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1 OBJECTIVES 

The overall goal of the Brain Computer Interface 
(BCI) project led at CEA/LETI/CLINATEC® is to 
improve the quality of life of quadriplegic subjects. 
BCI will allow them to control effectors such as an 
exoskeleton, through recording and processing of the 
electrical activity of their brain. To do this, a 
wireless 64-channel ElectroCorticoGram (ECoG) 
recording device WIMAGINE® (Wireless 
Implantable Multi-channel Acquisition system for 
Generic Interface with NEurons) has been designed 
for long-term human implantation to interface an 
electrode array to an external computer (Charvet et 
al 2013). To decode the ECoG data, high resolution 
algorithm has been constructed at CLINATEC® 
(Eliseyev et al., 2011); (Eliseyev and Aksenova 
2013). Once the data are treated, they are used to 
control the external effectors. 

To reach the overall goal, it is crucial to 
construct a whole software system working in real 
time. In order to prepare the BCI software system 
for the clinical trials, we demonstrated online real 
time Electrocorticogram (ECoG) signal processing 
using Monkey ECoG recordings corresponding to an 
arm movement (Shimoda et al., 2012). The 
algorithm of N-way Partial Least Square (NPLS) 
regression family (Eliseyev and Aksenova, 2013) is 
applied to extract linear model from the recordings. 
The model is used to control the robotic arm JACO 
(KINOVA) as a demonstrator. 

2 METHODS 

Figure 1 shows the schematic data flow for our BCI 
system. The raw data should contain high temporal 
resolution which does not limit to specific data 
acquisition, e.g. EEG, MEG and ECoG.  
Accumulation of data from several channels is 
represented in Acquisition box in Figure 1. After the 
data are collected in some buffer size, they are 

mapped by the continuous wavelet transform (CTW) 
to the temporal-frequency-spatial space (Acar et al 
2008).  Then they are sent to the linear prediction 
model. To create the model, the algorithm of PLS 
family (Eliseyev and Aksenova, 2013) is applied. 
PLS is a statistical method for data analyses 
particularly suited for high dimensional variables 
(Geladi and Kowalski, 1986). PLS algorithms 
provide stable linear models, which can then be used 
to decode neuronal signal into commands for 
external devices. Both CWT and prediction are 
represented in Algorithm box in Figure 1. The data 
transmission is represented in Effector application 
box in Figure 1. 

 

Figure 1: Flow of data decoding. 

2.1 Specific Application 

To test the system, publically available raw data are 
considered (Shimoda et al., 2012), which contains 
nine dimensional arm trajectory (shoulder, elbow 
and wrist of x- y- z- coordinated captured by 
VICON system) of Japanese macaque as well as 
epidural ECoG signals of monkey’s brain (64 
electrodes, sampling rate 1 kHz). 

For decoding, block-wise Recursive N-way PLS 
regressing is used (Eliseyev and Aksenova, 2013), 
which can show correlation of 0.62, 0.80 and 0.85 of 
shoulder, 0.54, 0.84 and 0.83 of elbow and 0.63, 
0.85 and 0.82 of wrist for x- y- z- coordinates 
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respectively. To form training tensor, 64 electrodes 
ECoG signal and 1000ms window of analysis are 
considered. The CWT with 84 frequencies between 
0.6 and 300 Hz are performed with additional 100ms 
tails using FFTW software (Frigo and Johnson, 
2005). Then the signal was decimated in 100ms with 
200ms sliding window. Using this training tensor, 
predictive model is constructed. After the training 
phase, the same features are considered for online 
prediction. All of the computations are integrated 
with OpenViBE (http://openvibe.inria.fr/) and 
finally connected with the JACO robotic arm as 
shown in Figure 2.   
 

 

Figure 2: Comparison of predicted and actual movement. 

3 RESULTS 

To achieve real time, whole computation has to be 
completed within the buffer size.  With the specific 
application from previous section, the temporal-
frequency-spatial dimension is 537600 and 
predictive space has 9 degrees of freedom, namely 
shoulder, elbow and wrist of x- y- z- coordinates.  
With buffer size 100ms, the algorithm itself takes 
83.81ms in average and simulating real time using 
OpenViBE reach real time for more than 10 minutes. 

4 DISCUSSION 

The system can be applied to different algorithms 
and data sets. The different model from PLS method 
(Chao et al., 2010) is also tested. From the specific 
applications, it is feasible to conclude that the model 
using less than 64 channels, 84 frequencies and 
1000ms window has decision rate at least 10Hz. 

This is directly related to the CLINATEC BCI 
project with ECoG signals of 64 channels using 
linear predictive models. 
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