
A Method for Reengineering and Prioritizing Goal Models  

Jan Willem Harmannij and Ella Roubtsova 
Faculty of Informatics, Open University of the Netherlands, PO Box 2960 NL-6401 DL Heerlen, The Netherlands 

j.harmannij@studie.ou.nl, ella.roubtsova@ou.nl 

Keywords: Reverse Engineering, Goal Modelling, Prioritising of Goals. 

Abstract: We present a method for reengineering a goal model from an existing software product, based on the ideas 
of GORE approaches GBRAM and KAOS. We extend the methods with application of specific ranking 
criteria to the goal models using Hierarchical Cumulative Voting (HCV). The reengineered goal models are 
used to evaluate and compare requirements for alternative goals based on the ranking criteria, thus 
providing input for determining the scope of new products or product versions. The method has been tested 
in two use cases, one of which is described here. 

1 INTRODUCTION 

The Belgian company Ferranti Computer Systems 
has developed the MECOMS™ software product, a 
business support system for energy and utility 
companies, providing among others, the Meter Data 
Management (MDM) and a Customer Information 
System (CIS). With a network of certified partners 
across the globe, Ferranti offers worldwide 
capabilities for customized implementations of the 
software product. These implementations are based 
on the standard product developed by Ferranti 
(Ferranti Computer Systems, 2013). 

The need to develop the new software features is 
caused by the market changes and the demands of 
different stakeholders, but the budget and 
development capacities of the company are always 
limited. The MECOMS™ product organization 
often faces the questions: Which direction of the 
product development should have the highest 
priority and why?  

Many software supplier businesses find 
themselves in this situation. They need a method for 
prioritising the activities of the product development 
assuming business goals. There is currently no 
method for reengineering goal models from existing 
software products, based on documentation and 
input from domain experts, and employing these 
goal models for feature selection for a next product 
or product version. In this paper, we propose such a 
method. 

We started the method development with an 
observation that the goals from two dimensions 

make influence one on another: the business goals 
and the goals of product development. For 
modelling of goals in both dimensions, Goal-
Oriented Requirements Engineering (GORE) 
(Lapouchnian, 2005) can be used. The goals in the 
GORE approaches are represented as trees of sub-
goals refined to requirements. However, relating of 
two trees does not make the task of prioritizing the 
software development activities observable. That is 
why we decided to apply the GORE methods only 
for presentations of the software product goals and 
relate the business goals to criteria for prioritization. 
These criteria become the attributes of the software 
product goals. The values of criteria become the 
measures of priority. The choice of the criteria and 
the values of the criteria are fulfilled using the 
Hierarchical Cumulative Voting method (Berander 
and Jönsson, 2006) that involves participation of 
stakeholders. The results of prioritizing are 
presented in the software product goal model to lead 
the activities within the development team. 

Paper layout: In section 2, we review the basis of 
goal-modelling that can be used for reengineering 
the goal models. In section 3, we propose a method 
for reverse engineering and prioritizing the goal 
models of a growing product. Section 4 presents the 
results of testing of the proposed method using two 
case studies taken from the MECOMS™ software 
product. Section 5 summarises our results and 
observations and concludes the paper.  

204
Willem Harmannij J. and Roubtsova E.
A Method for Reengineering and Prioritizing Goal Models.
DOI: 10.5220/0004775502040209
In Proceedings of the Third International Symposium on Business Modeling and Software Design (BMSD 2013), pages 204-209
ISBN: 978-989-8565-56-3
Copyright c© 2013 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



 

2 RELATED WORK 

We agree with the opinion of (Regev and Wegmann, 
2005) that Goal-Oriented Requirements Engineering 
is an important contribution by the RE research 
community and provides many benefits.  

Firstly, the GBRAM method (Anton, 1997) 
emphasizes the initial identification and abstraction 
of goals from various information sources, using 
keywords and standard questions for eliciting input 
from domain experts and classifying this 
information into concepts like goals, constraints, 
obstacles and requirements. GBRAM structures the 
goal modelling process into several phases: 
exploring, identifying, organizing, refining, 
elaborating and operationalization. 

Secondly, by separating the definition of a goal 
and requirement, GORE gives the fundament for 
reasoning about the software product in hand. 

Thirdly, a goal model can capture variability 
through the use of alternative goal refinements, 
separating stable information from volatile one, and 
making quantitative and qualitative analysis of these 
alternatives possible (Lapouchnian, 2005). 

Goal models can be developed using a simple 
AND/OR tree structure, linking a goal G with sub-
goals G1, G2, …, Gn. An AND relation requires all 
sub-goals to be achieved, while an OR relation 
provides alternative options. Labelling relations with 
identifiers like “++” ,“+”, “-” and “--”, partial goal 
satisfaction can be modelled (Giorgini et al., 2003). 
There have been several GORE methods defined 
over the years that provide more goal modelling 
semantics; the most prominent being KAOS (van 
Lamsweerde, 2001) and i* (Yu, 1999). 

Very little research is available about 
reengineering goal models from existing software 
systems. Only (Yu et al., 2005) describe a method 
for reverse engineering a goal model, but they focus 
on design recovery for undocumented software, 
creating goal models from legacy code using state 
charts and hammock graphs.  

However, most software products still have 
requirements documented in some form, and 
functional experts are often willing to provide 
additional information. This means, that it is not 
necessary to rely only on legacy code reengineering 
the goal models. Existing documentation like 
requirements specification documents, user manuals, 
marketing brochures and product roadmaps should 
be used as a starting and reference point. As the 
domain experts often have a busy schedule, 
completely relying on their input is a bad strategy 
(John, 2006). 

Prioritization of goals is not part of any of the 
existing GORE modelling methods.  

The prioritizing is used only at the level of 
software product requirements. According to 
(Berander and Andrews, 2005), the prioritizing  is 
often performed using a hierarchy of high- and low-
level requirements, which are evaluated using 
methods like the Analytical Hierarchical Process 
(AHP) or Hierarchical Cumulative Voting (HCV). In 
our opinion, prioritising at the level of goals 
provides more information about the motivation of 
priorities and helps to explain the management 
decision. 

3 A METHOD FOR 
REENGINEERING AND 
PRIORITIZING OF GOAL 
MODELS 

In order to design our method of goal-model 
reengineering we have combined the useful ideas of 
goal-oriented approaches, and extended them with 
the process for goal prioritising.  

Our method has two different input sorts. At the 
stage of initial goal model development, the input is 
the documentation of the software product and the 
approval of it by the domain experts. At the stage of 
prioritising, the input comes from the votes of 
experts. The method consists of seven phases, as 
shown in Figure 1. 

The first four phases (1-4 in Figure 1) copy the 
GBRAM method (Anton, 1997), but use 
documentation as the input.  

During the Explore phase (1), all relevant 
documentation is explored. This provides us with 
unstructured information, like the terminology used 
to describe functionality, core concepts, modules, 
etc. 

In the Identify phase (2), we try to find the 
answers on the WHY-questions and create the first 
draft goal models. The draft models are created 
using the information obtained during the Explore 
phase and input from domain experts in modelling 
sessions. 
Draft goal models are corrected by experts live 
during these sessions, using the KAOS modelling 
tool Objectiver™ (Respect-IT, 2007).  One of the 
reasons why we have chosen to use KAOS instead 
other goal modelling methods is that we can easily 
separate the parts of goal modelling from other 
KAOS functionality (responsibility modelling, 
object modelling, operation modelling) by omitting 

A Method for Reengineering and Prioritizing Goal Models

205



 

Figure 1: Method for Reengineering and Prioritizing of Goals. 

relations with those parts. In other goal–oriented 
methods, for example in i*, modelling agent 
relationships and rationales is an essential activity 
and cannot be separated from the goal model. 

An example model is visible in Figure 2. In 
KAOS, goals, obstacles and features are defined 
according to the following definitions: 
 A goal (a box with thin borders in Figure 2) 

describes the visual part of an imaginary state of 
the system which can be achieved by fulfilling 
all sub-goals (or alternative sub-goals), or in case 
of the lowest-level goals, when all linked 
features have been completely implemented; 

 An obstacle (a red box, not displayed here) 
describes an undesirable, but possible system 
state. Its sub-goals provide solutions to neutralize 
the obstacle. 

 A feature (a thick border box) is a group of 
related requirements which is implemented in 
software (van Gurp, 2003). A feature does not 
describe a system state, but the required 
functionality for reaching that state. Features are 
modelled in KAOS as requirements. 

The draft goal models are restructured and 
reorganized during the Organize phase (3). The 
models are separated into smaller, cross-referenced 
graphs, checked for completeness and consistency, 
and documented. 

During the Refine phase (4), the organized 
models are presented to the domain experts and, 
with their input, finalized. The alternative goal 
refinement options are added for the next prioritising 
steps of our method.  

The next steps of the method extend the steps of 
the GBRAM method. We have added these steps 

and an iterative cycle of their application in order to 
support the choice or prioritizing criteria and 
collecting values of those criteria.  

After the Refine phase (4), the goal model of the 
system with alternatives of its further development is 
ready for the step of prioritising (5). Using a custom 
plugin for the Objectiver™ tool, the criteria can be 
added as attributes to the structures presenting goals. 

First of all, the right criteria should be 
determined. Possible criteria include financial value, 
cost, urgency, readiness, and several others (Ruhe, 
2011). It is highly improbable that these criteria are 
all equally important for the software supplier. 
Selecting which criteria should be used for 
evaluating the product features is a management 
decision. The input from the experts is used at this 
stage. 

When the prioritization criteria have been 
determined, the feature alternatives are evaluated 
according to these criteria. This evaluation is the 
subject of a workshop session with stakeholders 
from the software supplier company, such as sales 
representatives, product managers and service 
managers. These stakeholders define the score of 
each alternative goal refinement according to the 
chosen prioritization criteria. We use the 
Hierarchical Cumulative Voting technique 
(Berander and Jönsson, 2006), because of its 
hierarchical nature that is easily combined with goal 
models, and its suitability for rapidly evaluating a 
large number of alternatives and multiple 
stakeholders. 

The evaluation results on each criterion are 
normalized to a scale of 0 to 100 and can be noted as 
custom goal attributes in the goal models. 

Third International Symposium on Business Modeling and Software Design

206



 

Figure 2: Part of the MDM goal model, showing “Manual Meter Reading” functionality. 

The goal model is now ready to be used for the 
proposition of the variations that are possible for the 
next product instantiation or product version. Using 
the custom prioritization attributes from the goal 
model and an analyzing tool like the KAOS query 
language OQL, the alternative scope options can be 
selected and compared on the basis of the values of 
the prioritization criteria. This results in a document 
with feature list proposals and their score according 
to the criteria that were used for the prioritization of 
the goals and features. 

During the final Decision phase, one of the 
proposals is selected by a Change Advisory Board. 
The model can now be refined again (back to phase 
4), and a new iteration can be started. 

4 APPLICATION OF THE 
PROPOSED METHOD 

The MECOMS™ system was used in two case 
studies to test our method, “Meter Data 
Management” (MDM) and “Customer Information 

System” (CIS).  
We describe here the MDM case, for which a 

partial goal model is shown in Figure 2: 
1. Explore. By analyzing the documentation of the 

Meter Data Management (MDM) functionality, 
we found the concepts ‘Manual Meter Reading’ 
(MMR), ‘Periodic MMR’, ‘On-demand MMR’ 
and ‘Self Service’. To identify goals, the 
documentation is analyzed by asking, “What 
goal(s) does this statement/fragment exemplify?” 
and “What goal(s) does this statement block or 
obstructs?" 

2. Identify. The participants named additional goals 
and product features, which were modelled using 
the Objectiver™ tool on a large screen. For 
example, using the question “How do we provide 
Self Service functionality in the product?” we 
discovered the sub-goals “Meter stand collection 
by phone," “Meter stand collection from card” 
and “Meter stand collection from website." We 
then proceeded to ask the “How?” questions for 
the three sub-goals to formulate the features at 
the bottom of the model. 

A Method for Reengineering and Prioritizing Goal Models

207



 

3. Organize. The model was then restructured into 
several smaller parts, and analyzed for missing 
goals and obstructions. These were identified by 
asking, “Are there alternative ways for achieving 
this goal?” and “Could this goal somehow be 
obstructed?” Also, goals that were not yet refined 
into features were listed. In the MDM case, the 
model was split into smaller parts for different 
functional areas. This resulted in 7 
interconnected partial goal models. 

4. Refine. In a second session with the domain 
experts, the missing concepts were recognized 
and added from the documentation. For example, 
we modelled a feature “Sending of meter stands 
collection card” as a prerequisite for all “Self 
Service” sub-goals. 

5. Prioritize. Goals and features that were not yet 
(completely) realized, were prioritized using the 
Hierarchical Cumulative Voting method 
(Berander and Jönsson 2006). The results of the 
prioritization phase are presented in Table 1. 

6. Propose. From the results of the prioritization 
session, a selection of features was proposed for 
inclusion in a future MECOMS™ release. This 
proposition was supported by information about 
the goals that could be achieved by 
implementing these features, and the HCV scores 
that were assigned by the stakeholders. 

7. Decide. A decision about the scope of the next 
MECOMS™ release by the Change Advisory 
Board has not yet been made. This means the 
case study has not been fully completed yet. 
However, this last phase is only an endorsement 
by the CAB of our proposal, and does not add 
more information than what we already have. 

 
The finalized MDM goal model consists of 37 goals, 
4 obstacles and 29 features, modelled in 7 partial 
(interconnected) goal models. Figure 2 shows a 
fragment of the goal model, concerning Manual 
Meter Reading (MMR) functionality. Periodic meter 
readings can be read into the system by an interface 
with an external meter reading system, periodic and 
non-periodic tours, or through one of the several 
self-service methods. The self-service goal-
refinement alternatives are  the meter stand 
collection by phone, mail-in card, or company 
website. In order to achieve these goals, we need 
respectively an automated phone-answering system, 
OCR (Optical Character Recognition) software, or a 
self-service website. For all three alternatives, a 
prerequisite is that first a notification is sent to the 
customers: this is modelled as the feature “Sending 
of meter stands collection card”. 

These goal refinements provide alternative 
solutions for achieving the high-level “Periodic 
MMR” goal. 

Table 1: Score of the MDM features as a result of the 
Hierarchical Cumulative Voting method. 

Feature Score 

Interface with the phone answering system 6,70 

OCR functionality for reading meter stands 
from card 

4,54 

Sending of meter stands collection card 20,96 

Website for entering meter stands 19,66 

Periodic tour based on the address 29,19 

Non-periodic tour for on demand MMR 18,96 

 
Some observations 
 
The models created for the MECOMS™ products 
were much larger than anticipated. Still they only 
cover mostly high-level system goals, and all 
requirements have been grouped into features in 
order to keep the models to a reasonable size. 

We also found that goal refinements are often a 
complex combination of AND and OR relations, and 
sometimes a XOR-like goal-refinement relation was 
needed but was unavailable or would heavily 
complicate the model. This resulted in workarounds 
and, in a few cases, omissions in the models. 

We found that there are no suitable concepts for 
modelling maintenance goals in the current version 
of the KAOS modelling tool Objectiver™ (Respect-
IT, 2007). We modelled these goals as regular 
(achievement) goals. 

The criteria that were used to prioritize the goals 
and features in the MDM and CIS case studies were 
determined by the stakeholders. What we didn’t 
expect, was that they opted to use different criteria 
for goals and for features. The reason for this is that 
features can be evaluated on a much more detailed 
level than goals. In our case, the goals were only 
subjected to the criterion “Ability to sell”, while the 
features were evaluated on six different criteria. 

5 CONCLUSIONS 

As with any production process, software 
development requires support for project planning, 
monitoring the current state of the business product 
and the next steps of its development at the strategic 
level. The goal models of a product are instruments 
supporting the product assessment and planning the 
steps of its evolution. 

Third International Symposium on Business Modeling and Software Design

208



 

However, the goal models of a real product are 
usually large. In order to be observable the goal 
models need to have a mechanism of labelling the 
goals with priorities and filtering the goals with high 
priority. 

In this paper, we have presented a method for 
building the goal models labelled with criteria 
measuring priority. Our method includes an expert 
approach to selecting the labelling criteria related to 
business goals and collecting the values of the 
criteria attributed to each goal and associated 
features.  

There are different methods for selecting 
labelling criteria. Therefore, one of the directions for 
future research would be goal prioritization based on 
conflicting criteria. Future work could also focus on 
the tool support for building the goal models 
labelled with priorities and filtering the goals having 
the highest priority. The procedures of assessing the 
values of the criteria attributed to each goal and 
filtering could be used   periodically and become a 
valuable mechanism for management of software 
product-development teams.   

ACKNOWLEDGEMENTS 

We would like to express our gratitude to Prof. Dr. 
Rob Kusters at the Open University of the 
Netherlands for his comments, suggestions and 
support. 

We thank Dr. Robert Darimont, CEO of Respect-
IT S.A., for providing us with a research license and 
customized plugin for the Objectiver™ modelling 
tool. 

REFERENCES 

Anton, A. 1997. Goal Identification and Refinement in the 
Specification of Software-Based Information Systems.  
Ph.D. thesis, Department of Computer Science, 
Georgia Institute of Technology. 

Berander, P., and Andrews, A., 2005. Requirements 
Prioritization. In Engineering and Managing Software 
Requirements, 69-94: Springer. 

Berander, P. and P. Jönsson, 2006. Hierarchical 
cumulative voting (HCV) – prioritization of 
requirements in hierarchies. International Journal of 
Software Engineering and Knowledge Engineering, 
16(06): 819-849. 

Ferranti Computer Systems. MECOMS™ Product 
Overview. http://www.mecoms.com/product (accessed 
March 13, 2013). 

Giorgini, P., Mylopoulos, J., Nicchiarelli, E. and 
Sebastiani, R., 2003. Reasoning with goal models. 
Conceptual Modeling—ER 2002, 167-181. 

John, Isabel, 2006. Capturing Product Line Information 
from Legacy User Documentation. In Software 
Product Lines, edited by Timo Käköla and JuanCarlos 
Duenas, 127-159: Springer Berlin Heidelberg. 

Lapouchnian, A., 2005. Goal-Oriented Requirements 
Engineering: An Overview of the Current Research. 

Regev, G. and A. Wegmann, 2005. Where Do Goals 
Come From: The Underlying Principles of Goal-
Oriented Requirements Engineering. Proceedings of 
the 13th IEEE International Conference on 
Requirements Engineering, 253-362: IEEE Computer 
Society. 

Respect-IT, 2007. A Kaos Tutorial: Objectiver. 
Ruhe, Günther, 2011. Product Release Planning: 

Methods, Tools and Applications: Auerbach 
Publications. 

Gurp van, J., 2003. On the Design & Preservation of 
Software Systems. PhD dissertation, Computer 
Science Department, University of Groningen, 
Groningen. 

van Lamsweerde, A., 2001. Goal-Oriented Requirements 
Engineering: A Guided Tour. In IEEE International 
Conference on Requirements Engineering, 249. 
Toronto, Canada. 

Yu, E., 1999. Strategic Modelling for Enterprise 
Integration. In Proceedings of the 14th World 
Congress of the International Federation of Automatic 
Control, July 5-9, 1999, 5-9. Beijijng, China. 

Yu, Y., Y. Wang, J. Mylopoulos, S. Liaskos, A. 
Lapouchnian, and J.C.S. do Prado Leite, 2005. 
Reverse Engineering Goal Models from Legacy Code. 
Requirements Engineering, 2005. Proceedings. 13th 
IEEE International Conference on, 363-372: IEEE 
Computer Society. 

A Method for Reengineering and Prioritizing Goal Models

209


