cameras
of the data set with aCre f camera view overlay and
noticeably dilated object boundaries. Apart from the
additive depth estimation error noise of all cameras,
the imprecision of estimated camera parameters leads
to minor translation and rotation of the reconstructed
point cloud per cameras with respect to each other.

With the basic assumption, that depth disconti-
nuities at object boundaries tend to coincide with
color discontinuities as in (Tao and Sawhney, 2000),
a threshold can be established to filter samples that
do not match color discontinuities of theCre f cam-
era view. Therefore, both resampling approaches use
a thresholdmc on theL1 distance between the RGB
vector of the currentCi sample and the corresponding
Cre f sample to ensure correspondence of the two. The
effect of color matching is depicted in (c) of Fig. 6
showing the same reconstruction as (b) with active
color thresholdmc.

2.3 Extension to the Temporal Domain

In (Belaifa et al., 2012) the authors consider samples
from multiple camera view points while the used data
set actually consists of sequences of video frames and

(a) (b) (c)

Figure 6: Effect of color threshold on depth discontinuities:
(a) point cloud reconstruction ofCre f , (b) resampled point
cloud from allCi and overlay of theCre f camera view with-
out color threshold and (c) with color threshold.

Multiview�Point�Cloud�Filtering�for�Spatiotemporal�Consistency

533



thus contains additional information for point cloud
reconstruction and subsequent processing in the tem-
poral domain. Considering this domain allows filter-
ing of movement artifacts on static objects such as
the floor as shown in Fig. 1 (b). For this purpose,
creation of the sampling setsA(u,v) at the time in-
stantt0 in the resampling stage relies on source data
from time instantst0...tk wherek as the temporal fil-
tering depth. Samples belonging to objects that move
in the course of the additionalk frames should not
be added toA(u,v). Therefore, a binary mask view
M j for source data of each cameraCi of time instants
t j > t0 is created and used in the resampling stage ac-
cording to the following procedure.

• Initialize M j to zero and apply Gaussian filter to
the camera view luma componentsL of Ci at time
instantst j−1 andt j .

• SetM j to one at sample positions where the dif-
ference betweenL j−1 andL j exceeds a threshold.
If j > 1, additionally setM j to one at sample
positions where the difference betweenL0 andL j
exceeds a threshold.

• Compute a dense optical flow map betweenL j and
L j−1 based on polynomial expansion according to
(Farnebäck, 2003). SetM j to one at sample posi-
tions with motion vectors that exceed a threshold.

• DilateM j with a rectangular kernel.

• Samples ofCi source data for which the corre-
sponding sample inM j is set to one are not con-
sidered in the subsequent resampling.

An example for the source data masked byM j and
a temporal filtering depth ofk = 3 is given in Fig. 7.
A detail of the original camera view from a single
cameraCi for time instantst0 to t3 is given from left
to right in the top row (a). Row (b) shows samples
of corresponding depth map ofCi that subsequently
contribute to the resampling stage afterM j is applied,
where the white areas att1 to t3 correspond to active
areas ofM j . The bottom row (c) shows the recon-
structed point cloud of all cameras att0 to t3 which
jointly contribute to the resampling stage fort0. In
order to compensate removed samples of moving ob-
jects att1 to t3 in the following filtering stage, the
weight of samples from each cameraCi att0 for which
the corresponding sample inM j is set to one is in-
creased accordingly.

2.4 Filtering Stage

In the subsequent filtering stage, the resampled source
data from multiple camerasCi and time instantsti is

t0 t1 t2 t3

(a)

(b)

(c)

Figure 7: Moving object removal for temporal filtering: (a)
camera view, (b) corresponding depth map with overlay of
maskM j in white, (c) reconstructed point cloud of all cam-
erasCi .

filtered. While merging the samples of the contribut-
ing cameras withinA(u,v), the aim is to filter arti-
facts and preserve details. Our algorithm is based on
hierarchical group-average linkage clustering as de-
scribed in (Hastie et al., 2001) and regards all sam-
ples inA(u,v) as clusters with weight equal to 1 along
the depth coordinate axis. Iteratively, the two clos-
est samples withinA(u,v) are merged by linearly in-
terpolating their depth values to the new depthZnew
and agglomerating their weight. The position of the
merged sample along the horizontal and vertical di-
mension in 3D space correspond to the projection of
theCre f sampling grid position toZnew in 3D space.

For each sampling grid position(u,v) of Cre f , the
clustering process stops when all samples inA(u,v)
have a distance to each other greater or equal than
a minimum cluster distance thresholdmd. This end
condition ensures back- and foreground separation of
the given scene. The mapping between the sample
value of a depth map and the depth coordinate in 3D
space is not necessarily linear, e.g. to capture more
depth detail of objects closer to the camera. To ensure
equal preservation of details regardless of the object
depth in the scene,md is given in terms of depth lev-
els rather than Euclidean distance in 3D space.

After the clustering process, a minimum cluster
weight thresholdmw is applied to remove samples
with a weight less thanmw from A(u,v), i.e. out-
lier samples that are spatially far from any other sam-
ples inA(u,v) and are thus not merged. As the size
of A(u,v) considerably varies over the sampling grid
depending on camera setup and the resampling ap-
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(a) (b) (c) (d) (e)

Figure 8: Exemplary results of the enhanced depth maps: (a) original depth map,(b) enhanced depth map using voxel re-
sampling, (c) mesh resampling, (d) and (e) with temporal filtering depthk = 2 using voxel resampling and mesh resampling,
respectively.

proach,mw is given as relative to sum of weights
within A(u,v). If none of the samples inA(u,v) sat-
isfy mw, only the sample with the largest weight is
kept.

3 EVALUATION

The presented algorithms are evaluated in a view syn-
thesis scenario on the 100 frames ballet and break-
dancers data set (Zitnick et al., 2004) based on the
assumption that depth maps with less inconsistencies
across cameras and over time lead to a higher quality
of synthesis results. As base line for the evaluation,
the original texture and depth maps of all available
camerasCi are used to synthesize camera views at all
camera view points.

Synthesis is carried out through projection of all
relevant samples of the data set into 3D space and
back to the target image plane of interest. At each
sampling position(u,v) of the target image plane, a
blending procedure of samples ensures decent image
quality while preserving artifacts that originate from
the depth maps. The quality of synthesis results com-
pared to the corresponding original camera views is
measured frame-wise in terms of PSNR and MSSIM
(Wang et al., 2004) with an 8×8 rectangular window.

The same synthesis procedure is followed using
the original camera views but depth maps enhanced
by the algorithms presented in this work. The synthe-
sis results with enhanced depth maps are compared to
the respective original camera views likewise.

Enhanced depth maps of all cameras were pro-
duced for all frames of the data sets with a tempo-
ral filtering depth ofk = {0, . . . ,2}. This range gives
an outlook on the effects of the proposed technique
on the view synthesis and limits the amount of addi-
tional data that has to be processed in the resampling
and subsequent filtering stage of the algorithms. A
color threshold ofmc = 0.18 relative to the com-

bined maximum sample value of the three color chan-
nels and a minimum cluster distance ofmd = 0.03
relative to the maximum depth map sample value is
evaluated. The minimum cluster weightmw is cho-
sen as 0.13 of the sum of weights inA(u,v) without
temporal filtering. This choice is motivated by the
amount ofn cameras in the data set. A thresholdmw
slightly higher than 1/n is not satisfied by outliers that
stem from single cameras and remain disjoint during
clustering. As the number of samples to process in
the filtering stage grows with the temporal filtering
depth, so does the weight of outlier clusters after fil-
tering. Therefore, the threshold of removal of outliers
is increased tomw = 0.26 andmw = 0.34 for k = 1
andk= 2, respectively.

Across all experiments, the quality of the synthe-
sis results is above 32dB PSNR and an MSSIM of
0.86 on average. Figure 8 shows a detail of an origi-
nal depth map of the ballet sequence of the right-most
camera (a) and the corresponding enhanced depth
map as produced by the voxel resampling (b) and the
mesh resampling approach (c) without filtering in the
temporal domain. Exemplary results for a temporal
filtering depth ofk = 2 are given for voxel resam-
pling in (d) of Fig. 8 and mesh resampling in (e). It
can be seen from the figure that the algorithms suc-

Figure 9: Exemplary results for filtering in the temporal do-
main.
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cessfully reduce artifacts at object boundaries and re-
vealed occlusions. Figure 9 shows a detail of the same
four consecutive frames of the ballet sequence as in
Fig.1 (b) after applying the algorithm with voxel re-
sampling and a temporal filtering depth ofk= 2 with
noticeably smoothed artifacts of the static areas.

The top plot in Fig. 10 reports the∆PSNR of syn-
thesis results of the two algorithms with both data
sets compared to the synthesis results of the original
source data over the temporal filtering depthk and
averaged over all frames and all cameras while the
bottom plot reports the results in terms of∆MSSIM.
Positive values report a quality improvement for the
algorithms.

It can be seen that the synthesis results based on
the enhanced depth maps achieve a∆PSNR above
0.45dB for the ballet data set and a minimal positive
tendency with an increasing temporal filtering depth.
For the breakdancers data set that contains more mo-
tion only a smaller quality improvement is reported
and the results show a lower quality increase with in-
creasing temporal filtering depth. Although overall
MSSIM gains are minimal, they show a similar be-
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Figure 10: Synthesis quality improvements for both data
sets over temporal filtering depth with presented algorithms
in PSNR and SSIM averaged over all cameras and frames.

havior and tendency as the PSNR measurements.
Figure 11 reports the results of the experiments

over camera indexi without performing temporal fil-
tering and averaged over all frames. It can be noticed
that the best performing synthesis achieves well above
1dB PSNR gain for the ballet data set and MSSIM
measurements show a tendency similar to that of the
PSNR measurements. A noticeable drift of results can
be observed from the left-most to the right-most cam-
era for both tested data sets, which may be caused by
scene geometry and synthesis setup, i.e. depth map
artifacts may impair synthesis results to a varying ex-
tent.

While in general the synthesis results with en-
hanced depth maps of the ballet data set (little mo-
tion with strong back-/foreground separation) show
notable objective and visual improvements, the results
of the breakdancers data set (much motion with weak
back-/foregroundseparation) do so only to a small de-
gree.

Figure 12 gives a comparison of the original cam-
era view (a), the synthesis result with source data (b),
the synthesis results of voxel resampling (c) and mesh
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Figure 11: Synthesis quality improvements for both data
sets over camera indexi with presented algorithms in PSNR
and MSSIM averaged over all frames.
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(a) (b) (c) (d) (e) (f)

Figure 12: Exemplary results of the view synthesis: (a) original camera view, (b) synthesis with source data, (c) voxel
resampling, (d) mesh resampling, (d) and (e) temporal filtering depth ofk = 2 for voxel resampling and mesh resampling,
respectively.

resampling (d) without temporal filtering, the respec-
tive synthesis results with a temporal filtering depth
k = 2 in (e) and (f). While effects in the temporal
domain are hard to notice from single frames, synthe-
sis artifacts related to depth map artifacts on object
boundaries and revealed occlusions can be noticed
in (b) which do not occur in (c) to (f). Overall, the
quality of synthesis results with enhanced depth maps
does not vary significantly with a negligible positive
margin for the voxel based approach and temporal fil-
tering.

4 SUMMARY AND
CONCLUSIONS

This work presents algorithms to resample and filter
point cloud data reconstructed from multiple cameras
and multiple time instants. In an initial resampling
stage a voxel and a surface mesh based approach are
presented to resample the point cloud data into a com-
mon sampling grid. Subsequently, the resampled data
undergoes a filtering stage based on clustering to re-
move artifacts of depth estimation and achieve spa-
tiotemporal consistency. The presented algorithms
are evaluated in a view synthesis scenario. Results
show that view synthesis with enhanced depth maps
as produced by the algorithms leads to less artifacts
than synthesis with the original source data. The dif-
ference in achieved quality between the voxel and the
surface mesh based approach is negligible and with
regard to the computational complexity of the surface
mesh reconstruction, the voxel based approach is the
desirable solution for resampling.

Filtering in the temporal domain shows slight syn-
thesis quality improvements when moving objects are
confined to a limited region of the scene as in the bal-
let data set. For data sets in which moving objects
cover larger areas such as in the breakdancer data set,
temporal filtering does not improve synthesis results
compared to filtering across cameras. The presented
motion masking excludes samples within a relatively

wide image area with respect to the actual moving ob-
ject. Therefore, depth map artifacts in the correspond-
ing areas are not interpolated in the filtering stage and
thus affect synthesis.
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