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Abstract: In this paper, we present an innovative algorithm based on a voting process approach, to analyse the data 
provided by an eye tracker during tasks of user evaluation of video quality. The algorithm relies on the 
hypothesis that a lower quality video is more “challenging” for the Human Visual System (HVS) than a 
high quality one, and therefore visual impairments influence the user viewing strategy. The goal is to 
generate a map of saliency of the human gaze on video signals, in order to create a No Reference objective 
video quality assessment metric. We consider the impairment of video compression (H.264/AVC algorithm) 
to generate different versions of video quality. We propose a protocol that assigns different playlists to 
different user groups, in order to avoid any effect of memorization of the visual stimuli on strategy. We 
applied our algorithm to data generated on a heterogeneous set of video clips, and the final result is the 
computation of statistical measures which provide a rank of the videos according to the perceived quality. 
Experimental results show that there is a strong correlation between the metric we propose and the quality 
of impaired video, and this fact confirms the initial hypothesis. 

1 INTRODUCTION 

Multimedia user experience evaluation is now an 
important topic of research, and it has been one of 
the most relevant since the early beginning of the 
multimedia content digitalization era. One of the 
crucial challenges in this field is defining quality 
assessment metrics, which had its explosion when 
the first image compression standards appeared. The 
proposal of new metrics for estimating the user 
perceived quality of a multimedia content, no matter 
if this content is an image, a video or an audio one, 
is increasing and refining each year. This study is 
the continuation of our previous work (Albanesi & 
Amadeo, 2011), which describes a new 
methodology to estimate the video perceived quality 
in case of lossy compression of a digital sequence. 
In that paper, the authors designed a subjective and 
no reference approach to measure the average ocular 
fixations duration of users subject to different 
quality level stimuli. These fixations were gathered 
through a set of experiments with the Eye-Tracker. 
We defined that a “temporal based” study, since the 
analysis algorithm of eye tracker data did not 
consider the position of the gaze, but only the 
durations of the fixations. The results obtained by 

the experimental procedure were elaborated to 
present a quantitative metric. It was proven that this 
metric has a good correlation with the user perceived 
video quality. The results encouraged us to  think 
that a similar approach could be used not only to 
investigate time-related characteristics of the human 
ocular behavior on a video quality-assessing task, 
but also the space-related characteristics, i.e., the 
position of human eye fixation. We call these 
positions Gaze-Points. Our proposal presents a 
voting-process based algorithm that works on Eye 
Tracker data to generate Gaze-Maps. On these maps, 
we compute statistical functions to generate a rank 
of video according to the measured perceived 
quality. Therefore, our method starts from subjective 
data (Eye-Tracker data) and generates an objective 
video quality metric. The elaboration of 
physiological Eye Tracked data returns a set of 
quantitative scores that allows ranking the stimuli 
accordingly to the perceived quality. Our final goal 
is to find a recurrent behavior of the HVS by 
computing quantifiable parameters that can help in 
discriminating video sets in relation to the user 
perceived quality. The paper is structured as follows: 
Section two includes a review of the state of the art 
of Multimedia Quality of Experience research and a 
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conceptual comparison to our approach. Section 
three presents the new algorithm based on voting 
process approach. Section four explains the 
experimental activity we performed and section five 
describes the results. Conclusion and the future 
developments end the paper. 

2 RELATED WORK 

The study of the HVS behavior became relevant, in 
recent years, in the field of image and video 
elaboration and transmission research. It became a 
necessity when it was demonstrated that technical 
metrics are not strictly correlated with the user 
perceived quality (Wang, et al., 2004). These studies 
changed the focus of Image and Video Quality 
Evaluation techniques. The “device oriented” 
approach (Quality of Service – QoS), that ultimately 
brought to algorithms like the Peak Signal to Noise 
Ratio and the Mean Square Error, was left behind 
and replaced by a “user oriented” one (Quality of 
Experience – QoE) (Winkler & Mohandas, 2008). 
The foundation of the new model lies in the 
inclusion of subjective evaluation into algorithms 
and procedures that try to predict the level of 
satisfaction of the user, abandoning the focus on the 
technical parameters of the infrastructure. Today, 
finding an objective and robust link between the 
QoS and the QoE, is a challenging research topic, 
and can be very relevant to improve multimedia 
applications and services. The metrics that were 
developed after this conceptual shift are usually 
categorized as subjective or objective, while the 
previous type of categorization, as No Reference, 
Full Reference or Reduced Reference (NR, FR, and 
RR), still stands. This second differentiation depends 
on the necessity of the original multimedia content 
(not coded or elaborated in any way) in order to 
obtain results from the algorithm. The pros and cons 
of subjective and objective methodologies are 
discussed in (Kunze & Strohmeier, 2012) for 
subjective procedures and in (Le Meur, et al., 2010) 
for objective ones. To fill the gap between subjective 
and objective metrics, it is desirable to combine the 
precision in understanding the user perceived quality 
of subjective algorithms with the simplicity and fully 
automatic approach of objective algorithms. In (Zhu, 
et al., 2012), a new HVS methodology built on the 
retinal input is used to estimate the saliency of an 
image, while  (Linying, et al., 2012) uses the current 
understanding of the HVS color space to propose a 
content-based image retrieval algorithm. These two 
studies, together with several others, show how 

taking into account the HVS features it is possible to 
enhance known and newly developed procedures 
(Lai, et al., 2013), obtaining more reliable results. 
The methodology is called “perceptual approach” to 
the QoE research topic. The key of this approach is 
to maximize the quality of the video or image 
regions that are deemed as most relevant by the 
users. In (Lee & Ebrahimi, 2012), the authors offer a 
deep and recent overview of how a perceptual 
approach to video compression has enhanced the 
efficiency of the known techniques. The main 
difference between our approach and the previously 
quoted ones is that we do not create a model of HVS 
(based on some physiological and/or psychological 
behavior), but we derived the response of HVS to 
visual stimuli directly from the experimental dataset 
provided by Eye tracking analysis. The choice has 
the advantage of considering the entire behavior of 
the HVS (not only the ones “coded” in the 
modelization). On the contrary, the main 
disadvantage is that a post-processing algorithm on 
the generated dataset is mandatory to provide 
reduced, manageable and meaningful data related to 
video saliency. Utilizing and exploiting the 
advantages of knowing how the HVS reacts and 
behaves to stimuli is called a “foveated approach” to 
IQA and VQA, and it is used to develop video or 
image saliency maps. The most accurate 
methodology to define these maps requires the 
utilization of an Eye Tracker device. Recording the 
point of gaze of the users on the stimuli returns real-
world data, which means that it has to be considered 
as “irrefutable truth” to which all the 
modeling/evaluation methodologies should adhere. 
It is easy to understand how this methodology is 
useful to evaluate the effectiveness of objective 
quality evaluation algorithms, as the studies 
presented in Table 1 demonstrate. All the works 
presented in this table are good examples of how 
Gaze-Maps can be used as ground truth for IQA and 
VQA procedures and HVS modeling. In our VQA 
approach, we prefer to exclude the errors induced by 
the use of predictive algorithms; therefore, we apply 
our procedure on ground truth data. Our proposal is 
a new metric based on an innovative use of Eye-
Tracked Gaze-Maps: each Gaze-Point of each map 
is weighted by all the other Gaze-Points on the same 
map, in pursuance of a self-definition of its 
relevance. Then, we perform a statistical analysis in 
search of eventual correspondence with the user 
perceived quality level. These maps identify the 
salient regions of the video stimuli we used in our 
experimental activity. The contribution in literature 
which     is       closer    to       our       approach     is 
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Table 1: Summary of Eye Tracking parameter used in Quality of Experience assessment activities. 

Paper 
N. of 
Tester 

N. of 
Tester per

group 

N. of 
Original 
stimuli 

Type of 
stimuli

N. of Total 
stimuli 

instances 

Stimuli 
Duration 

Stimuli 
Resolution 

Impairment 
Techniques 

ET frequency,
accuracy 

(Youlong, et al., 
2012) 

20 20 2 vid 24 
10 s or 
more 

1280x720 Compression - 

(Chamaret & Le 
Meur, 2008) 

16 16 4 vid 4 - 720x480 Cropping 50 Hz, 0.5° 

(Le Meur, et al., 
2010) 

36 36 10 vid 60 8 s 720x480 Compression 50 Hz, 0.5° 

(Gulliver & 
Ghinea, 2009) 

36 12 12 vid 12 
10 s or 
more 

640x480 
Frame rate 
variation 

25 Hz, - 

(Hadizadeh, et 
al., 2012) 

15 15 12 vid 12 5 to 10 s 352x288 Orignal 50 Hz, 1° 

(Mittal, et al., 
2011) 

12 6 20 vid 60 30 s 720x480 
Orignal 

(different tasks) 
50 Hz, 1° 

(Boulos, et al., 
2009) 

37 37 45 vid 100 8 to 10 s 
1920x1080, 

720x576 
Cropping, 
resampling 

50 Hz, 0.5° 

(Albanesi & 
Amadeo, 2011) 

18 6 19 vid 57 8 to 66 s 352x288 Compression 50 Hz, 1° 

(Liu & 
Heynderickx, 
2011) 

40 20 29 img 29 
10 s or 
more 

768 x 512 Compression 50 Hz, 1° 

(Engelke, et al., 
2013) 

15 to 21 15 to 21 29 img 29 10 to 15s Varies Varies 50 Hz, 1° 

(Ninassi, et al., 
2007) 

20 20 10 img 120 pic 8s 512x512 
Compression, 

blurring 
50 Hz, 0.5° 

 

 (Mittal, et al., 2011), but in that case the activity is 
performed on still images. The authors studied the 
task dependency of the ocular behavior during an 
IQA procedure. However, even if the two 
approaches seem similar, our methodology differs 
because we considered relevant the position of the 
eye during saccades. To do that, we chose to cluster 
the samples during the whole view time of the users. 
Our Gaze-Points voting algorithm takes into account 
the time that occurs to HVS to “choose” which parts 
of the stimuli to stare at. This difference is 
fundamental to study our hypothesis. In case of the 
HVS gazing around a detail for some time without 
defining a fixation, excluding saccade times could 
cause information loss. We considered that interval 
of time relevant and indicative of the difficulty the 
HVS has in understanding the quality of the 
stimulus; therefore, we needed to know how the eye 
behaves in the period between fixations too. Even if 
previous works that state that the perceived quality 
is not precisely measureable by Eye Tracking 
devices exist (Ninassi, et al., 2007), (Le Meur, et al., 
2010), the authors did not choose to eliminate all the 
possible influences on the viewers of their memory. 
Recent works demonstrate how knowing a content in 
advance is a huge bias that affects the visual strategy 
of a viewer (Laghari, et al., 2012), which then may 
lead to inconsistency of the retrieved data and of the 
conclusions. The choice of not excluding content 

repetition from visual experiments still makes sense, 
because it allows within-subject comparisons, but it 
is then impossible to define if results obtained are 
caused by the hypothesis under investigation, or if 
they are altered by the repetition of the content 
proposed to the testers. In order to exclude memory 
effect bias on the recorded data, we created a 
procedure that avoids any repetition of the same 
semantic content to the same user while performing 
the subjective Eye Tracking tests.  

3 THE VOTING PROCESS 
ALGORITHM 

The following steps compose the methodology for 
the Gaze-Map generation and analysis. 

3.1 Dataset Creation  

As we consider both time and space in our 
algorithm, it is necessary to know the sampling 
frequency of the Eye Tracking device. Each 
complete sample must include the timestamp of the 
moment it is recorded and the X and Y coordinates 
of the point of gaze on the screen for each eye. We 
decide to compress each original video using 
different bit rates, to create several quality-impaired 
instances of different instances of the same semantic 
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video. The choice of the semantic content of the 
stimuli is relevant, too. It must be as general as 
possible, and the playlists for the experiment must 
be created to avoid any semantic repetition. Further 
explanations are presented in section 4, as we show 
how we gather the data for the experimental 
validation of the algorithm. 

3.2 Initial Filtering 

A first filtering operation is made to exclude any 
misreported record. The Eye-Tracking dataset 
usually includes negative spatial coordinates; those 
values mean that the gaze position at a given 
timestamp cannot be recorded, most probably due to 
minimal head movements of the observers that the 
device cannot compensate. Those records must be 
excluded. 

3.3 Timestamp Normalization  

The retrieved dataset usually cannot be studied "as 
is" because the samples usually are not perfectly 
aligned, due to experimental and/or the human 
behavior differences. Our decision of clustering the 
observation records over a fixed interval of time 
instead of comparing the full set of Gaze-Points 
(GP) retrieved by the experiments is instrumental in 
making irrelevant the impact of that kind of 
experimental error. The arrangement is also taken to 
have comparable sets of measures from different 
videos and observers. One important effect of this 
approach is to soften the impact of measure errors 
given by any head movement/inaccuracy of the 
instrument that could not be filtered in step 3.2. The 
idea behind this process is to reduce the set of data 
and to normalize it knowing the duration of each 
video. The chosen interval size is 1 s, which allows 
to group sequential records in number high enough 
to exclude the impact of accuracy measure errors. 
The shortest the interval, the more likely is to 
include altered records only. For example, when the 
tester’s head is not perfectly motionless, the Eye-
Tracker may empirically lose track of the gaze for 
dozens or even hundreds of milliseconds. We want 
an interval long enough to account for these possible 
errors. We call this phase clusterization, which 
generates clustered Gaze-Points (cGP). For example, 
a 30 s video (timestamp t	∈ ሾݐ;  is	ݐ where	ሿ,	ݐ
recoded on the last frame of the video) has 30 
intervals, i ∈ ሾ1; ݅dሿ, with id=30. Tester one on video 
one must have only one clustered Gaze-Point record, 
cGPi (XcGPi, YcGPi) for each i, summarizing all the 
records of the raw dataset belonging to interval i. 

For i=1, all the Gaze-Points whose timestamp t was 
included between ti-1=t0=0 (the beginning of the 
recording of interval defined by i=1) and ti=999 are 
included. The second Clustered Gaze-Point cGP2 
summarizes the records with t ∈ [1000; 1999] and so 
on, until i=id and t ∈ [ݐିଵ; ݐ]. The average 
coordinates of all the records give each clustered 
Gaze-Point coordinates in the chosen interval. 
Therefore, cGPi (XcGPi, YcGPi) can be considered as 
the “center of gravity” of the subset of records it 
refers to, preserving the HVS behavior information 
carried by those records. 
In (1), (2) (XGP,t ; YGP,t) are the recorded coordinates 
of X and Y of the raw dataset at time t.  

ܺீ, ൌ
∑ ಸು,

సషభ

௧ି௧షభ
; i ∈ ሾ1; ݅ௗሿ; t	∈ ሾݐ; ሿ; (1)	ݐ

ܻீ, ൌ
∑ ಸು,

సషభ

௧ି௧షభ
; i ∈ ሾ1; ݅ௗሿ; t	∈ ሾݐ; ሿ; (2)	ݐ

 

Figure 1: R-dependent analysis example, the weight of 
cGP0 is 4. 

3.4 Gaze-Map Generation 

The next step is to create a Gaze-Map for each 
instance of each video. Each Gaze-Map is created by 
plotting all the cGP taken from the previous step. 
The number of Gaze-Maps created as result of this 
step is identical to the number of video instances 
involved in the Eye Tracking activity. Each map 
includes the data gathered from the whole set of 
observers that evaluate the stimulus.  

3.5 R-Dependent Voting Process 
Analysis  

This elaboration is repeated on all the Gaze-Maps. 
To simplify the exposition, let us consider a 
simplified Gaze-Map “A” (see Fig. 1). The goal is to 
make each cGP of A define its own weight, so the 

A�New�Algorithm�for�Objective�Video�Quality�Assessment�on�Eye�Tracking�Data

465



 

voting process is performed for each clustered Gaze-
Point in the Gaze-Maps. The voting process depends 
on a parameter R, which is the radius of the 
circumference centered in the cGP under analysis 
(from Figure 1, ܿܩ ܲ). The operation is fundamental 
because each cGP of A needs to be weighted by the 
cGP in its neighborhood, including itself. The voting 
process (similar to the one of the Generalized Hough 
Transform) is defined as follows: the weight of the 
current ܿܩ ܲ (X, Y) is voted by all the cGP on the 
same Gaze-Map (ܿܩ ܲ(x, y)). The contribution to the 
weight of ܿܩ ܲ is 1 if ܿܩ ܲ	is included in the 
circumference of radius R, 0 otherwise, according to 
the following pseudo-code:  

if ((x-X)-x)^2+((y-Y)-y)^2<=R^2 &&   
Gaze-Map (x-X, y-Y)==1 { 
c=c+1;} %weight counter 

R is also the value chosen each time to perform a 
second filtering operation on the map border. It 
excludes an R-wide frame of pixels from the 
contribution to the weighting process. This feature 
aims to limit the importance of the difference 
between the video resolution and the monitor 
resolution. The problem is common when 
performing an Eye Tracking test on stimuli whose 
resolution is different from the one of the screen 
they are visualized on. With the variation of R, this 
filter is adaptive to the analysis we want to perform. 
After performing this step, each cGP of the Gaze-
Map is associated to its weight. Obviously, the value 
of the weight depends of the proximity to other cGP 
and on the radius R. The statistical average is then 
computed, and an Average Clustered Gaze-Point 
Weight (AGPWA,R) is generated for each value of R 
and each Gaze-Map.  

3.6 Iteration Process 

By performing the operations described in section 
3.5 to the whole set of Gaze-Maps, the algorithm 
generates the mean value of AGPWA,R  for each 
video. Finally, the values for each compression level 
are elaborated to obtain, given a known R, the 
average clustered Gaze-Point Weight for a given 
quality level (Quality Level Average Gaze-Point 
Weight – QLAGPW) and the standard deviation of 
clustered Gaze-Point Weights (Standard Deviation 
of QLAGPW – SDQLGPW) for each compression 
level used in the experiment. These two sets are the 
final, R-dependent, results of the procedure. And 
they are also the values at the basis of the ranking of 
video according the perceived quality, as explained 
in Section 5. 

As the Average Clustered Gaze-Point Weight 
depends on R, we have generated a whole set of 
measures, for R varying from R1 (minimum, in 
pixels) to R2 (maximum, in pixels) with a fixed step, 
a, of 10 pixels. The choice of R depends on the 
video resolution and on the relative dimensions of 
objects on the scene; therefore we have considered a 
choice of R1 and R2 of 1a and 40a, respectively.  

The unit of R is pixels because, given the fact 
that the experimental set up is not changing for any 
observer or stimulus, the visual angle is not 
changing. Experimental results validate this choice 
(see section 4 and 5). 

4 EXPERIMENTAL VALIDATION 

This section describes the experimental setup we 
adopted to validate our algorithm in a real-world 
environment. 

4.1 Choice of Human Observers  

The number of testers involved in our study is 18, 10 
males and 8 females, with an age varying from 22 to 
27. All of them have normal or corrected-to-normal 
sight and participate for the first time to a QoE Eye 
Tracking test, even if they have regular experience 
in using computer interfaces to watch videos. All of 
them are graduate or undergraduate students who 
freely volunteer to participate to the activity. They 
are randomly divided into three groups of six testers. 
Six may seem an insufficient number of testers, but 
this choice has been successfully used in (Mittal, et 
al., 2011), with meaningful conclusions. We think 
that, rather than the number of testers for each 
playlist, the most important features of the 
experimental set up are the number of different 
semantics (videos) and the number of total impaired 
version (instances).  

4.2 Media Selection  

We use 19 different semantics taken by the current 
literature (Seeling & Reisslein, 2012), (University of 
Hannover, March 2011), (xiph.org, March 2011). 
The original files are YUV sequences, 4:2:0, in CIF 
resolution (352x288). For each of them (HQ) two 
impaired instances are created, bringing the total 
number of sequences to 57. The impaired copies are 
generated by compression. Each original video is 
compressed  with  the  H.264/AVC  algorithm at two 
different levels, altering the target bit-rate: 450 b/s 
and 150 b/s  are  the  choices  for  medium  and  high 
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Graph 1: QLAGPW (y-axis) vs. varying radius of analysis 
(x-axis). 

Graph 2: SDQLGPW (y-axis) vs. varying radius of 
analysis (x-axis). 

 
compression (inducing medium and low quality – 
MQ and LQ) respectively. The aim was to create 
three different pools to build sufficiently varied 
perceived quality levels, similarly as in (Mittal, et 
al., 2011). The discussion of the effects of this 
choice as well as all the other details of the video 
dataset are deeply analyzed in (Albanesi & Amadeo, 
2011).  

4.3 Eye-tracking Protocol  

The eye tracking dataset is gathered using a Tobii 
iViewX device, configured with Windows XP.  It 
has a double CRT monitor setup, with the screen 
resolution and calibration and all the monitor 
settings as suggested by the user manual of the 
device itself.  Explicitly, the monitor resolution and 
the recording field of the instrument were 
1280x1024. This means that the video did not 
occupy completely the recording field so a black 
frame was added to create a neutral environment on 
the useless part of the screen. The sampling 
frequency of the Eye Tracking device is 50 Hz, and 
its accuracy is less than 1 degree of visual angle. All 
non-specified parameters of the activity comply with 
ITU-R BT 500-10 standard for Absolute Category 
Rating with Hidden Reference (ACR-HR) protocol. 
The choice of this protocol is due to its reliability, its 
ease of execution, and because it proved to be the 
most effective way to perform this kind of activity 
(Tominaga, et al., 2010). We used a group of 
questions directly asked to testers after each video to 
record the Mean Opinion Score on a five point 
discrete scale (Huynh-Thu, et al., 2011). We stated 
that stimuli were presented in a way to exclude any 
sort of memory effect: three playlists were created 
from the 57 instances in the starting pool (playlist A, 
B and C), and in each of them only one copy of the 

three at disposal for each video (Ref, Br450, Br150) 
was placed. If playlist A includes a stimulus 
compressed at 150 b/s, then it cannot include the 
same sequence compressed at 450 b/s or 
uncompressed. This means that each playlist has 19 
videos and that the experiment duration is inferior to 
30 minutes per tester, as advised by the guidelines. 
All the playlists includes six or seven videos for 
each compression level, to be as heterogeneous as 
possible. Playlists and testers groups are matched 
randomly in order to assign six viewers to each 
playlist. 

5 RESULTS 

In Graph 1, it is possible to see the regular pattern of 
Quality Level Average Gaze-Point Weight 
(QLAGPW) as a function of R. As easily 
predictable, the values of the average weight are 
increasing until the second filtering process (the R-
wide frame of pixels excluded from voting, see 
section 3.5) becomes too extreme and begins to 
exclude relevant cGP from the voting process.  We 
can identify an interval of R where the curve are 
completely monotonic and separated, from 10 to 27. 
The results show, for this interval, that the behavior 
related to the quality level becomes very regular: the 
higher QLAGPW, the lower the user perceived 
quality measured by the average MOS of the stimuli. 
In fact, the curves are ordered with the best video 
quality (Ref in the plot, blue line, avg. MOS 3.77, 
MOS variance 0.74) in the lowest position, the 
medium quality (Br450, green line, avg. MOS 2.81, 
variance 0.66) in the middle, and the lowest quality 
(Br150, red line, avg. MOS 1.86, variance 0.42) 
above. In addition to this first conclusion, Graph 2 
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shows that the SDQLGPW has the same regular 
behavior: the higher is the perceived quality; the 
lower is the Standard Deviation of the GP weight. 
The lower Weight of Gaze-Points means that points 
of gaze on the screen while watching the sequences 
are  more distant from each other on high quality 
level stimuli, and the lower standard deviation in this 
case suggests that even if there was more space 
between fixations, those fixations were more 
regularly distributed on the screen than in other 
cases. In fact, a low Standard Deviation indicates 
that cGP weights are similar to each other. The most 
probable explanation is that the viewers had time 
and chance to gaze around the finest details in the 
case of high quality videos, and this lead to a more 
spread set of observations on the screen. It also 
means that in this case, each observation has an 
inferior but more similar number of near 
observations. The higher average weight and 
standard deviation of the data gathered from low 
quality videos, instead, suggest that the viewer 
focused on smaller portions of the screen, with a 
high density of “heavy” observations in it and a low 
number of “light” observations outside the region of 
interest. This confirms our initial hypothesis, which 
stated that a more impaired video is more 
challenging for the HVS, and therefore it is more 
difficult to understand the semantic meaning of a 
salient region. When the radius R of analysis 
becomes too high and, together with the filtering 
frame, starts to elide meaningful Gaze-Points or to 
consider too many of them as relevant, the curves 
start to decrease and the peculiar differences 
between the quality levels are lost. Therefore, the 
ranking has to be performed by considering only the 
portion of curves that are monotonic. Performing 
this procedure to groups of different compressed 
video offer the chance to rank them accordingly to 
their quality level, without knowing the performed 
compression parameters they were subject to. For 
this reason, we called our approach a No Reference 
metric.  

The most relevant criticism that can be moved to 
our approach is that the HVS strategy is much more 
dependent on the semantic content of the chosen 
stimuli, rather than the perceived quality. This 
objection, that has its origin from several 
experimental activities like (Cerf, et al., 2009), can 
only be addressed by expanding the set of original 
stimuli to include heterogeneous semantic messages. 
Other works performed activities that involved two 
to twelve different subjects of stimuli (see Table 1), 
while our choice was to increase the number of 
sequences of our validation procedure to 19. The last 

step of the algorithm merges all the elaborated Gaze-
Point at a given quality level into one single 
measure. This step includes all the measures on the 
same quality level making it as context-independent 
as possible. We could not increase the semantic 
dataset any more without making the experimental 
activity last for more than 30 minutes for each 
person involved. The guidelines show that the 
attention focus of testers rapidly decreases after that 
amount of time, and this could cause unreliability of 
the results. Another known problem is that users 
have different visual strategies when they are asked 
to perform different tasks on video, such as quality 
assessment, summarization or free viewing (Mittal, 
et al., 2011). Our paper addresses this issue by 
asking to all the observers involved to perform the 
same task (quality evaluation). This of course gives 
task-dependent results, but also allows excluding the 
presence of task bias between different samples 
because the whole set of data was obtained by 
involving the participants in the same quality 
assessment task. 

6 CONCLUSIONS AND FUTURE 
DEVELOPMENTS 

Our work is placed in the Multimedia Quality of 
Experience field of research. We propose a new 
algorithm to study the HVS behavior when subject 
to different quality level video under the hypothesis 
that a low quality video is more challenging for the 
HVS than a high quality one. Our approach is based 
on an Eye-Tracking experimental test. We proposed 
an algorithm that included a grouping phase of the 
data and a proximity analysis. Its core is the  Gaze-
Point weighting process, which returns a measure 
that is directly related to the distance of a Gaze-Point 
to the whole set of peers on the same map. The 
proposed algorithm, taking into account the distinct 
results gathered by the different testers, returns a 
score for each video that is the average weight of 
each Gaze-Point. We noticed that the proposed 
metric is inversely proportional to the user perceived 
quality, meaning that the HVS seems to act 
regularly. This behavior can be explained by our 
initial hypothesis: on high quality level stimuli the 
eye has more chances to gaze around the screen, 
while on low quality stimuli it is more difficult for 
the eye to understand the subject of the video, which 
leads to a more concentrated set of Gaze-Point, as 
the results of our experiments confirm. 

The next step of our work will be to challenge 
this algorithm with different (not only lossy 
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compression) quality impairment techniques (such 
as transmission-related ones) and different video 
resolutions, in order to expand the field of 
application of the algorithm, by considering  other 
types of loss of quality and user experience devices 
(such as mobile devices). 
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