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Abstract: Pairwise and higher order potentials in the Hierarchical Conditional Random Field (HCRF) model play a 
vital role in smoothing region boundary and extracting actual object contour in the labeling space. However, 
pairwise potential evaluated by color information has the tendency to over-smooth small regions which are 
similar to their neighbors in the color space; and the higher order potential associated with multiple 
segments is prone to produce incorrect guidance to inference, especially for objects having similar features 
to the background. To overcome these problems, this paper proposes two enhanced potentials in the HCRF 
model that is capable to abate the over smoothness by propagating the believed labeling from the unary 
potential and to perform coherent inference by ensuring reliable segment consistency. Experimental results 
on the MSRC-21 data set demonstrate that the enhanced HCRF model achieves pleasant visual results, as 
well as significant improvement in terms of both global accuracy of 87.52% and average accuracy of 
80.18%, which outperforms other algorithms reported in the literature so far. 

1 INTRODUCTION 

Semantic image segmentation can essentially be 
formulated as a labeling problem that attempts to 
assign a class label from a predefined label set to 
each pixel or super pixel in a given image (Boix et 
al., 2012); (Kohli and Torr, 2009); (Ladicky et al., 
2009). Over the years, many assignment approaches 
have been explored with varying degree of success. 
One of the popular ideas is perhaps the use of 
Conditional Random Field (CRF) (Lafferty et al., 
2001) combined with various potentials. The CRF is 
a discriminative model (Kumar and Hebert, 2006) 
that focuses on searching the optimal hyperplane for 
different classes. The labeling problem is thus 
solved by minimizing an energy function defined in 
the conditional random field over pixels or patches 
in the image (He et al., 2004); (Kohli and Torr, 
2009); (Kumar and Hebert, 2005); (Ladicky et al., 
2009); (Shotton et al., 2006), which can be quite 
effective in semantic image segmentation. For 
instance, one simple CRF model was described in 
(Boykov and Jolly, 2001) for object and background 
segmentation. In this model, only two potentials, 
unary potential and pairwise potential, are defined in 
the energy function. It achieved good performance 

for a two-class segmentation on grey images. 
However, this model treats all the random variables 
on the same layer, which does not capture high level 
contextual information. Plath et al., (2009) added a 
global node over the basic layer for multi-class 
image segmentation. A consistency potential is then 
defined as a Potts model to penalize each local node 
which is different from the global one. As a result, it 
enforces all the local nodes in a region are assigned 
the same labels as the global node. This might not be 
capable to interpret large regions including multiple 
classes. Given these problems of the simple CRF 
model, complex CRF models, such as the 
hierarchical CRF (HCRF) models as described in 
(He et al., 2004); (Kohli and Torr, 2009); (Kumar 
and Hebert, 2005); (Ladicky et al., 2009), are then 
being proposed. The HCRF models fuse different 
scales of contextual information together to jointly 
perform labeling inference. The most representative 
of all the HCRF models is probably the one outlined 
in (Ladicky et al., 2009). Mathematically, the HCRF 
model is characterized by an energy function defined 
over the unary, pairwise, higher order and co-
occurrence potentials. The first three potentials 
consider local interactions. Specifically, the unary 
potential is given by the observation of each pixel 
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from low level cues. The pairwise potential 
expresses the dependencies of neighboring pairwise 
pixels based on the difference in colors. The higher 
order potential encodes the interaction of long range 
pixels in super pixels or segments, while 
relationships between objects are captured by the co-
occurrence potential based on global statistics. Note 
that the pairwise potential used in (Ladicky et al., 
2009) is evaluated only on the basis of color 
differences to enforce a smooth labeling, it is not 
always a rational decision. For example, if the 
neighboring pixels have similar color features but 
belong to different objects, the pairwise potential 
could result in over smoothness. Another problem 
arises from higher order potential. Note that the 
higher order potential is guided by segments. While 
segmentation methods (Comaniciu and Meer, 2002); 
(Felzenszwalb and Huttenlocher, 2004); 
(MacQueen, 1967); (Shi and Malik, 2000); (Tan and 
Yung, 2008); (Zhu and Yung, 2011) are plentiful, 
different qualities of segments from being over-
segmented to under-segmented are obtained. If a 
fine segment is used, better inference results are 
usually produced. In contrast, if a coarse segment is 
used, inappropriate guidance would result in mis-
classifications.  

To solve the above issues in the HCRF model 
(Ladicky et al., 2009), one contribution of this paper 
is to develop an enhanced model for pairwise 
potential. Considering the pairwise model itself may 
not incorporate enough information for an efficient 
inference, the newly constructed model depends not 
only on the contrast in the color space but also on 
the differences in the Laplacian space for an efficient 
inference. The believed labeling from unary 
potential is propagated to reduce the side effect of 
the pairwise model. Another contribution is to 
establish a discriminative model for the higher order 
potential. The discriminative model has the 
capability to select fine segments that involve in the 
inference process. Therefore, the higher order 
potential can also be called a segment-reliable 
consistency potential. Consequently, coherent 
classification results are obtained. Experimental 
results show that the enhanced HCRF model 
achieves significant improvement in terms of both 
global accuracy and average accuracy, as compared 
to other models in the literature. 

In Section 2, we review the HCRF based method 
and its shortcoming for semantic image 
segmentation. In Section 3, we describe the details 
of the proposed method. Experimental results are 
given in Section 4, and the paper is concluded in 
Section 5.  

2 CONDITIONAL RANDOM 
FIELD BASED METHOD FOR 
SEMANTIC IMAGE 
SEGMENTATION 

2.1 Conditional Random Field for 
Semantic Image Segmentation 

The aim of the CRF approach is to minimize an 
energy function E(x) defined on a discrete random 
field X. Each random variable	 ܺ ∈ ܺ	corresponds to 
a node in the graphical model. The indexes of all 
basic nodes consist of a set of		ܸ ൌ ሼ1,2, … , ܰሽ. The 
value xi of each random variable Xi (or each node) 
represents the class label which takes a value from 
the label set ܮ	 ൌ ሼ݈ଵ, ݈ଶ, … , ݈ሽ . Thus the labeling 
problem is to find a label for each node in the 
graphical model from the label set. 

The energy function in the HCRF model is 
defined on unary, pairwise, higher order and co-
occurrence potentials (Ladicky et al., 2009) as 
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where V corresponds to the set of all pixels in an 
image, Ni is the set of neighboring pixels of pixel i. 
S is a set of cliques (super pixels or segments). 

In Equation (1), the unary potential ϕi(xi) is 
defined on a pixel i. It can be calculated as the 
negative log of the likelihood that pixel i is labeled 
as xi. The likelihood can be obtained from the output 
of an adaptive boosted classifier (Ladicky et al., 
2009; Torralba, Murphy, & Freeman, 2004) based on 
low level features (such as texton (Shotton et al., 
2006), scale invariant feature transform (SIFT), 
color SIFT and local binary pattern (LBP)) of each 
pixel in an image.  

The pairwise potential Ѱij(xi, xj) encodes a 
smoothness prior between the neighboring random 
variables Xi and Xj. In (Ladicky et al., 2009), this 
potential is typically calculated as 
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where w0, w1 and w2 are model parameters whose 
values are learned based on the training data. The 
parameter dij denotes the distance between pixel i 
and pixel j. Ii is the color vector of pixel i, and W is 
the weight vector corresponding to three color 
components.  

In Equation (1),  c
h
c x  denotes the higher order 
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potential defined over a set of pixels (super 
pixel/segment) which is often generated from one of 
many unsupervised image segmentation methods. It 
is adopted to capture long range pixel interactions 
(region continuity), that is powerful in interpreting 
middle level structural dependencies between pixels 
in regions. C(L) denotes the co-occurrence potential 
based on high level statistics for encoding the 
relationships between objects. 

To perform inference, graph cuts-based method 
(Boykov et al., 2001); (Boykov and Jolly, 2001); 
(Kohli and Torr, 2009); (Ladicky et al., 2009); 
(Ladický et al., 2012); (Szummer et al., 2008) is 
used in the HCRF model to minimize the energy 
function in Equation (1).  

2.2 Problems with Pairwise and Higher 
Order Potentials for Semantic 
Segmentation 

In essence, the pairwise potential encodes a 
smoothness prior over neighboring variables. It 
penalizes two neighboring pixels which are labeled 
as different classes. In such a way, it is capable of 
smoothing the boundary of regions achieved by 
inferring unary potentials in the label space. 
However, it also results in an undesirable side effect. 
As depicted in Fig. 1, the boat is smoothed out when 
pairwise potential is added. One reason is that the 
boat and the water have similar color. By evaluating 
the pairwise potential in the color space, a larger 
penalty to force neighboring variables to adopt the 
same label is assigned by the graph cuts inference. 
In such case, pairwise potential results in over-
smoothness of some regions. 

In order to capture the fine contours of objects, 
higher order potential defined over a set of segments 
is incorporated into the HCRF model in Equation (1) 
by Ladicky et al (Ladicky et al., 2009). In (Ladicky 
et al., 2009), six layers of image segment are 
extracted based on two methods. Three layers of 
segment are generated by the K-Means clustering 
method (MacQueen, 1967), and the other three 
layers of segment are obtained by the Meanshift 
clustering method (Comaniciu and Meer, 2002). Fig. 
2 (a2)-(f2) depicts the segmentation results using 
different parameters. In this example, only three 
potentials including unary potential, segment 
consistency potential and co-occurrence potential are 
considered instead of four potentials in Equation (1), 
to eliminate possible side effects from pairwise 
potential as discussed above. Generally speaking, 
unsupervised segmentation methods can extract 
more accurate contour of objects when the parameter 

values of K-Means and Meanshift are increased. 
Segment consistency potential has the capability to 
integrate the same object under the guidance of 
unsupervised segmentations. From the inference 
point of view, it helps the labeling process recover 
from false unary predictions. However, if 
unsupervised segments are too coarse, such as the 
results for the cat scene as shown in Fig. 2 (e2) and 
(f2), the inferred boundaries are not reliable under 
the guidance of inaccurate segments. As a result, it 
results in false labeling, such as the labeling results 
in Fig. 2 (e1), (f1), (e3) and (f3). 

3 ENHANCED PAIRWISE AND 
HIGHER ORDER POTENTIALS 
FOR SEMANTIC IMAGE 
LABELING 

3.1 Enhanced Pairwise Potential 

Note that the pairwise potential in Equation (2) is 
evaluated solely based on the color space. From 
Equation (2), we can see that a larger penalty is 
given if two pixels have similar color. As a result, 
neighboring pixels tend to have the same labeling 
under the pairwise smoothing constraints, which it is 
not always the best decision. It is evident there are 
significant between-class overlaps in terms of color 
only. Especially, when the size of the object is small, 
the resolution of an image is low or the image is 
blurred. In one of these scenarios, the pairwise 
potential tends to result in over-smoothing as shown 
in Fig. 1. In order to incorporate sufficient 
information to express the relationship of 
neighboring pixels, an extra term based on the edge 
space is added to calculate the smoothing 
constraints. As such, a second order derivative 
operator, the Laplacian operator, may be used to 
convolve with an image. It can extract detailed edge 
information of an image and is isotropic. In 
considering these advantages, we formulate an 
enhanced pairwise potential evaluation method, 
which is defined in both the color space and 
Laplacian space as given in Equation (3). 
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Figure 1: Impact of the pairwise potential: (a) Original image, (b) Groundtruth, (c) unary potential, (d) unary and co-
occurrence potentials, (e) unary, pairwise and co-occurrence potentials. 

  
(a1) (b1) (c1) (d1) (e1) (f1) 

  
(a2) (b2) (c2) (d2) (e2) (f2) 

  
(a3) (b3) (c3) (d3) (e3) (f3) 

Figure 2: Unsupervised segmentation results and their semantic labeling results. (a1) Original image, (b1) Groundtruth, (c1) 
labeling result on unary potential, (d1) labeling result using three-layer K-Means segments, (e1) labeling result using three-
layer Meanshift segments, (f1) labeling result using all six-layer segments; (a2)-(f2) Unsupervised segmentation results on 
(a2) K-Means(30), (b2) K-Means(40), (c2) K-Means(50), (d2) Meanshift(7.0x6.5), (e2) Meanshift(7.0x9.5), (f2) 
Meanshift(7.0x14.5); (a3)-(f3) Labeling results on (1) by using one-layer segments from (a2) to (f2), respectively. 
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In Equation (3), N(xi) denotes the indices of the set 
of pixel i (corresponding to the random variable Xi 
in the graphical model) and its neighboring eight 
pixels, and unary

ix denotes the labeling of pixel i 

determined by the unary potential. If the random 
variable associated with its surrounding eight 
neighbors have the same labeling based on the 
minimization of unary potential function, the class 
label of this random variable is believed and 
propagated even if the pairwise potential is included 
in the energy function. In other words, the pairwise 
potential does not work when the class label of a 
random variable is propagated. Based on this 
criterion, the object classes with smaller sizes and 
similar color information to its adjacent objects are 
preserved. In Equation (3), K1(·) and K2(·) are two 
kernels defined in the color space and Laplacian 
space, respectively. They take forms as shown in 
Equations (4) and (5). In Equation (5), Gi is equal to 
the convolution between an image and Laplacian 
operator. w0, w1, β0 and β1 are model parameters, 
whose values are learned based on the training 

dataset. By doing this, the pairwise potential is 
sensitive to contrast in both color and edge 
magnitude. To some extent, it suppresses the side 
effect of the original model. 

3.2 Enhanced Higher Order Potential 

Note that the higher order potential is defined over a 
set of segments. In the higher order term of Equation 
(1), the set S includes all segments from multiple-
layer segmentations of an image by using two 
unsupervised segmentation algorithms. In (Kohli & 
Torr, 2009; Ladicky et al., 2009), the higher order 
potential takes the form of a robust Pn Potts model 
as 
 

   







 




ci
i

l
ci

l
cc

Ll
c

h
c lxkw ,minx max , (6)

 

where max
c denotes the maximum cost of the 

potential for segment c, l
c represents the potential 

cost if the segment c takes a dominant label Ll  . 
l
cikw  is used for calculating an additional penalty to 

each pixel in segment c without taking the label l. 
From Equation (6), we can see that the higher order 
potential encourages more pixels in segment c to 
take the dominant label l. This may result in over-
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integrating some segments ((e3) and (f3) in Fig. 2) 
including more than one class label in the under 
segmentation situation (such as (e2) and (f2) in Fig. 
2). To resolve this problem, we propose a segment-
reliable consistency potential taking the form of 
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where T[·] is an indicator function, and Sr denotes 
the set of segments that provides more reliable 
guidance to an efficient inference. The minimization 
of the higher order potential can be solved by 
transforming it into an equivalent pairwise potential 
(Boros and Hammer, 2002); (Kohli et al., 2009); 
(Kohli and Torr, 2009); (Ladicky et al., 2009); 
(Rother et al., 2009). The critical problem is to 
determine which segments are reliable. In this paper, 
T[c] is defined by Equation (8). When T[c] is equal 
to one, it means that the segment c is reliable, and 
takes part in the inference process. Otherwise, the 
segment is excluded from the set S in Equation (1). 
In other words, the unreliable segments are not 
included in the energy minimization. As a result, the 
inference is not influenced by the unreliable 
segments any more, but decided by the other three 
potentials and the segment-reliable consistency 
potential. 
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where parameters α (0.4) and β (0.1) can be learned 
from validation set. Consequently, the energy 
function is formulated in (9) for the enhanced HCRF 
model. The graph cuts algorithm proposed in 
(Ladicky et al., 2009) is then used to perform 
inference. 
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4 EXPERIMENTAL RESULTS 

Both the enhanced pairwise and higher order 
potentials have been tested on the MSRC-21 dataset 
(Shotton et al., 2006). They are evaluated based on 
the global and average-per-class recall criteria 
defined in (Ladicky et al., 2009). The MSRC-21 
dataset includes 591 images with the resolution of 
320×213 or 162×320 pixels, and 21 object classes. 
In our experiments, the dataset is typically 
partitioned into three sets including 45% for 
training, 45% for testing, and 10% for validation as 

in (Ladicky et al., 2009); (Shotton et al., 2006). Each 
image has six-layer segments. Parameters for these 
six-layer unsupervised segmentations are set to the 
same as in (Ladicky et al., 2009).  

To have a better understanding of the 
classification effects by adopting different potentials 
for these 21 object classes, four groups of semantic 
segmentation results have been generated and 
depicted in Table 1 based on the source code 
(automatic labeling environment, abbreviated to 
ALE) of the method in (Ladicky et al., 2009). “M0 
(1 P)” denotes the classification based on the unary 
potential, which is also called the pixel-based 
random field (RF) method in (Ladicky et al., 2009). 
“M1 (2 Ps)” denotes the classification based on two 
potentials (unary and co-occurrence potentials). “M2 
(3 Ps)” denotes the classification based on unary, 
pairwise and co-occurrence potentials. “M3 (4 Ps)” 
denotes the classification based on all four 
potentials. From the results in Table 1, it can be seen 
that the unary potential based inference has provided 
significant classification accuracy in both the overall 
(up to 83.56%) and average (up to 76.72%) 
categories. By fusing one more potential, further 
improvement in both categories is observed. When 
all four potentials are considered, roughly 3% and 
1% increases as compared with the pixel-based RF 
method are achieved for the overall and average 
accuracy, respectively. This means that the HCRF 
model with higher order potentials (segment 
consistency potentials) is feasible by taking into 
account the interactions between different levels, 
and it is significantly superior to the one-layer CRF. 
However, it should also be noted that, compared 
with the pixel-based RF method, classification 
accuracies of some object classes, such as cow, cat, 
and boat, are substantially reduced when the 
segment consistency potential is included. 

In Table 1, the experimental results of our 
proposed enhanced model are also presented. “iM2 
(3 Ps)” denotes the classification based on three 
potentials which are similar to “M2 (3Ps)” but with 
the enhanced pairwise potential. “iM3 (4 Ps)” 
denotes the classification based on Equation (9). By 
substituting the pairwise potential in iM2 (3 Ps) with 
the enhanced version, the average classification 
accuracy are improved when compared with M2 (3 
Ps). When both the enhanced pairwise and the 
segment-reliable consistency potentials are included, 
iM3 (4 Ps) achieves the best performance of  
87.52% and 80.18% for global and average 
classification, respectively, which is slightly less 
than 1% of increase overall when compared with M3 
(4 Ps), but close to 3% of increase in average 
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accuracy. As average accuracy is more 
representative in how well the method classifies, this 
percentage is clearly more significant. In terms of 
individual classes, the proposed model (iM3 (4 Ps)) 
performs equal or better in 18 classes (indicated by 
the bold font) when compared with M3 (4 Ps). When 
compared with the pixel-based RF method, the 
proposed model is superior in 17 classes. We also 
tried other datasets, such as Corel, Sowerby, 
Stanford used in (Ladicky et al., 2009), and the 
proposed algorithm still show better results than 
those in (Ladicky et al., 2009) in terms of both 
measurements. 

Some of the successful classification results are 
depicted in Fig. 3 for visual evaluation. For objects 
(such as face and boat in Fig. 3) with smaller sizes in 
an image, they are often not discerned by the 
algorithm in ALE. By contrast, the enhanced HCRF 
model produces more pleasant results. Note that the 
appearance between different object classes may be 

similar, such as cat and road in the third row of Fig. 
3. Moreover, intra-class appearances are often not 
uniform, such as the cat in the fourth row of Fig. 3. 
By using the enhanced HCRF model, objects can be 
successfully segmented while the algorithm in ALE 
can only produce broken fragments. 

To have a more comprehensive understanding of 
the failure cases, we focus on investigating the boat 
class, which has the lowest classification accuracy as 
shown in Table 1. From the confusion matrix, we 
note that boat is often mis-classified as building 
(20.5%), water (30.9%) or bicycle (17.5%). 

Fig. 4 presents some of these cases for visual 
evaluation. It can be seen that the major reason for 
failure comes from the pixel-based RF classification. 

In the pixel-based RF, low-level appearance 
features over a region about each pixel are adopted 
as the input to a boosted classifier (Ladicky et al., 
2009);  (Shotton et al., 2006)  to  determine  its class 
label.  However,  overlaps   in   appearance  features 

Table 1: Classification accuracy on the MSRC-21 dataset in terms of percentage. 
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M0 (1 P) 83.56 76.72 67 96 90 87 88 93 84 81 89 76 90 80 59 40 93 61 87 82 52 80 34

M1 (2 Ps) 84.03 77.19 69 96 91 88 90 93 85 81 89 77 91 81 59 41 93 59 87 84 52 82 34

M2 (3 Ps) 84.43 77.42 70 97 91 88 91 94 83 82 89 77 92 82 60 40 94 60 88 85 53 81 32

M3 (4 Ps) 86.87 77.67 76 99 91 75 86 99 78 88 87 76 88 93 76 51 95 65 92 68 52 79 18

Proposed 
iM2 (3 Ps) 84.15 78.59 66 95 90 92 92 93 88 81 88 77 91 82 62 42 93 64 89 86 59 83 38

iM3 (4 Ps) 87.52 80.18 76 99 90 86 94 96 84 88 88 79 89 93 74 51 95 68 92 83 56 81 24
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Figure 3: Some successful cases. (a) original image, (b) ground truth, (c) labeling result on unary potential, (d) labeling 
result based on ALE, and (e) labeling result based on the enhanced HCRF model. 
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Figure 4: Some failure cases (a) Original image, (b) ground truth, (c) pixel-based RF and (d) enhanced HCRF. 

(such as building and boat) between different classes 
confuse the inference. Furthermore, in under-
segmented cases, objects with smaller block sizes 
(such as boat) are often merged with the 
background. As a result, the object classes cannot be 
inferred properly by the proposed HCRF model. For 
the bird class, which also has low classification 
accuracy, similar observations can be made as 
depicted in Fig. 4. Generally speaking, the major 
misclassifications are ascribed to two aspects for the 
pixel-based CRF model. One is being mis-classified 
as one of the adjacent object classes, and the other is 
mistakenly classified as the class with similar 
appearance. Both problems are propagated to the 
original HCRF model and the enhanced HCRF 
model, which eventually have limited their 
classification performance. If these problems can be 
resolved, higher classification success is expected 
for both models. 

5 CONCLUSIONS 

In conclusion, we have proposed an enhanced HCRF 
model for semantic image segmentation in this paper 
that performs significantly better in average 
classification accuracy than existing similar models. 
The proposed HCRF model consists of two 
enhanced potentials. The new pairwise potential 
comprises an additional Laplacian edge magnitude 
together with the original color differences. 
Moreover, it also propagates the believed labeling 

determined by the unary potential to abate the over 
smoothness effect that the pairwise potential 
constraints lead to. The new segment-reliable 
consistency potential on the other hand is capable of 
selecting reliable segments to guide the inference. 
We have evaluated the enhanced HCRF model on 
the MSRC-21 data set, and the results show that the 
proposed model has achieved notable improvements 
in terms of both overall and average accuracy, when 
compared with other HCRF models. With regard to 
future research, focus will be placed on improving 
the performance of the unary potential by 
considering more discriminative features for object 
classes such as boat, bird, dog and chair. 
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