
Parsing Abstract Syntax Graphs with ModelCC

Luis Quesada, Fernando Berzal and Juan-Carlos Cubero
Department of Computer Science and Artificial Intelligence

University of Granada, CITIC, 18071, Granada, Spain

Keywords: Model-driven Software Development, Parser Generators, Abstract Syntax Graphs.

Abstract: The tight coupling between language design and language processing in traditional language processing tools
is avoided by model-based parser generators such as ModelCC. By decoupling language specification from
language processing, ModelCC avoids the limitations imposed by traditional parser generators, which con-
strain language designers to specific kinds of grammars. Apart from providing an alternative approach to
language specification, ModelCC incorporates reference resolution within the parsing process. Instead of re-
turning mere abstract syntax trees, ModelCC is able to obtain abstract syntax graphs from its input string.
Moreover, such abstract syntax graphs are not restricted to directed acyclic graphs, since ModelCC supports
anaphoric, cataphoric, and recursive references.

1 INTRODUCTION

A formal language represents a set of strings (Jurafsky
and Martin, 2009). Formal languages consist of an al-
phabet, which describes the basic symbol or character
set of the language, and a grammar, which describes
how to write valid sentences of the language (Gins-
burg, 1975; Harrison, 1978). In Computer Science,
formal languages are used, among other things, for
the precise definition of data formats and the syntax
of programming languages.

Most existing language specification techniques
(Aho et al., 2006) require the language designer to
provide a textual specification of the language gram-
mar. The proper specification of such a grammar is
a nontrivial process that depends on the lexical and
syntax analysis techniques to be used, since each kind
of technique requires the grammar to comply with a
specific set of constraints. Each analysis technique
is characterized by its expression power and this ex-
pression power determines whether a given analysis
technique is suitable for a particular language. The
most significant constraints on formal language spec-
ification originate from the need to consider context-
sensitivity, the need to perform an efficient analy-
sis, and some techniques’ inability to resolve conflicts
caused by grammar ambiguities.

As an alternative approach, model-based language
specification techniques (Kleppe, 2007) decouple lan-
guage design from language processing and automat-

ically generate the corresponding language grammar,
thus making the language design process less ardu-
ous.

While, in general, the result of the parsing process
is an abstract syntax tree that corresponds to a valid
parsing of the input text according to the language
concrete syntax, nothing prevents the model-based
language designer from modeling non-tree structures.

Typically, syntax analysis defers some analy-
sis tasks to later stages in the language processing
pipeline, such as reference resolution and other se-
mantic checks. However, a model-driven parser gen-
erator can be employed to automate some parts of this
process.

ModelCC (Quesada et al., 2011) is a model-based
parser generator that includes support for dealing with
references between language elements, thus incor-
porating the reference resolution that is traditionally
hand-crafted with the help of a symbol table into the
parsing process.

In this paper, we explain how ModelCC (Quesada
et al., 2011) is able to resolve references and obtain
abstract syntax graphs as the result of the parsing pro-
cess, rather than the traditional abstract syntax trees
obtained from conventional parser generators.

Section 2 introduces model-based language spec-
ification. Section 3 explains the reference resolution
support in the ModelCC model-based parser genera-
tor. Section 4 introduces a working example that illus-
trates abstract syntax graph parsing. Finally, Section

151Quesada L., Berzal F. and Cubero J..
Parsing Abstract Syntax Graphs with ModelCC.
DOI: 10.5220/0004671601510157
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 151-157
ISBN: 978-989-758-007-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

5 presents our conclusions and future work.

2 BACKGROUND

In its most general sense, a model is anything used in
any way to represent something else. In such sense,
a grammar is a model of the language it defines. In
Software Engineering, data models are also common.
Data models explicitly determine the structure of data.
Roughly speaking, they describe the elements they
represent and the relationships existing among them.
From a formal point of view, it should be noted that
data models and grammar-based language specifica-
tions are not equivalent, even though both of them
can be used to represent data structures. A data model
can express relationships a grammar-based language
specification cannot, and does not need to comply
with the constraints a grammar-based language spec-
ification has to comply with. Typically, describing a
data model is generally easier than describing the cor-
responding grammar-based language specification.

In practice, when we want to build a complex data
structure from the contents of a file, the implementa-
tion of the mandatory language processor needed to
parse the file requires the software engineer to build a
grammar-based language specification for the data as
represented in the file and also to implement the con-
version from the parse tree returned by the parser to
the desired data structure, which is an instance of the
data model that describes the data in the file.

Whenever the language specification has to be
modified, the language designer has to manually
propagate changes throughout the entire language
processor tool chain, from the specification of the
grammar defining the formal language (and its adap-
tation to specific parsing tools) to the correspond-
ing data model. These updates are time-consuming,
tedious, and error-prone. By making such changes
labor-intensive, the traditional language processing
approach hampers the maintainability and evolution
of the language used to represent the data (Kats et al.,
2010).

Moreover, it is not uncommon for different appli-
cations to use the same language. For example, the
compiler, different code generators, and other tools
within an IDE, such as the editor or the debugger,
typically need to grapple with the full syntax of a
programming language. Unfortunately, their mainte-
nance typically requires keeping several copies of the
same language specification synchronized.

The idea behind model-based language specifi-
cation is that, starting from a single abstract syntax
model (ASM) that represents the core concepts in a

Context-Free

Grammar

e.g. BNF

Conceptual

Model

Attribute

Grammar

Abstract

Syntax

Tree

Concrete Syntax Model Abstract Syntax Model

instance

of

instance

of

Textual

Representation
Parser

input output

Figure 1: Traditional language processing.

Context-Free

Grammar

e.g. BNF

Conceptual

Model

Textual

Representation
Parser

Abstract

Syntax

Graph

Concrete Syntax Model Abstract Syntax Model

instance

of

instance

of

input output

Figure 2: Model-based language processing.

language, language designers can develop one or sev-
eral concrete syntax models (CSMs). These CSMs
can suit the specific needs of the desired textual or
graphical representation. The ASM-CSM mapping
can be performed, for instance, by annotating the ab-
stract syntax model with the constraints needed to
transform the elements in the abstract syntax into their
concrete representation.

This way, the ASM representing the language can
be modified as needed without having to worry about
the language processor and the peculiarities of the
chosen parsing technique, since the corresponding
language processor will be automatically updated.

Finally, as the ASM is not bound to a particu-
lar parsing technique, evaluating alternative and/or
complementary parsing techniques is possible with-
out having to propagate their constraints into the lan-
guage model. Therefore, by using an annotated ASM,
model-based language specification completely de-
couples language specification from language pro-
cessing, which can be performed using whichever
parsing techniques are suitable for the formal lan-
guage implicitly defined by the abstract model and its
concrete mapping.

A diagram summarizing the traditional language
design process is shown in Figure 1, whereas the cor-
responding diagram for the model-based approach is
shown in Figure 2.

It should be noted that ASMs may represent non-
tree structures. Hence the use of the ‘abstract syntax
graph’ term in Figure 2.

ModelCC (Quesada et al., 2011) is a parser gen-

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

152

Table 1: The metadata annotations supported by the ModelCC model-based parser generator.

Constraints on... Annotation Function

...patterns
@Pattern Pattern matching definition of basic language elements.
@Value Field where the recognized input element will be stored.

...delimiters
@Prefix Element prefix(es).
@Suffix Element suffix(es).
@Separator Element separator(s) in lists of elements.

...cardinality
@Optional Optional elements.
@Minimum Minimum element multiplicity.
@Maximum Maximum element multiplicity.

...evaluation
order

@Associativity Element associativity (e.g. left-to-right).
@Composition Eager or lazy composition for nested composites.
@Priority Element precedence level/relationships.

...composition
order

@Position Define an element member position relative to other.
@FreeOrder All the element members positions may vary.

...references
@ID Identifier of a language element.
@Reference Reference to a language element.

Custom
constraints

@Constraint Custom user-defined constraint.

erator that supports a model-based approach to the
design of language processing systems. Its starting
ASM is created by defining classes that represent lan-
guage elements and establishing relationships among
those elements. Once the ASM is established, con-
straints can be imposed over language elements and
their relationships as annotations in order to produce
the desired ASM-CSM mapping.

The ASM is built on top of basic language el-
ements, which can be viewed as the tokens in the
model-driven specification of a language. ModelCC
provides the necessary mechanisms to combine those
basic elements into more complex language con-
structs, which correspond to the use of concatenation,
selection, and repetition in the syntax-driven specifi-
cation of languages.

In ModelCC, the constraints imposed over ASMs
to define a particular ASM-CSM mapping are de-
clared as metadata annotations on the model itself.
Now supported by all the major programming plat-
forms, metadata annotations are often used in re-
flective programming and code generation (Fowler,
2002). Table 1 summarizes the set of constraints sup-
ported by ModelCC for establishing ASM-CSM map-
pings.

When the ASM represents a tree-like structure, a
model-based parser generator is equivalent to a tradi-
tional grammar-based parser generator in terms of ex-
pression power. When the ASM represents non-tree
structures, reference resolution techniques can be em-
ployed to make model-based parser generators more
powerful than grammar-based ones, as we will see in
the next Section.

3 REFERENCE RESOLUTION
SUPPORT IN MODELCC

Reference resolution consists of finding the object a
reference refers to and, in the case of ModelCC, au-
tomatically linking the reference to the corresponding
object instantiation. Reference resolution leads to ab-
stract syntax graphs instead of trees in model-driven
language processing.

In ModelCC, an object reference is embodied by
a subset of the elements in its full object definition.
This subset of elements acts as an identifier (or key
in database terms) that, when found in the input text,
can be recognized as a reference to the corresponding
object in the model and linked to its instantiation in
the ASM.

References in ModelCC can be anaphoric, when
they are preceded by the corresponding object defi-
nition; cataphoric, when the references precede the
definition; and recursive, when they appear within the
definition they refer to.

Subsection 3.1 introduces the@ID metadata an-
notation, which allows the specification of identi-
fiers for language elements. Subsection 3.2 presents
the @Referencemetadata annotation, which allows
the specification of references to other language el-
ements.

3.1 The @ID Annotation

ModelCC uses an@ID metadata annotation to sup-
port reference specification. This annotation is ap-

Parsing�Abstract�Syntax�Graphs�with�ModelCC

153

plied to a subset of the members of a language ele-
ment model. This subset determines the syntax of ref-
erences to particular instances of such elements in the
concrete syntax of the corresponding language. That
is, any appearance of the same set of values will be
interpreted as a reference to the same instance of the
referred language element.

The use of references is resolved in our imple-
mentation of ModelCC by the introduction of gram-
mar productions that characterize such references and
semantic actions that map them to the corresponding
language elements.

In Figure 3, the@ID annotation is employed to
identify users by a single number.

However, the@ID annotation can be used to-
gether with other ModelCC annotations, such as
@FreeOrder, which allows the members of a lan-
guage element to be shuffled in their textual represen-
tation, and@Prefixand@Suffix, which add syntactic
sugar to the incarnation of the abstract syntax model
as a concrete textual language.

The inadvertent definition of two entities of the
same class with the same identifier results in a run-
time warning produced by ModelCC when parsing its
input.

3.2 The @Reference Annotation

ModelCC resorts to the@Referencemetadata anno-
tation to complete its support for reference resolu-
tion. The @Referenceannotation applies to indi-
vidual members of any language element, provided
that the referenced types contain at least one@ID-
annotated member in their model.

Whenever a language element member is anno-
tated with@Reference, the corresponding grammar
productions are modified so that they refer to the sym-
bol corresponding to the element reference specifica-
tion rather than the symbol that corresponds to its full
specification. These productions are then associated
to a semantic action that resolves the references at
the end of the parsing process, in order to support
cataphoric and recursive references, apart from the
anaphoric references that could be resolved on the fly
during the parsing process.

In Figure 3, the textual syntax of messages in-
cludes numbers that, as identifiers, refer to particular
users. ModelCC will parse such identifiers, recognize
the references, resolve them, and return the correct
object graph.

�������

[@��������	�@��
�@.@���

[@��������	�@�
@.@�����

[@����@.@����

sssssssss����sssssssss

[@���@��@.@������

[@����@.@����

[��
�

I]]U

[�

Figure 3: ModelCC specification ofMessages, their
senders, and their receivers.

4 A WORKING EXAMPLE

In this section, we present an example language that
allows the specification and rendering of complex 3D
objects using the reference resolution capabilities of
ModelCC.

First, we will outline the features we wish to in-
clude in our 3D object specification language. Then,
we will provide the full language specification for
ModelCC by defining an abstract syntax model,
which will be annotated to specify the desired ASM-
CSM mapping. Lastly, we will see an example input
and output pair for our 3D object specification lan-
guage.

4.1 Language Description

Our 3D object specification language is designed to
support the following features:

• A special section, denoted by the “scene” key-
word, delimits the statements that will be used for
rendering the scene.

• The definition of custom objects, which are iden-
tified by an object name. As references can be
lazily resolved, recursion is allowed.

• Scoped statements, delimited by “{” and “}”, that
allow the specification of lists of statements that
will run in a new scope.

• Composite statements, delimited by “[” and “]”,
that allow the specification of lists of statements
that will run in the current scope.

• Repeated statements that allow the repetition of
a statement, a group of statements, or a block of
statements, a number of times.

• Draw statements, which draw either basic objects
(e.g. a cube) or user-defined objects. Draw state-
ments allow the specification of a numeric param-
eter. The “next” keyword, when used as this nu-
meric parameter, is replaced in runtime by the cur-
rent parameter decreased by one, and draw state-
ments will not run when the parameter is 0.

• Scale transformation statements, which support
the specification of a combination of x, y, and z

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

154

Definition
- @ID name : ObjectName
- content : Statement

 Statement

+ run()

Scene
- definitions : Definition[]
- content : Statement
+ draw()

ObjectName
- @Value name : String

BlockStatement
- content : Statement[]

GroupStatement
- content : Statement[]

SceneObject

+ draw()

IntegerLiteral
- @Value val : int

CubeObject

DefinedObject
- @Reference ref : Definition

RepeatStatement
- @Suffix("times") times : Parameter
- content : Statement
+ @Autorun checkArguments()

RealLiteral
- @Value val : double

ColorStatement
- @Prefix("red") @Optional red : Literal
- @Prefix("green") @Optional green : Literal
- @Prefix("blue") @Optional blue : Literal
- @Prefix("alpha") @Optional alpha : Literal
- relative : Relative
+ @Autorun checkArguments()

Relative

 ScaleStatement
- @Prefix("x") @Optional x : Literal
- @Prefix("y") @Optional y : Literal
- @Prefix("z") @Optional z : Literal
- @Optional all : Literal
+ @Autorun checkArguments()

RotateStatement
- @Prefix("angle") @Optional angle : Literal
- @Prefix("x") @Optional x : Literal
- @Prefix("y") @Optional y : Literal
- @Prefix("z") @Optional z : Literal
+ @Autorun checkArguments()

TranslateStatement
- @Prefix("x") @Optional x : Literal
- @Prefix("y") @Optional y : Literal
- @Prefix("z") @Optional z : Literal
+ @Autorun checkArguments()

@FreeOrder

@Prefix("scene")

@Prefix("define")

@Pattern("[A-Za-z0-9_]+")

@Prefix("draw")

@Pattern("cube")

@Prefix("repeat")

@Prefix("[")

@Suffix("]")

@Suffix("}")
@Prefix("{")

@Priority(2)

@Priority(1)

@Optional

@FreeOrder

@Prefix("color")

@Prefix("scale")

@FreeOrder
@Prefix("rotate")

@FreeOrder
@Prefix("translate")

@Pattern("relative")

0..*

-definitions

-content

-name

-content

-content

0..*
-content

0..*

-ref

-content

-relative

Next

@Pattern("next")

Parameter

+ intValue() : int

+ doubleValue() : double

Literal

-parameter

-object

DrawStatement
- object : SceneObject
- @Optional parameter : Parameter
+ @Autorun checkArguments()

Figure 4: ModelCC definition of a 3D object specification language. ModelCC reference resolution support is used to allow
the specification of complex 3D objects in theDefinitionclass.

Parsing�Abstract�Syntax�Graphs�with�ModelCC

155

values in any order, or a single scaling factor that
will be applied to the three axes.

• Rotate transformation statements, which support
the specification of the angle and a combination
of x, y, and z axis values in any order.

• Translate transformation statements, that support
the specification of a combination of x, y, and z
values in any order.

• Color setting statements, which support the spec-
ification of a combination of red, green, blue, and
alpha values in any order, and allow either abso-
lute (by default) or relative color adjustments.

4.2 ModelCC Implementation

In ModelCC, the abstract syntax model is designed,
then mapped to a concrete syntax model by imposing
constraints by means of metadata annotations on the
abstract syntax model.

The resulting model can be processed by
ModelCC to automatically generate the correspond-
ing parser. The UML class diagram in Figure 4
presents our annotated 3D object specification lan-
guage model.

The reference support extension we propose in
this paper can be observed in theDefinition, Object-
Name, andDefinedObjectclasses. Thenamemember
of theDefinitionclass is annotated with@ID, which
means that aDefinition instance can be identified by
an ObjectName. Then, theref member of aDefine-
dObjectis annotated with@Reference, which means
that, in textual form, aDefinedObjectcan refer to a
Definition by its ObjectName. ModelCC reference
resolution allows references to be resolved during the
parsing process and makes the implementation of a
traditional symbol table unnecessary.

It should be noted that certain constraints cannot
be expressed in the abstract syntax model. How-
ever, these constraints can be expressed as custom
constraints using the@Constraintannotation. In our
example, some statements corresponding to elements
in our model, such as draw statements and repeat
statements, will not accept real values as parameters.
These custom semantic constraints are implemented
in thecheckArguments()methods of the language el-
ements classes corresponding to those statements.

ModelCC is able to automatically generate a
grammar from the ASM defined by a class model and
the ASM-CSM mapping defined as a set of metadata
annotations on the class model. References in that
grammar are automatically resolved by ModelCC so
that further work is not needed.

define trunk {
color red 0.87 green 0.50 blue 0.10

alpha 1
draw cube
repeat 10 times [
scale x 1.02 z 1.02 y 0.98
color relative red -0.03 green -0.02

blue -0.01
draw cube

]
}

define leaves {
color red 0.2 green 0.9 blue 0.3

alpha 0.9
translate x -1
{
scale z 0.6 y 0.05
repeat 100 times [

color relative red +0.005
alpha -0.005

translate x -0.04 y -0.3
draw cube

]
}

}

define palmtree {
repeat 8 times [
draw trunk
translate y 1

]
repeat 3 times [
translate y -0.5
scale 0.7
rotate angle 8 y 1
repeat 15 times [

rotate angle 24 y 1
draw leaves

]
]

}

scene {
draw palmtree

}

Figure 5: Specification of a palmtree in our 3D object spec-
ification language.

4.3 Example of 3D Object Specification

Figures 5 and 6 illustrate the specification and ren-
dering of a 3D palmtree in our 3D object specifica-
tion language. Thepalmtreeobject is defined as eight

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

156

Figure 6: Rendering of the palm tree from Figure 5.

trunk sections with leaves on the top.

5 CONCLUSIONS AND FUTURE
WORK

ModelCC is a model-based parser generator that em-
ploys metadata annotations to implement ASM-CSM
mappings.

We have described how ModelCC supports ref-
erence resolution and allows parsing abstract syntax
graphs rather than conventional abstract syntax trees,
as obtained by traditional grammar-driven parser gen-
erators.

We have demonstrated the use of ModelCC ref-
erence resolution support with a fully-functional ab-
stract syntax graph parser for a 3D object specifica-
tion language.

In the future, we plan to apply model-based lan-
guage specification techniques to problems such as
data integration. We also plan to implement metadata
annotations that support more complex scoping rules
for reference resolution.

ACKNOWLEDGEMENTS

Work partially supported by research project
TIN2012-36951, “NOESIS: Network-Oriented
Exploration, Simulation, and Induction System”,
cofunded by the Spanish Ministry of Economy and
the European Regional Development Fund (FEDER).

REFERENCES

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006).
Compilers: Principles, Techniques, and Tools. Addi-
son Wesley, 2nd edition.

Fowler, M. (2002). Using metadata.IEEE Software,
19(6):13–17.

Ginsburg, S. (1975). Algebraic and automata theoretic
properties of formal languages. North-Holland.

Harrison, M. A. (1978).Introduction to Formal Language
Theory. Reading, Mass: Addison-Wesley Publishing
Company.

Jurafsky, D. and Martin, J. H. (2009).Speech and Language
Processing: An Introduction to Natural Language
Processing, Computational Linguistics and Speech
Recognition. Prentice Hall, 2nd edition.

Kats, L. C. L., Visser, E., and Wachsmuth, G. (2010).
Pure and declarative syntax definition: Paradise lost
and regained. InProceedings of the ACM Interna-
tional Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’10),
pages 918–932.

Kleppe, A. (2007). Towards the generation of a text-based
IDE from a language metamodel. volume 4530 of
Lecture Notes in Computer Science, pages 114–129.

Quesada, L., Berzal, F., and Cubero, J.-C. (2011). A lan-
guage specification tool for model-based parsing. In
Proceedings of the 12th International Conference on
Intelligent Data Engineering and Automated Learn-
ing. Lecture Notes in Computer Science, volume 6936,
pages 50–57.

Parsing�Abstract�Syntax�Graphs�with�ModelCC

157

