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Abstract: In the last few decades, increasing traffic has led to serious problems in urban areas. Travel times for 
travellers have increased and the liveability in residential areas has declined due to pollution and issues 
concerning safety. Whereas new road and rail infrastructure in densely populated areas is costly, a better 
utilisation of existing infrastructure appears to be more attractive. This becomes increasingly possible due to 
huge developments in the world of Information and Communication Technology (ICT). However, 
implementing ICT solutions for the purpose of traffic management remains challenging. First, it is quite a 
task to set up a system in which infrastructure, travel vehicles and travellers can communicate with each 
other. Secondly, it is quite difficult to gather and exchange traffic and travel information in such a way that 
the traffic situation improves significantly. This paper deals with the latter issue, and it provides an outline 
for the possible architecture of a future traffic management system. It concludes that in such a system both 
mobile devices, like smartphones and navigation systems, and roadside devices, like loop detectors and 
cameras, need to be included to arrive at optimal results. 

1 INTRODUCTION 

Congestion has increased significantly in the last 
few decades. The efficient use of existing 
infrastructure by dynamic traffic management 
(DTM) is one of the strategies to reduce congestion 
and related problems like air pollution. An important 
requirement is the availability of detailed traffic 
information such as travel demand and travel times.  

In the Netherlands and many other developed 
countries, highway data are collected by a high 
concentration of detection loops which yield 
information on traffic intensities and travel times. In 
urban areas traffic information is much scarcer and 
only since quite recently, traffic data gathered by 
roadside devices like detection loops have become 
available in traffic information centres (e.g., Hasberg 
and Serwill, 2000, Kellerman and Schmid 2000, 
Leitsch, 2002). For urban areas, the traffic 
circulation is usually estimated by a combination of 
intensity measurements and traffic models. 
However, with new measurement methods by which 
individual vehicles are identified (Blokpoel and 
Vreeswijk, 2011), accurate roadside measurements 
of travel times and routes will become possible. 

At the same time, the use of mobile sensor data 
such as GPS and GSM has been increasing rapidly, 
which have led to separate travel time estimators 
(e.g., Google Traffic, 2013). Because these data are 
gathered by personal devices such as navigation 
systems and smartphones, travel information and 
advice can be personalized and adapted to the 
preferences of the individual traveller (e.g., Bie et 
al., 2012). In case of smartphones, travel information 
does not have to be limited to car trips, but may also 
include several other travel modes.  

Roadside and mobile sensor data techniques both 
have their specific strengths. In this paper, a possible 
architecture for future DTM is put forward in which 
both data sources are combined at some point. In 
section 2, the requirements for a future DTM system 
are provided. Then, in section 3 and 4, the 
advantages, disadvantages and possibilities of 
mobile and roadside sensor data are described 
respectively. Based on the requirements for a future 
DTM system and the strengths and weaknesses of 
roadside and mobile sensor data, section 5 describes 
an outline for the architecture of a possible future 
DTM system. 
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2 DTM REQUIREMENTS 

The requirements for a modern DTM system should 
be based on two pillars. First, the traffic system, 
usually the responsibility of a traffic manager, 
should run smoothly. This may mean several things, 
but in general the objective is to minimize the total 
delay on the (road) network and to minimize 
external costs caused for example by traffic 
accidents or air pollution. Secondly, the traffic users, 
i.e. travellers, want to travel smoothly. This may 
also mean various things for individual travellers, 
but in general travellers want to minimize their 
(perceived) travel time and cost while perceiving the 
journey as being safe and comfortable.  

In other words, the traffic manager’s objective is 
to optimize the traffic system as a whole, while 
travellers want to optimize their individual journeys. 
Both things are not necessarily resulting in the same 
traffic equilibrium, and in some cases they are even 
clearly conflicting with each other. One of the main 
challenges of a modern DTM is therefore to 
reconcile the two. 

Meeting the objectives of the traffic manager and 
individual traveller also requires different 
information needs. An individual traveller needs to 
have traffic information about the possible travel 
modes and routes that are relevant to him, i.e. those 
that can be used to reach the preferred destination. 
Detailed information only needs to be available 
during the time of traveling. This is by no means 
trivial, because it still requires a prediction of the 
traffic situation in the near future, i.e. until the 
journey is expected to be completed.  

However, this task is relatively easy compared to 
optimizing management objectives. Whereas the 
individual traveller is merely influenced by 
surrounding traffic, the traffic manager is 
influencing traffic itself, which effects are much 
harder to predict. Moreover, the effects of traffic 
operations like traffic lights are not necessarily 
instantaneous, but may show delays. For example, a 
traffic measure in one part of a city can have an 
effect in another part half an hour later. In the ideal 
case, the traffic situation should therefore be 
predictable for the whole network, for different 
traffic management scenarios, and during a longer 
period of time, for example a whole peak hour.  

Fulfilling the needs of individual travellers on 
the other hand has its own challenges. While there is 
one traffic manager with one set of objectives, there 
are many individual travellers, all with their own 
perceptions, preferences and habits that play an 
important role in the decision making process. In 

this modern individual oriented society, traffic 
information and travel advice of one fits all is 
becoming less acceptable. By using individual 
devices like smartphones, it is also becoming 
technically possible to provide personalized traffic 
information and travel advice.  

From the aforementioned considerations, one 
can arrive at the following requirements: 

 
1. Traffic management requires accurate 

predictions about the traffic situation for the 
whole network, different traffic management 
scenarios and whole (peak) periods.  

2. Individual travellers need personalized multi-
modal travel advice based on their preferences 
and habits. 

3. A traffic management measure should not lead to 
the perception of travellers that they are worse 
off due to the measure or are harmed unfairly by 
it. 
 

The third requirement tries to reconcile differences 
between the interests of traffic manager and 
individual travellers. Of course, it is impossible to 
satisfy all travellers. However, it might be possible 
to introduce measures such that travellers do not 
notice they are worse off and therefore do not 
change their behaviour, or such that travellers do not 
perceive the alternative they switch to as worse or 
unfair.  

3 MOBILE SENSOR DATA 

Mobile sensors like GPS and GSM are widely used 
in smartphones and navigation systems nowadays. 
Initially, they were used for navigation, but as their 
numbers increase, they are now also being used for 
estimating travel times on road trajectories (e.g., 
Google Traffic, 2013). There are however more 
applications: they can reveal travel patterns of 
individuals and groups of travellers.  

In most countries, including the Netherlands, the 
understanding of people’s travel behaviour is based 
on cross-sectional travel surveys where in general 
only one day is surveyed for each respondent in 
representative periods (Ortuzar et al., 2010). From 
these data, origin destination matrices, modal split 
(mode choice) and route choice are estimated and 
used in models that model urban traffic flows. 

However, this is not enough to gain a proper 
understanding of the dynamics in travel behaviour. 
More specific, cross-section data do not give any 
information to ascertain how choices will vary over 
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time (i.e. policy response) if the system changes. 
Studies with GPS-devices show a strong variation in 
multi-day travel behaviour (e.g., Stopher amd 
Zhang, 2011). People are shown to visit new places 
even after several months of monitoring 
(Schönfelder and Axhausen, 2010). Apart from 
determining destination and mode choice patterns 
over longer periods of time, GPS data are 
increasingly used to study route choice (e.g., Jan et 
al. 2000, Zhu and Levinson 2009, Papinski and Scott 
2011).  

Derived from standard economics it is often 
assumed in transport modeling that travelers are 
rational decision makers and have perfect 
knowledge on all available choice alternatives. 
There is increasing recognition that these 
assumptions are debatable. In reality, people may 
have limited knowledge and constrained cognitive 
abilities, leading to prejudiced reasoning and 
seeming randomness in choice behavior (e.g. 
Avineri and Prashker, 2004). This has been 
described as bounded rationality or satisficing 
behavior, first introduced by Herbert Simon (Simon, 
1955) , and also found its way into transportation 
research (Mahmassani and Chang, 1987, 
Jayakrishnan et al., 1994). Since then, multiple 
studies suggested that these irrational behaviors are 
neither random nor senseless; they are systematic, 
consistent, repetitive, and therefore predictable 
(Tversky and Kahnemann, 1981, Ariely, 2009). 

A well-known mechanism derived from the 
principles of bounded rationality is the notion of 
indifference band (Mahmassani and Chang, 1987). 
According to the theory of indifference bands, 
drivers will only alter their choice when a change in 
the transportation system or their trip characteristics, 
for example the travel time, is larger than some 
individual-situation-specific threshold.  

More in general, travelers appear to make their 
decisions based on their perception of alternatives, 
which is biased according to the ‘choice-supportive 
bias’. That is, people are more likely to attach 
positive feeling to options they choose and attribute 
negative features to options they reject (Mather et 
al., 2003, Henkel and Mather, 2007) even if that 
would be irrational. In terms of travel choices this 
suggests that travelers have different perceptions of 
options they frequently use than options they hardly 
use (Vreeswijk et al. 2013).  

These findings may play an important role in 
future DTM, especially in fulfilling requirements 2 
and 3. Although some travelers may be worse off 
when the overall network performance is optimized, 
it may be possible to choose DTM measures for 

which travelers do not perceive they are worse off or 
do not find this a problem. This will only be 
possible, however, when travelers get personalized 
travel advice based on their preferences and habits. 
For this, mobile sensor data appear to be 
indispensable. 

4 ROADSIDE DEVICES 

The use of smartphone, carrying among others a 
GPS-sensor, will probably rise in the coming years, 
enabling new data acquisition opportunities 
(Stopher, 2009, Nitsche et al., 2012). In addition, 
there already are numerous smartphone applications 
gathering personal travel data (e.g. UbiActive (Fan 
et al. 2012), Trip Analyzer (Li et al., 2011), and 
tripzoom (Bie et al., 2012)). Finally, smartphones or 
navigation devices are used as probes to estimate 
travel times on main roads. The question thus arises 
whether roadside devices are still necessary in the 
future.  

To answer this question, we need to consider 
requirement 1 from section 2: “Traffic management 
requires accurate predictions about the traffic 
situation for the whole network, for different traffic 
management scenarios and over whole (peak) 
periods”.  

This requirement implies several things at the 
same time. First, information is needed on the traffic 
situation. This is much more than travel time alone. 
Policy makers are not only responsible for travellers, 
but also for the environment that is harmed by 
traffic. Pollution, noise hindrance and safety are 
important external factors which need to be 
considered, especially in dense residential areas or 
near locations that attract vulnerable groups such as 
schools. This implies that certain vulnerable, busy or 
economically important areas, locations or corridors, 
may need to be monitored continuously. Because 
many external effects depend on traffic intensity, 
this important quantity should be included in the 
monitoring.  

Secondly, predictions are required for the whole 
network under various (possible) management 
scenarios. This implies that traffic intensities and 
travel times should be predictable when the traffic 
manager decides to increase or reduce the capacity 
of certain roads (for example by giving more or less 
green time). Because travel time shows a strong non-
linear dependence on network intensities (demand) 
and capacities (supply), it is difficult to predict travel 
time when intensities and capacities are unknown, 
especially when small changes in intensity have a 
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large effect on travel time. This is actually the case 
when it matters (i.e. in urbanized areas with a lot of 
traffic), while at the same time intensities are known 
to show strong variation within days and between 
days (Thomas et al., 2008). Accurate travel time 
predictions under varying (management) scenarios 
are therefore only possible when network demand 
and supply are predictable.  

From this, it can be concluded that traffic 
management requires continuously monitoring of 
travel times, traffic intensities and capacities 
throughout the network or at least at, in or along 
important locations, areas or corridors. 

At the moment this is not possible with mobile 
sensors. Mobile sensor (GPS) samples for public use 
are simply much too small. This may be changing 
(e.g. Rieser-Schüssler et al. 2012) somewhat, but the 
expectation is that, in general, public GPS samples 
will remain limited, (partly) due to privacy 
restrictions and commercial interests. In other 
words, large amounts of mobile sensor (GPS) data 
may remain out of reach for traffic management. 
Even if mobile sensor data would increase 
substantially for public use, there will always be 
some travelers missing from the data. For example, 
commuters will be less inclined to use navigation. 
Therefore, it can be questioned whether there will 
ever be enough mobile sensor (GPS) data to monitor 
traffic intensities and capacities of the important 
road sections with enough accuracy.  

Roadside observations can fill this gap. In urban 
areas, single detection loops have long been used to 
measure occupation levels and intensities as input 
for traffic light operations. Network monitoring is 
more difficult with these data, because delays cannot 
easily be estimated in saturated conditions (when 
queues form near traffic lights), and individual 
vehicles cannot be followed through the network. As 
a result these measurements don’t provide 
information on OD patterns and routes. 

However, this is changing due to increasing use 
of cameras and new induction detection techniques 
that enable the identification of individual vehicles 
(Blokpoel and Vreeswijk, 2011). Thus, with these 
roadside devices located at important intersections, 
travel times, intensities and capacities can be 
measured directly throughout the network. Together 
with prediction algorithms like neural networks 
(e.g., Dharia, and Adeli, 2003, Yin et al. 2002), 
pattern matching models (e.g., Bajwa et al., 2004), 
extrapolation models (e.g., Wild , 1997, Chrobok et 
al., 2004, Thomas et al., 2009) or clustering models 
(e.g., Chung, 2003, Weijermars, 2007), more 
accurate traffic predictions of intensities and travel 

times will then become possible given certain 
management scenarios. 

5 SYNTHESIS 

As we have seen in the previous sections, traffic 
managers and travelers use different devices, i.e., 
roadside and mobile devices respectively, to acquire 
traffic information. Although mobile devises like 
smartphones with GPS become increasingly 
important, roadside devices might remain the main 
source of information for traffic management, 
because besides travel time they are able to provide 
accurate information on intensities and capacities. 

The traditional use of traffic information by 
policy makers and travelers as shown in Figure 1 
therefore remains quite realistic. The Figure shows 
two independent symmetric systems for both traffic 
management and the individual traveler. Both 
systems have objectives, i.e., policy objectives for 
the traffic manager and travel objectives for the 
traveler. By confronting these objectives with traffic 
and travel information respectively, traffic 
operations are set to manage the traffic system, and 
travel decisions are made to execute a trip. The 
traffic information is derived from data from 
roadside sensors, while travel information is derived 
from mobile sensor data.  

Of course this Figure is a simplistic illustration 
of reality. The division between the use of roadside 
and mobile sensors is in reality not this strict, and a 
single box could in itself represent a complicated 
process with feedback loops. Traffic operations, for 
example, represent an interplay between 
instruments, such as traffic lights, variable message 
signs or route guidance panels, and traffic managers, 
while travel decisions may include more than only 
the traveller’s behaviour. In fact, nowadays most 
travellers are assisted by travel apps that provide the 
traveller with information or advice. Travel apps are 
therefore implicitly included in travel decisions. The 
use of travel information in travel apps is more 
subtle than the figure indicates. Mobile sensor data 
of other users are used to provide reliable 
information on relevant travel modes and routes, 
while historical travel choices of the user may be 
used to personalize the advice. However, for the 
broader picture, these issues do not need to be 
considered in detail here.  

The weak part of the traditional concept, as 
illustrated by Figure 1, is the lack of any interaction 
between traffic management and traveller. This leads 
to drawbacks regarding all three DTM requirements. 
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Figure 1: scheme of traditional use of mobile and roadside sensors. 

 

Figure 2: Scheme of integrating traffic and individual travel information on an operational level. 

Surely, the usefulness of advice to the traveller 
would be enhanced by knowledge about (future) 
traffic operations (requirement 2). By the same 
token, the quality of traffic prediction would be 
increased when the intentions or likely future 
decisions of individual travellers are known to the 
traffic manager (requirement 1). Finally, without any 
interaction, there is no knowledge about (a change 
in) travellers’ perceptions regarding certain traffic 
management measures (requirement 3). 
In some projects such as SUNSET (Sunset, 2013) 
and I-zone (Veenstra et al., 2010), the information 
from travellers (mobile sensors) and traffic operators 
(roadside sensors) have been combined. This is 
shown schematically in Figure 2. Again, the 

architecture is more complicated in reality, and both 
projects comprise much more than combining 
different data sources. However, the general use of 
data in these projects is well captured by Figure 2. 
Information derived from roadside and mobile 
sensor data are combined in one large database. 
Third parties, mostly private companies, can retrieve 
this information via APIs, and can use this 
information in all kinds of apps they develop for 
travellers.  

The main characteristic of such an architecture is 
sharing of underlying sensor data, and providing 
these data to the larger public. However, there are 
two main drawbacks of such an architecture 
regarding DTM. First, travel information on such
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Figure 3: Scheme of integrating traffic and individual travel information on a strategic level. 

an operational level is sensitive (regarding privacy) 
and is also regarded as quite valuable by companies 
that gather the data. It is therefore not very likely 
that these important players are willing to share their 
data. Secondly, these operational data do not provide 
the intentions of traffic operators and travellers. In 
fact, the main difference between roadside and 
mobile sensor data is not that they necessarily 
measure very different things (although not exactly 
the same either), but that they are used by very 
different users and for very different purposes. The 
real strength of sharing information would be on a 
higher, strategic, level such as shown in Figure 3.  

In Figure 3, there is directly feedback between 
traffic operations and travel decision making. Based 
on traffic information from roadside devices and 
traffic policies, traffic operations are set to manage 
the traffic (such as in Figure1). However, 
information about travellers’ reactions to and 
perceptions of certain management measures are 
provided to the traffic operators and are used to 
improve the management scenarios. At the same 
time, updated management scenarios are provided to 
travellers(’ apps), enabling travellers to take specific 
traffic measures (including possible incentives for 
favourable behaviour) into account when planning 
their trip.  

Instead of sharing traffic data, the main 
characteristic of this DTM vision is sharing of 
intentions, plans and measures between traffic 
operators and travellers. The corresponding 

architecture would connect well to the DTM 
requirements mentioned in section 2. The question 
would then be: what kind of information is exactly 
shared and how is this information shared? Should 
the information include detailed operational data 
such as green times of individual traffic lights given 
specific inflow intensities, or should the information 
be provided on a more aggregated and strategic 
level? To answer these questions follow up research 
is needed, preferably in a European project with as 
main aim to develop such a future DTM system for 
main European cities. 
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