
Knowledge-driven Game Design by Non-programmers

Iaakov Exman and Avinoam Alfia

Software Engineering Department, The Jerusalem College of Engineering – Azrieli,
POB 3566, Jerusalem, 91035, Israel

Abstract. Game extension is an entertaining activity that offers an opportunity
to test new design approaches by non-programmers. The real challenge is to en-
able this activity by means of a suitable infrastructure. We propose a
knowledge-driven approach with natural game-player concepts. These concepts,
found in game ontologies, include game abstractions and rules for game moves.
The approach has been implemented and tested for board games. These include
tic-tac-toe as a simplest example, enabling extensions of tic-tac-toe, say to a
four-by-four board and Sudoku, a single player game of a very different nature.

1 Introduction

Software games have virtualized and borrowed ideas from material board games, and
have enabled development of its own games and styles. Software game extension is a
very entertaining and challenging activity. In this work we propose an infrastructure
for extensible software games for non-programmers.

To state the infrastructure requirements, one needs to clarify what is meant by
non-programmers. Following Exman [2], a non-programmer is not just an ignorant of
JAVA and other programming languages. A non-programmer, especially in our
knowledge oriented context, does have characteristics in common to programmers,
such as the ability to formulate domain knowledge. In particular, one may assume the
capability of formulating or at least reading an ontology. Therefore, the infrastructure
is knowledge-driven, viz. it is based upon player’s knowledge about games – embod-
ied in game ontologies. Basic concepts for game design and extension are game ab-
stractions such as the concept of a game-board and rules for game moves.

This work describes the extensible game infrastructure architecture, its implemen-
tation and uses a few case studies as demonstration of the approach.

1.1 Related Work

Here we present a concise review of related work. Game tools have been especially
developed for non-programmers. For instance, Brom and collaborators [1] discuss
agent based systems for non-experts, say students and other non-programmers.

Games have also been regarded as educational tools. Johnson and Beal [5] apply
games to language learning. A similar context is games for and by children. Good and
Robertson [3] discuss the effects of games on learning and skill development, by

Exman I. and Alfia A..
Knowledge-driven Game Design by Non-programmers.
DOI: 10.5220/0004640000470054
In Proceedings of the 4th International Workshop on Software Knowledge (SKY-2013), pages 47-54
ISBN: 978-989-8565-76-1
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

means of computer games authored by children.
McNaughton and collaborators [6] take a software engineering oriented approach

to look at games. They discuss generative design patterns for role playing games.
Moreno-Ger et al. [7] describe a documental approach to computer game develop-
ment. The games in the referred paper – adventure games with relatively complex and
variable user interfaces – differ from the board-games in our own work.

The knowledge-driven line of research for games is represented by various game
ontologies as a basis for game design. See e.g. the references by Hagen [4], Studer et
al. [8], and the Game Ontology Project by Zagal et al. [9], [10], [11].

In the remaining of the paper we introduce games as knowledge-ware (section 2),
describe rules and rule-sets (section 3), overview the software architecture and im-
plementation of our tool (section 4), discuss case studies as a demonstration of the
approach (section 5) and conclude with a discussion (section 6).

2 Games as Knowledge-ware

Here we characterize games from a knowledge point of view. We specifically refer to
board games, which we have chosen as the main subject matter of this work.

We can divide the characterization into two principal parts: a- the overall game
concepts; b- the rules of the game that characterize the players’ behavior. An im-
portant organized source of concepts is the set of proposed game ontologies.

2.1 Abstract Game Characterization

High-level concepts needed for game design infra-structure include:

 Game – an abstraction of the Game activity;
 Game-board – a usually 2-dimensional mathematical matrix with integer values

(that in principle can be recasted to any type);
 Player – a human or robot participant in the game;
 Owning – a relation between two different sets, for instance a player owns a tile in

the board game. Owning does not necessarily imply a specific semantic content,
see e.g. [11];

For lower-level concepts, one conceivably has various alternatives. It seems that de-
finitive ontologies in the game context still are an open issue.

For instance, in reference [8] one finds a compact ontology for their board-game
method, which is divided in:

 Global Definitions – such as movable objects, states;
 Input – such as pieces, locations, initial_states, moves, legal state;
 Ouput – goal_states;
 Internal Definitions – such as current_states, potential_successor_states.

48

2.2 Logical Rules for Game Player Behavior

Rules are planned to work in an Event-Condition-Action cycle. If an event occurs
caused by a game player, a condition is evaluated, and if it is satisfied, an action is
triggered.

Rules can be classified into generic rules for all games and specific rules for par-
ticular games. Generic rules for all games comprise those concerning with:

 Game Start – refer to game instance creation, board initial conditions and initial
players joining the game;

 Game Termination – refer to periodic checking of termination conditions and
effective termination declaration;

 Mid-Game Moves – general events and actions relevant after the game starts and
before it terminates.

3 Rules and Rule-sets

Here we explain examples of generic rules – simple and rule sets.

3.1 Simple Rules

Simple rules have a single condition to be evaluated and simple actions, and no com-
ponents. An example is the generic Game Start rule:

 Event – Game Start;
 Condition – check the type of game (to set the relevant actions);

 Action – change game state to started, send message to users, tile listen to click
events.

3.2 Rule Composition into Rule-sets

To facilitate game understanding, one uses hierarchical composition of rules, like
software composition. Components are rules or actions triggered by other rules.

An example is the generic Tile Click rule. When a tile is clicked, one checks if the
game is finished, i.e. there is a winner, or otherwise switch the player. These are ge-
neric components best defined as separate rules and called by Tile Click:

 Event – Tile Click;
 Condition – check the nature of the game; check if the game is not terminated;

check if this is the current player turn; check if the tile is not taken;
 Action – tile set owner;
 Component Rules – Rule set: “check winner”; Rule: “Switch player”.

Another example is the “check winner” rule composed of elementary tile checks or
itself defined as a whole pattern. For instance, tic-tac-toe checks rows, columns and
diagonals in the board. Each of these requires checking three aligned tiles.

49

4 Architecture and Implementation of the GAMES Tool

A tool called GAMES – for Game Management System – was designed to implement
the Knowledge-Driven game design and extension approach.

The GAMES software architecture is reflected in the system behavior shown in the
statechart in Fig. 1. It has two upper modules: server and client. These modules com-
municate by means of the GameUI (User Interface) to/from the Request-Handler. The
client GameBoard is a faithful copy of the server GameBoard.

Fig. 1. GAMES Architecture. This statechart shows states for two modules: server and client.

Interactions in the Server are as follows: an event in the Request Handler causes
evaluation of Rules; the latter may trigger an action in the GameBoard that in turn
creates a command to be sent back to the clients.

4.1 GAMES Implementation

GAMES was implemented in Drupal – a widespread usage CMS (Content Manage-
ment System). Besides its core modules, we used a Rules module to implement rules
that we created for our games. The Drupal core defines data structures as entities.

We created a set of basic entities. The most basic entity is game. A board game is
a set of game attributes. To make the game playable there is a state machine entity
called running game. The latter describes and saves the current state of each game.

For the sake of efficiency the underlying ontology is implicit as the set of entities
and their attributes. In contrast, rules are explicit in the rules module, which evaluate
event conditions and actions to perform, when the player triggers events.

The player interface is a browser independent web-service client. For illustration,
Fig. 2 shows a screen print of the GAMES player interface.

The rules editor interface is located in the back-end of the tool. It can be accessed
only with the correct permissions. See for instance Fig. 3, displaying the editing of a
standard tic-tac-toe rule.

50

Fig. 2. Player Interface of the GAMES tool – This screen print displays the standard tic-tac-toe
game, in which Player1 won the game. One can see the variable number of players – here the
standard value of 2 Players – in the 2nd blue background small rectangle above the game board.

5 Game Case Studies

A series of games, serving as case studies was implemented to demonstrate our ap-
proach. Here we describe two such cases. First, Tic-Tac-Toe is discussed. Then, Su-
doku a single player board game is described.

5.1 Tic-Tac-Toe and Its Extensions

Besides the generic rules described in section 3, for each game there are specific
rules. We first concisely discuss specific rules for the well-known tic-tac-toe standard
game played on a three-by-three matrix game-board.

The specific rule that we which to point out is the check-winner rule. It can be
stated in three different levels that may be checked to declare a winner:

 Tile level – in this level one specifies all the individual tiles that must be checked,
this is the lowest and most tedious level;

 Row-Column-Diagonal level – in this intermediate level one specifies the rows,
columns and diagonals that must be checked;

 Overall Pattern – in this highest level a single pattern composed of the previous
level components is specified.

In Fig. 3 one sees the GAMES editor interface. One specifies in the Conditions area
the Overall Pattern, composed of any row, any column and two matrix diagonals. It
also displays two Actions: a- game set winner; b- game over.

51

Fig. 3. Editor Interface of the GAMES tool – It displays the editing of the “Check Winner” rule
for standard tic-tac-toe. It shows the Overall Pattern conditions (all rows, all columns, two
diagonals) and two actions: Game set winner, and Game over.

Tic-Tac-Toe may be easily extended in several different ways, using the GAMES
tool. The first conceivable extension is to change the size of the matrix. For instance,
one can play with a four-by-four matrix. One could also extend the 2-dimensional to a
3-dimensional matrix.

Another extension is the change of the “Check Winner” rule. One could preserve
the rule of a three-by-three matrix when using larger matrices. One could use a 4-tiles
rule for four-by-four matrix. One could arbitrarily change the patterns – say instead of
using just rows, columns and diagonals – one could use more complicated patterns in
the plane or out of the plane in case of 3-dimensional matrices.

As a third conceivable extension, one could add more than 2 players, keeping their
turns in round-robin fashion, or even by randomizing their turns.

5.2 Sudoku and Its Extensions

Sudoku is interesting in our context, since it still is a board-game, but with a very
different nature. Sudoku can be easily represented and is extensible within GAMES
since it basically has common properties with other games such as tic-tac-toe:

 Game Board – it has 2-dimensional matrix as its basis;

 Number of Players – it needs just one player, but this can be extended;

 Tile Values – decimal digits, instead of the (0,1,2) tic-tac-toe values.

Fig. 4 shows the Sudoku player interface that is comparable to tic-tac-toe in Fig. 2.

52

Fig. 4. Player Interface for Sudoku – This screen print displays the initial state – “Not Started”
yet. The number of players is the standard one.

Before this work on extensible games, Sudoku has been extended in several ways
by means of different sizes, shapes, and directions, use of inequalities and use of
arithmetic operations, use of letters instead of digits. Some of the variants are Tatami
Sudoku and Suguru (covering with different shapes and directions), Futoshiki (using
inequalities), and Kakuro (sum operations). Besides these ones there are also western
variations (e.g. Hidato). The GAMES tool also allows variable number of players.

6 Discussion: Game Extension Rationale

A knowledge-based infrastructure for game design and extension by non-
programmers has been proposed. A tool was implemented upon the Drupal frame-
work, using rules for games of increasing complexity, to demonstrate the approach.

One1 could ask: should anything forbid a user to modify tic-tac-toe into an adven-
ture game? We believe not. The explanation lies in two possible motivations for game
extension. The first motivation is entertainment. There is no reason to curb the tool
power: we wish to stimulate free invention of totally new games. The second motiva-
tion is the investigation of limitations on game identification: when does a modified
tic-tac-toe stop to be recognizable as such an extension? Again, we believe there is no
reason to set bounds, acting as impediments to the investigation.

6.1 Future Work

Current work in progress includes extensions to more complex games such as chess.
Following the extension of tic-tac-toe to bigger boards and increasing the number

of players, it is not difficult to perceive that above a certain number of players there is

1 We are grateful to an anonymous referee for raising these issues.

53

no possibility of winning the game. A very general – for any type of board game –
and challenging issue is: how to determine an upper bound on number of players for
given board size, which implies no winners. An even more general issue is: when
does an extension cause a game to become unplayable?

Concerning game consistency and recognition, we propose the following: define a
type of games – say sudokus – by a generic ontology. A Sudoku extension is said to
belong to the type, if its specific ontology differs from the generic type ontology by
some quantitative measure below a pre-determined threshold. A systematic investiga-
tion of suitable ontologies for game types is desirable.

6.2 Main Contribution

The main contribution of this work is the usage of knowledge-driven software tools
for game extension by non-programmers.

References

1. Brom, C., Gemrot, J., Bida, M., Burkert, O., Partington, S. J. and Bryson, J. J.: POSH Tools
for Game Agent Development by Students and Non-Programmers, in Proc. of CGAMES
IEEE 2006, Dublin, Ireland (2006).

2. Exman, I.: A Non-concept is Not a ¬Concept, in Proc. KEOD International Conf.
Knowledge Engineering and Ontology Development, pp. 401-404, (2012).

3. Good, J., and Robertson, J.: Computer Games Authored by Children: A Multi-Perspective
Evaluation, in Proc. IDC 2004, pp. 123-124 (2004).

4. Hagen, U.: Where do Game Design Ideas Come From? Innovation and Recycling in Games
Developed in Sweden, in Proc. DiGRA 2009 on Breaking New Ground: Innovation in
Games, Play, Practice and Theory, (2009)

5. Johnson, W. L. and Beal, C.: Iterative evaluation of an intelligent game for language learn-
ing, in Proc. Of AIED 2005, Amsterdam, IOS Press, (2005).

6. McNaughton, M., Cutumisu, M., Szafron, D., Schaeffer, J., Redford, J. and Parker, D.:
ScriptEase: Generative Design Patterns for Computer Role-Playing Games, in Proc. Auto-
mated Software Engineering, ASE’04, Linz, Austria, (2004).

7. Moreno-Ger, P., Sierra, J. L., Martinez-Ortiz, I. and Fernandez-Manjon, B.: A Documental
Approach to Adventure Game Development, Science of Computing Programming, Vol. 67,
pp. 3-31 (2007).

8. Studer, R., Erisson, H., Gennari, J., Tu, S., Fensel, D. and Musen, M.: Ontologies and the
Configuration of Problem-Solving Methods, in Proc 10th Banff Knowledge Acquisition for
Knowledge-Based System Workshop (KAW’96), Banff, Canada, (1996).

9. Zagal, J. P. and Bruckman, A., 2008. The Game Ontology Project: Supporting Learning
While Contributing Authentically to Game Studies, in Proc. ICLS'08 8th international con-
ference on International conference for the learning sciences - Volume 2, pp. 499-506,
(2008), see also: http://www.gameontology.com/index.php/Main_Page.

10. Zagal, J. P., Fernandez-Vara, C. and Mateas, M., 2008. Rounds, Levels and Waves – The
Early Evolution of GamePlay Segmentation, in Games and Culture, (2008).

11. Zagal, J. P., Mateas, M.,Fernandez-Vara, C., Hochhalter B. and Lichti, N., 2007. “Towards
an Ontological Language for Game Analysis”, in Proc. DiGRA 2005 on Changing Views –
Worlds in Play, (2007).

54

