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Abstract: Frequency spectrum of the wave scattered by randomly rough surface back to transceiver located on 
aerospace vehicle moving towards the surface is evaluated and investigated in explicit form. Kirchhoff’s 
(physical optics) method is applied for scattered field evaluation. It is assumed that transceiver irradiates 
directive spherical wave illuminating circled area on the surface. Distribution of the rough surface height is 
assumed to be normal with isotropic Gaussian correlation function. Application the effective approximation 
formula for characteristic functions difference in integrand gives rise to spectrum evaluation for arbitrary 
height of surface irregularities. Frequency spectrum is shown to exist in two forms. The first one is 
represented by monotonic curve, depending on correlation distance of the rough surface. The second form 
includes one maximum, which position and amplitude are related with the roughness’ mean square slope. 
On the parameter plane the curve is plotted which separates regions with abovementioned spectrum forms. 

1 INTRODUCTION 

The purpose of this paper is theoretical evaluation 
frequency spectrum of radiowave backscattered to 
transceiver moving towards randomly rough surface. 
This situation occurs, for example, before spacecraft 
landing on the Moon or planet surface. Irregularities 
of such surfaces are formed by natural factors and 
may be described as random fields. Frequency 
spectrum provides information about statistical 
characteristics of rough surface, such as correlation 
distance, mean square height and slope of its 
irregularities. 

The scattering problem on randomly rough 
surface may be formulated as follows. Let scalar 
(sound) or vector (electromagnetic) wave fall on the 
surface S separating two media. The surface is 
described by equation ( , , )z x y t= ζ , where ζ is 
random function of coordinates x, y and time t. It is 
required to establish relation between statistical 
parameters of rough surface and characteristics of 
scattered field. Approaches to this problem as well 
as results obtained were described in literature at 
various times (Beckman and Spizzichino, 1963), 
(Bass and Fuks, 1972), (Shmelev, 1972). 

Nevertheless this problem is actual up to now 
because of application peculiarity variety. 

We use in this paper Kirchhoff’s (physical 
optics) method – the most developed and effective in 
wave scattering problems. It is based on assumption 
that reflection of incident wave at every point of 
rough surface locally obeys geometric optics laws. 
This means that our consideration is restricted to 
rather smooth and gentle irregularities, which 
curvature radius is large in comparison with wave 
length. We don’t take into account shadowing 
effects, so surface slopes are assumed to be not too 
sharp. 

The problem solution by Kirchhoff’s method is 
used to include two stages. At the first stage 
dynamical part of the problem is considered. 
General expression for wave field diffracted on the 
surface S is composed in Kirchhoff’s approximation. 
The surface height is described herein by arbitrary 
function ( , , )z x y t= ζ . At the second stage this 
function is declared to be random and various 
statistical characteristics of scattered field, such as 
middle value, average intensity, correlation function 
etc., are evaluated by averaging over rough surfaces 
ensemble. In this paper we are interested in 
frequency spectrum of backscattered field when 
transceiver is moving towards rough surface (in 
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vertical direction). Analogous problem in the case 
when transceiver is moving along rough surface (in 
horizontal direction) was studied earlier (Shmelev, 
1973). More accurate explicit results may be 
obtained in the case under consideration. 

2 DYNAMICAL PART 

For the sake of simplicity we consider scalar (sound) 
waves taking in mind that vector character of 
electromagnetic wave acts on polarization but not on 
spectrum shape. Let the directional spherical wave 
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fall on the rough surface S which height ( , )z x y= ζ  

diverges from the mean plane ( ), 0z x y= ζ =  
denoted by S0. The wave number in upper medium is 
k c= ω , directivity pattern of transmitter is ( )rF n , 
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, 0R - transmitter position vector. 

At first we consider motionless surface S. Its 
movement towards transceiver will be taken into 
account in quasi-static approximation by time 
dependence restoration in final expression for 
diffracted field. This approximation is valid if 
transmitter velocity is small in comparison with light 
velocity v c . Geometric scheme of the wave 
scattering problem is shown on Figure 1 for general 
case of spaced transmitter Q and receiver P. 

 

 
Figure 1: The scattering problem geometry for spaced 
transmitter and receiver. 

Here R0 and R are transmitter Q and receiver P 
position vectors, ( , , ( , )) ( , )x y x y ⊥= ζ = ζr r  is radius 

-vector of rough surface point, n - surface normal at 
this point. 

Diffracted field at observation point P is related 
with values of the field φ and its normal derivative 

n∂ϕ ∂  on the rough surface S by Green’s formula  
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In Kirchhoff’s approximation following relations 

are valid at the every point of surface S 
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where ( , )V V= r n  is local Fresnel reflection 
coefficient. Substitution (1) and (3) into (2) gives 
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Let us assume now that transmitter and receiver 

are situated far enough from the rough surface, so 
that 2

0, , ,R R kλ σ σ , where σ is mean square 
height of surface irregularities and 2 kλ = π  - wave 
length. Then we separate two types of multipliers in 
(4) – rapidly oscillating exponent and slowly varying 
functions weakly dependent on rough surface height 
( )⊥ζ r . Setting 0ζ =  in this functions, keeping 

linear with respect to ζ  terms in exponent power 
expansion and changing integration over surface S 
by integration over middle plane S0, we come to 
known expression for diffracted field  
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where ( ) 01 0 1, ,0 , , ,x y⊥ ⊥ ⊥= = − = −r R r R R R r  

01 01 01 1 1 1,R R= =n R n R  and ( )01 1k= −q n n  is 
the scattering vector. 

Let us now take into consideration motion of the 
rough surface along z-axis with the constant velocity 
v. In quasi-static approximation we have to set in (5) 

( ) ( ), t vt⊥ ⊥ζ = ζ = ζ +r r . In addition we assume that 
surface S is absolutely reflecting (V=1) – absolutely 
rigid in acoustics or perfectly conductive in 
electrodynamics. This removes influence of surface 
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material properties on spectrum under investigation. 
Solution of dynamical part of the problem takes on 
final form 
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This expression provides basis for further evaluation 
statistical characteristics of diffracted field. 

3 AVERAGE FIELD 

Averaging expression (6) over ensemble of random 
field ( )⊥ζ r  realizations leads to average value of 
diffracted field 
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where corner brackets denote averaging operation, 

( ) ( )1 expz zf q iqζ = ζ  is characteristic function of 
the rough surface S. We suppose that random field 
( )⊥ζ r  is statistically homogeneous. 

Evaluation this integral by means of stationary 
phase technique gives physically transparent result 

 
( )(0)

1( , ) ( ) ( )expzs zst f q iq vtζϕ = ϕR R ,       (8) 
 

where 2 coszs sq k= θ  is z-component of scattering 
vector at stationary point coinciding with the point 
of mirror reflection from the mean plane S0. This 
point is chosen to be origin of coordinates. Incidence 
angle at stationary point is denoted by sθ . The field 

mirrored from the plane S0 is designated as ( ) ( )0ϕ R . 
Average field is interpreted like coherent part of 

diffracted field. Multiplier ( )1 zsf qζ  is effective 
reflection coefficient of average field. If surface 
height is distributed under Gaussian law, it has the 
form  

 
( ) 22 2 2 2

1 ( ) exp 2 cos ezs sf q k −Δ
ζ = − σ θ = ,……(9) 

 
where 2 cos skΔ = σ θ  is the Rayleigh parameter 
characterizing degree of surface roughness. 

Doppler shift of average field is equal to  
 

2 coszs sq v kvΔω = = θ .                (10) 
 

Backscattering case follows by setting 0sθ =  in 
formulas obtained. 

4 SCATTERED FIELD 

Scattered field is meant to be diffracted field minus 
its average value Δϕ = ϕ− ϕ . Let us evaluate 
temporal correlation function of the scattered field 
( ) ( ) ( ), ,t t t t∗′ ′ψ − = Δϕ ⋅ΔϕR R . Using (6) and (7) 

we obtain 
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where 
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( ) ( ) ( )2 , , expf u w iu iwζ ⊥ ⊥= ζ + ζ +⎡ ⎤⎣ ⎦ρ r r ρ  is two-

dimensional characteristic function of the rough 
surface. 

Integral ( )J q  is well studied in cited literature. 
There are known its explicit expressions for 
irregularities distributed under Gaussian law. In the 
case of small irregularities in comparison with the 
wave length ( )2 1kδ = σ  and Gaussian spatial 

correlation coefficient ( ) ( )2 2expK lρ = −ρ with the 
single correlation distance l this expression has the 
form 

 
( ) ( )2 2 2 2 2exp 4 , 1zJ l q q l⊥= πσ − δq .     (13) 

 
In the opposite case of high irregularities 1δ  and 
arbitrary spatial single-scale correlation function 
integral J equals to 
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where parameter ( )2 2 2 22 0 4s K l′′β = σ = − σ = σ  
characterizes mean-square slope of the surface 
roughness. 
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In this paper we use the integral J evaluation 
technique valid for arbitrary values of parameter δ, 
i.e. for arbitrary height of surface irregularities. It is 
based on approximation formula 
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where γ is positive parameter. This approximation 
was studied in detail in (Vinogradov and Shmelev, 
2008). 

Let us assume that the surface height is 
distributed under Gaussian law with Gaussian spatial 
correlation coefficient ( ) ( )2 2 2 2exp x x y yK l l= −ρ −ρρ  
taking into consideration possible non-isotropy of 
surface irregularities. Difference of characteristic 
functions in integrand (12) may be represented in 
accordance with (15) by following expression 
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where effective correlation distances have the values 
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dependent on wave length. 

Substitution (16)-(17) into (12) and immediate 
evaluation of the integral lead to result 
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In the case of statistically isotropic surface we 

have to set x yl l l= = . This gives 
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In limiting cases of small and high irregularities 
these expressions lead to (13) and (14). 

Let us consider now backscattering case, when 
transmitter and receiver positions coincide, i.e. 

( )0 0,0,Z= =R R . Let rough surface be statistically 
isotropic, and multiplier describing antenna pattern 
be in the form 
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where a is radius of illuminated area on the mean 
plane S0. Transformation to polar coordinates in 
integrand (11) gives then required expression for 
temporal correlation function of backscattered field 
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where following relations are valid: 
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5 FREQUENCY SPECTRUM 

As is known, frequency spectrum may be evaluated 
by Fourier transformation of temporal correlation 
function 
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Insertion (21), (22) into (23) and application of δ-

function integral representation ( ) 1 e
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gives following expression for frequency spectrum 
of backscattered field 
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Introducing new integration variable 
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 and performing integration of 
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δ-function, we obtain frequency spectrum of 
backscattered field in explicit form 
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Dimensionless frequency 0

2 2kv kv
ω−ω Δω

Ω = =  varies 

within cos 1θ ≤ Ω ≤ , where angle 2θ is the beam 
width of transmitter, so that tan a Zθ = . Beyond 
this interval ( ) 0.G Ω ≡  Physically this means that 
frequency spectrum includes all possible Doppler 
shifts of scattered field – from maximum 

max 2kvΔω =  in vertical direction till minimum 

min 2 coskvΔω = θ  in direction of illuminated area 
border. 

To avoid dependence on inessential parameters 
let us consider spectrum normalized to its value at 
Ω=1, i.e. ( ) ( ) ( )0 1G G GΩ = Ω : 
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Analysis of this expression shows that there exist 

two forms of frequency spectrum. The first one is 
represented by monotonic curve, depending on 
correlation distance of the rough surface. The second 
form includes one maximum, which position and 
amplitude are related with irregularities mean square 
slope. Typical examples of these spectrum forms are 
shown on Figures 2 and 3. 

Regions on the plane (δ,β) corresponding to one 
or another form of spectrum differ in sign of 
derivative ( )0 1G′ . Region, where ( )0 1 0G′ > , 
corresponds to the first form and region, where 

( )0 1 0G′ < , – to the second form. The curve 

corresponding to ( )0 1 0G′ =  separates these two 
regions. Simple calculations using (26) lead to 
equation of this curve plotted on Figure 4: 
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Figure 2: The first form of frequency spectrum for 
parameter values δ=0.1, β=0.1. 
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Figure 3: The second form of frequency spectrum for 
parameter values δ=100, β=2. 
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Figure 4: The curve separating regions with the first 
(under the curve) and the second (above the curve) forms 
of spectrum. 

Frequency Spectrum of the Wave Backscattered to Transceiver Moving Towards Rough Surface

19



The first spectrum form results in the case when 
irregularities are rather small ( )1δ <  or gentle 

( )0.7β < . High and sharp irregularities lead to the 
second form of spectrum. 

In the case of extreme low roughness ( )1δ  
expression (26) is simplified to  
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where ( )2klα = δ β =  is mean square correlation 
distance in the scale of wave length. Differentiation 
(28) gives relation 
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which may be used for experimental estimation of 
parameter α. 

In the opposite case of very high roughness 
( )1δ  expression (26) takes on the form 
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For sharp irregularities ( )0.67β >  it describes 

the second spectrum form having maximum at 
( )2 3mΩ = β . Thus position of maximum carries 

information on mean square slope of the rough 
surface β. Additional information on this parameter 
contains height of this maximum 
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This function is plotted on Figure 5. 
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Figure 5: View of the function (31). 

6 CONCLUSIONS 

Proposed evaluation the frequency spectrum of the wave 
backscattered from rough surface in explicit form and for 
arbitrary roughness height lets us establish detailed 
relations between spectrum parameters and statistical 
characteristics of the surface. Results obtained may be 
useful for further development of rough surfaces remote 
sensing technique. 
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