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Abstract: This work presents algorithms to resample and filter point cloud data reconstructed from multiple cameras
and multiple time instants. In an initial resampling stage, a voxel or a surface mesh based approach resamples
the point cloud data into a common sampling grid. Subsequently, the resampled data undergoes a filtering
stage based on clustering to remove artifacts and achieve spatiotemporal consistency across cameras and time
instants. The presented algorithms are evaluated in a view synthesis scenario. Results show that view synthesis
with enhanced depth maps as produced by the algorithms leads to less artifacts than synthesis with the original
source data.

1 INTRODUCTION as depth map fusion (Merrell et al., 2007). Camera
view point, image noise as well as occlusions, texture
Stereoscopic video that allows for depth perception characteristics, motion or other influences challenge
through two view points is already a mass market multiview reconstruction algorithms. As illustrated
technology and means for acquisition, transport, stor- in Fig. 1 on the widely used ballet data set (Zitnick
age and presentation are broadly available. Auto- et al., 2004), estimated depth maps may suffer from
stereoscopy is targeted towards a more immersiveobject boundary artifacts across camera view points
viewing experience with glasses-free display tech- (a), movement artifacts at static areas over time (b) or
nology and an increased freedom of viewer position artifacts at revealed occlusions from edge view points
(Smolic et al., 2006). The necessary rich scene rep-of the camera setup (c).
resentations consist of camera or camera views from  Another aspect that can make the representation
more than two view points. Out of this large data and processing of multiview data cumbersome is the
set, only two suitable camera views are visible to a
spectator at a given time to achieve depth perception
(Dodgson, 2005). Transmitting the necessary amount
of camera views may challenge the available infras-
tructure, e.g. with respect to capacity. A solution may
be the transmission of a limited set of camera views
with their associated depth information, referred to as
depth maps, to allow synthesis of additional camera
views at the end device without sacrificing transmis-
sion capacity (Vetro et al., 2008).

However, the quality of synthesized views de-
pends on the quality of the provided depth informa-
tion, i.e. its accuracy and consistency, which may
be degraded, e.g through compression or estimation
errors (Merkle et al., 2009). In (Scharstein and
Szeliski, 2002) and (Seitz et al., 2006), the authors
give an extensive taxonomy and evaluation of tech-
niques for multiview reconstruction algorithms that
distinguishes global methods, e.g. graph-cuts based (c)

optimization algorithms as in (Vogiatzis et al., 2005) Figure 1: Various types of depth map artifacts: (a) across
or (Starck and Hilton, 2005) and local methods such cameras, (b) over time, (c) caused by occlusions.
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Scene 2 POI NT CLOUD RE%M PLING
® | AND FILTERING
‘ The presented algorithms operate in two consecutive

2 stages, i.e. resampling and filtering as illustrated in
Figure 2: lllustration of the sampling grid of two cameras Fig. 3. First, in the initial resampling stage, samples
C; andC; capturing a scene and the perspective transforma- of moving objects are removed from the source data
tion of the sampling grids into each other. for temporal filtering and a color matching scheme is
o . applied. Two separate approaches for alignment of
distribution of samples across multiple camera sam- 3 points to a common 3D sampling grid are pre-
pling grids. A camera sensor constitutes a discrete,semed, i.e. either through sampling voxels in 3D
rectangular and uniform sampling grid. Using multi- gpace or reconstructed surface meshes. Second, the
ple cameras to capture a common scene as illustrateGesampled data undergoes a filtering stage based on
in Fig. 2, samples taken by a first cam&@acan be  ¢jystering to remove artifacts by a weighting thresh-
transformed to the sampling grid of a second camera | and achieve spatiotemporal consistency across
Cz with a different camera view point and vice versa. .ameras and time instants. From the resampled and
The resulting spatial distribution of transformed sam- fjjiered point clouds, enhanced depth maps can be
ples on the target camera sampling grid is typically roduced through projection to the target camera im-
_continuo_us and projectively distorted. Reconstruct- age plane. The algorithms intend to preserve details
ing @ point cloud from camera sensor samples, the cantyred only by single cameras while filtering arti-

individual 3D points are structured through a 3D pro- acts of the depth estimation. The following subsec-
jection of the 2D sampling grid of the camera. This tjons describe the algorithms in detail.

sampling grid in 3D space is thereby determined by
the camera position, orientation and properties, i.e. 2.1 Voxel and Mesh based Resampling
the intrinsic and extrinsic camera parameters. Us-
ing multiple cameras for point cloud reconstruction,
the respective sampling grid projections are superim-
posed and the spatial distribution of 3D points is nei-
ther rectangular nor uniform. A representation that
conforms to a single sampling grid but preserves as
much of the captured information as possible simpli- +
fies subsequent processing, e.g. filtering of the incon- Source data
sistencies illustrated in Fig. 1. =

We build our work on the algorithms presented &
in (Belaifa et al., 2012) that resample and filter point
cloud data reconstructed by multiple cameras to cre- to | time instant | t;
ate a consistent representation across cameras. In-——-—-—-J-—-—————1 -———-

In the initial resampling stage, each sample at 2D
sampling poin{u, v) taken from each came@, with
i = 0...(n = 1)in ancamera data set, is projected

point cloud per
camera and

this work, we enhance the presented algorithms and  — | Temporal Filtering | N
extend them to resample and filter multiview video z time instant
over time and across cameras. Furthermore, an objec- § | Color Matching |
tive evaluation scenario is presented in order to ob- < [
jectively evaluate the performance of the presented 0% Voxel or mesh
algorithms. Therefore, the source camera views to- resampling
gether with the enhanced depth maps are testedina _ __ __ _1____________ resampled
view synthesis scenario against synthesis results of o . point cloud
the original source material. ] Clustering

Section 2 presents the algorithms while the eval- g _
uation procedure and results are given in section 3 5 | Weight threshold |
followed by a short summary and conclusioninsec- ______1____________ interpolated
tion 4. to | time instant point cloud

g m Enhanced
E depth view

Figure 3: Algorithm flow chart.
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Figure 4: Schematic of the voxel-based approach with a for C;
sampling volume constituted byGi.; sampling grid pro- Figure 5: Schematic of the mesh-based approach. Sampling
jection. points are generated from the intersection of the projected

reference sampling point and the 3D surface mesh of each

to point(X,Y, Z) in 3D space by means of central pro- camere;.
jection with the appropriate camera parameters. The
third componeng, i.e. the depth component in 3D showing a point cloud reconstructed from all cameras
space, is determined by a non-linear mapping of the of the data set with & camera view overlay and
associated sample value in the corresponding depthnoticeably dilated object boundaries. Apart from the
map. additive depth estimation error noise of all cameras,

In the voxel-based resampling approach, the com- the imprecision c_>f estimated camera parameters leads
mon 3D sampling grid is established by projecting to minor translation and rotation of the reconstructed

the borders of the 2D sampling grid of a reference Pointcloud per cameras with respect to each other.
camer&Cref to 3D space as illustrated through dashed ~ With the basic assumption, that depth disconti-
lines in Fig. 4. The volume enclosed by the scene nuities at object boundaries tend to coincide with
depth range and the projected borders of a given 2D color discontinuities as in (Tao and Sawhney, 2000),
sampling pointu,v) of Cre to 3D space constitutes @ threshold can be established to filter samples that
a sampling voxel. 3D points reconstructed from a do not match color discontinuities of tf&e.s cam-
contributing camer@;, exemplary annotated &, in era view. Therefore, both resampling approaches use
the figure, that are located within the respective voxel @ thresholdnc on thel; distance between the RGB
constitute the sampling sé{u,v) for each(u,v) of vector of the current; sample and the corresponding
Cref. This approach is referred to msxel resampling ~ Cret Sample to ensure correspondence of the two. The
in the following sections. effect of color matching is depicted in (c) of Fig. 6
A more Comp|ex method to resamp|e the point showing the same reconstruction as (b) with active
cloud data uses a generated 3D surface mesh for eacl§olor thresholdn.
individual camerda; as illustrated as dashed lines in
Fig. 5. The surface mesh is generated by projectingall 2.3 Extension to the Tempor al Domain
samples ofC; to 3D space and constructing triangles
across.each pair of neighboring s_ample rows. The in- In (Belaifa et al.,
tersection of the surface mesh with the projection of
each sampling positiofu,v) of Cet is used as ba-
sis to linearly interpolate the depth value at the inter-
section and constitute the sampling 8¢ti, v). This
approach is referred to asesh resamplinm the fol-
lowing sections.

2012) the authors consider samples
from multiple camera view points while the used data
set actually consists of sequences of video frames and

2.2 Color Discontinuities

When reconstructing a point cloud from multiple
cameras, depth discontinuities at object boundaries

te_nd to vary r_lotably between camera view p0|_nts. Figure 6: Effect of color threshold on depth discontinwgtie
Fl_gure 6 pr(_)Vl_deS an _example of this obs_ervatlon, (a) point cloud reconstruction @+, (b) resampled point
with (a) depicting a point cloud reconstruction of a ¢ioyd from allC; and overlay of th€,e camera view with-
foreground detail fronCret Source data only and (b)  out color threshold and (c) with color threshold.

(a) (b) (c)
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thus contains additional information for point cloud
reconstruction and subsequent processing in the tem-
poral domain. Considering this domain allows filter-
ing of movement artifacts on static objects such as
the floor as shown in Fig. 1 (b). For this purpose,
creation of the sampling sefu,v) at the time in-
stanttp in the resampling stage relies on source data
from time instantdo...ty wherek as the temporal fil-
tering depth. Samples belonging to objects that move (b)
in the course of the addition& frames should not

be added tdA(u,v). Therefore, a binary mask view

M; for source data of each cameZigof time instants

tj > to is created and used in the resampling stage ac-
cording to the following procedure. ©

(@

o Initialize M; to zero and apply Gaussian filter to
the camera view luma componenhtsf C; at time i
instants;_1 andt;. o t t s

e SetM; to one at sample positions where the dif- Figure 7: Moving object removal for temporal filtering: (a)
ference betweeh;_; andL; exceeds a threshold. camera view, (b) corresponding depth. map with overlay of
If | > 1, additionally seiV; to one at sample maskMj in white, (c) reconstructed point cloud of all cam-
positions where the difference betweanandL erasGi.
exceeds a threshold.

filtered. While merging the samples of the contribut-
o Compute a dense optical flow map betwegand ing cameras withimA(u,v), the aim is to filter arti-
L;—1 based on polynomial expansion according to facts and preserve details. Our algorithm is based on
(Farnebéack, 2003). S#; to one at sample posi- hierarchical group-average linkage clustering as de-
tions with motion vectors that exceed a threshold. scribed in (Hastie et al., 2001) and regards all sam-
ples inA(u,v) as clusters with weight equal to 1 along
the depth coordinate axis. Iteratively, the two clos-
e Samples ofC; source data for which the corre- est samples withif\(u,v) are merged by linearly in-
sponding sample iM; is set to one are not con- terpolating their depth values to the new de@ta,
sidered in the subsequent resampling. and agglomerating their weight. The position of the
merged sample along the horizontal and vertical di-
mension in 3D space correspond to the projection of
theCet sampling grid position t@,ewin 3D space.

For each sampling grid positiqi, v) of Ces, the
clustering process stops when all sampled\jno,v)
have a distance to each other greater or equal than
a minimum cluster distance threshotg. This end
condition ensures back- and foreground separation of
the given scene. The mapping between the sample
value of a depth map and the depth coordinate in 3D
space is not necessarily linear, e.g. to capture more
depth detail of objects closer to the camera. To ensure
equal preservation of details regardless of the object
depth in the scenexy is given in terms of depth lev-
els rather than Euclidean distance in 3D space.

After the clustering process, a minimum cluster
weight thresholdm,, is applied to remove samples
. . with a weight less tham,, from A(u,v), i.e. out-
2.4 Filtering Stage lier samples that are spatially far from any other sam-

ples inA(u,v) and are thus not merged. As the size
In the subsequent filtering stage, the resampled sourceof A(u,v) considerably varies over the sampling grid
data from multiple camerds and time instantg is depending on camera setup and the resampling ap-

¢ Dilate M; with a rectangular kernel.

An example for the source data maskedvbyand
a temporal filtering depth df = 3 is given in Fig. 7.
A detail of the original camera view from a single
camereC; for time instantdg to t3 is given from left
to right in the top row (a). Row (b) shows samples
of corresponding depth map &f that subsequently
contribute to the resampling stage aftéy is applied,
where the white areas ftto t3 correspond to active
areas ofM;. The bottom row (c) shows the recon-
structed point cloud of all camerastatto t3 which
jointly contribute to the resampling stage figr In
order to compensate removed samples of moving ob-
jects atty to t3 in the following filtering stage, the
weight of samples from each camé&attg for which
the corresponding sample M; is set to one is in-
creased accordingly.
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Figure 8: Exemplary results of the enhanced depth maps:rigihal depth map,(b) enhanced depth map using voxel re-
sampling, (c) mesh resampling, (d) and (e) with temporarfitiy depthk = 2 using voxel resampling and mesh resampling,
respectively.

proach,my is given as relative to sum of weights bined maximum sample value of the three color chan-

within A(u,v). If none of the samples iA(u,v) sat- nels and a minimum cluster distancemf = 0.03
isfy my, only the sample with the largest weight is relative to the maximum depth map sample value is
kept. evaluated. The minimum cluster weigim, is cho-

sen as 0.13 of the sum of weightsAdu,v) without
temporal filtering. This choice is motivated by the
amount ofn cameras in the data set. A threshoig
3 EVALUATION slightly higher than Inis not satisfied by outliers that
stem from single cameras-and remain disjoint during
The presented algorithms are evaluated in a view syn-clustering. As the number of samples to process in
thesis scenario on the 100 frames ballet and break-the filtering stage grows with the temporal filtering
dancers data set (Zitnick et al., 2004) based on thedepth, so does the weight of outlier clusters after fil-
assumption that depth maps with less inconsistenciestering. Therefore, the threshold of removal of outliers
across cameras and over time lead to a higher qualityjs increased ton, = 0.26 andm, = 0.34 fork = 1
of synthesis results. As base line for the evaluation, andk = 2, respectively.
the original texture and depth_ maps of aII_avaiIabIe Across all experiments, the quality of the synthe-
camera€ are used to synthesize camera views at all sis results is above 32dB PSNR and an MSSIM of

camera view pomts._ L 0.86 on average. Figure 8 shows a detail of an origi-
Synthesis is carried out through projection of all 5| gepth map of the ballet sequence of the right-most
relevant samples qf the data set into 3D space and.zmera (a) and the corresponding enhanced depth
back to the target image plane of interest. At each 54 a5 produced by the voxel resampling (b) and the
sampling positior{u,v) of the target image plane, & negh resampling approach (c) without filtering in the
blending procedure of samples ensures decent imaggemnoral domain. Exemplary results for a temporal
quality while preserving artifacts that originate from filtering depth ofk = 2 are given for voxel resam-
the depth maps. The quality of synthesis results COM- hjing in (d) of Fig. 8 and mesh resampling in (e). It

pared to the corresponding original camera Views i .o "he seen from the figure that the algorithms suc-
measured frame-wise in terms of PSNR and MSSIM

(Wang et al., 2004) with an 8 8 rectangular window.
The same synthesis procedure is followed using
the original camera views but depth maps enhanced
by the algorithms presented in this work. The synthe-
sis results with enhanced depth maps are compared to
the respective original camera views likewise.
Enhanced depth maps of all cameras were pro-
duced for all frames of the data sets with a tempo-
ral filtering depth ok = {0,...,2}. This range gives
an outlook on the effects of the proposed technique
on the view synthesis and limits the amount of addi-
tional data that has to be processed in the resampling

and subsequent filtering stage of the algorithms. A Figure 9: Exemplary results for filtering in the temporal do-
color threshold ofm; = 0.18 relative to the com-  main.
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cessfully reduce artifacts at object boundaries and re-havior and tendency as the PSNR measurements.
vealed occlusions. Figure 9 shows a detail of the same  Figure 11 reports the results of the experiments
four consecutive frames of the ballet sequence as inover camera indekwithout performing temporal fil-
Fig.1 (b) after applying the algorithm with voxel re- tering and averaged over all frames. It can be noticed
sampling and a temporal filtering depthlof 2 with that the best performing synthesis achieves well above
noticeably smoothed artifacts of the static areas. 1dB PSNR gain for the ballet data set and MSSIM
The top plot in Fig. 10 reports th®PSNR of syn-  measurements show a tendency similar to that of the
thesis results of the two algorithms with both data PSNR measurements. A noticeable drift of results can
sets compared to the synthesis results of the originalbe observed from the left-most to the right-most cam-
source data over the temporal filtering deptland era for both tested data sets, which may be caused by
averaged over all frames and all cameras while the scene geometry and synthesis setup, i.e. depth map

bottom plot reports the results in terms&VSSIM. artifacts may impair synthesis results to a varying ex-
Positive values report a quality improvement for the tent.
algorithms. While in general the synthesis results with en-

It can be seen that the synthesis results based orhanced depth -maps of the ballet data set (little mo-
the enhanced depth maps achievARSNR above  tion with strong back-/foreground separation) show
0.45dB for the ballet data set and a minimal positive notable objective and visual improvements, the results
tendency with an increasing temporal filtering depth. of the breakdancers data set (much motion with weak
For the breakdancers data set that contains more mo-back-/foreground separation) do so only to a small de-
tion only a smaller quality improvement is reported gree.
and the results show a lower quality increase with in- Figure 12 gives a comparison of the original cam-
creasing temporal filtering depth. Although overall era view (a), the synthesis result with source data (b),
MSSIM gains are minimal, they show a similar be- the synthesis results of voxel resampling (c) and mesh

0.8 —<— Ballet — Voxel —— Ballet - Voxel
— ¢ — Ballet - Mesh 157 -0~ Ballet - Mesh
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Figure 10: Synthesis quality improvements for both data Figure 11: Synthesis quality improvements for both data
sets over temporal filtering depth with presented algorithm sets over camera indéxvith presented algorithms in PSNR
in PSNR and SSIM averaged over all cameras and frames. and MSSIM averaged over all frames.
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(2) (b) (© (d (e ()

Figure 12: Exemplary results of the view synthesis: (a)indbcamera view, (b) synthesis with source data, (c) voxel
resampling, (d) mesh resampling, (d) and (e) temporal ifigedepth ofk = 2 for voxel resampling and mesh resampling,
respectively.

resampling (d) without temporal filtering, the respec- wide image area with respect to the actual moving ob-
tive synthesis results with a temporal filtering depth ject. Therefore, depth map artifacts in the correspond-
k=2 in (e) and (f). While effects in the temporal ing areas are not interpolated in the filtering stage and
domain are hard to notice from single frames, synthe- thus affect synthesis.

sis artifacts related to depth map artifacts on object

boundaries and revealed occlusions can be noticed

in (b) which do not occur in (c) to (f). Overall, the
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