
Table 1:  Results from the analysis of acquired data with the algorithm proposed for typing detection. Each row describes 
the results from control subjects (C
i
) and patients (P
i
) in the different evaluation times (T
i
).  
#ks – number of keystrokes; µ tbt_key – average of time interval between keystrokes; µ tkey – average time duration of 
keystrokes; VYmáx – maximum amplitude of Y-axis of accelerometer signal; Magn. Máx – maximum amplitude of 
magnitude of accelerometer signal;  Magn.Mean – mean magnitude of the accelerometer signal). 
 Particip. 
wpm 
(video) 
keyrate   # ks 
total 
time 
(s) 
µ tbt_key  µ tkey 
V
Y
máx 
(mV) 
Magn. 
Máx 
(mV) 
Magn. 
Mean 
µV 
C1 10  43 43 60 331.8 75 623.79 220.12 60.99 
C2 10  44 44 60 852.1 244 253.44 151.91 32.65 
C3 10  44 44 60 1011.4 144.5 299.53 192.05 31.18 
P1.T0 3.04  13.17 18  82  3952.2 255.1 623.43 149.26 40.68 
P1.T1 3.1  11.46 17 89 4819.4 186.6 555.29 314.36  33.6 
P1.T2 3.87  12.00 13  65  4129  241.5  412.22  195  31.44 
P2.T0 16.66  67.89  43  38  527.6 168.1 624.19 147.34 38.34 
P2.T1 16.61  62.67  47  45  669.9 188.5 475.47 225.08 36.62 
P2.T2 17.3 61.82 44 42.7 666.1 252.5 427.32 129.08 33.72 
P3.T0 7.69  28.53 39  82  1282.3 712.8 495.77 212.19 42.64 
P3.T1 9.38  33.75 45  80  736.3 847.1 480.26 177.54 32.35 
 
typing performance through accelerometry.  
A 3-axis accelerometer was placed in the index 
finger of 6 participants (3 with progressive 
neuromuscular disease and 3 healthy participants). 
Signal processing of the accelerometer signals 
showed high correlation between independent 
measures of performance: words per minute (from 
video analysis) and keystrokes per minute (from 
accelerometer).  
Presented algorithm should be improved to 
automatically adjust all the parameters for different 
users and different stages of progressive disease. As 
future work, a detailed analysis of other parameters 
of accelerometry, independent from performance 
measures, should be done. 
REFERENCES 
Ball, L. J., Beukelman, D. R. and Pattee, G. L., 2002. 
Timing of speech deterioration in people with 
amyotrophic lateral sclerosis, Journal of Medical 
Speech-Language Pathology, 10(4), 231–235. 
Beukelman, D., Fager, S. and Nordness, A., 2011. 
Communication Support for People with ALS. In 
Neurology Research International, Article ID 714693. 
Beukelman, D. R., Yorkston, K. M., Reichle, J., 2000. 
Augmentative and Alternative Communication for 
Adults with Acquired Neurologic Disorders. Brookes 
H. Paul Publishing, Baltimore. 
Bonato, P., 2003. Wearable sensors/systems and their 
impact on biomedical engineering. In IEEE 
Engineering in Medicine and Biology Magazine, 
22(3), 18–20. 
Bongioanni, P., 2012. Communication Impairment in ALS 
Patients: Assessment and Treatment. In Maurer, M. 
(Ed.) Amyotrophic Lateral Sclerosis. Available from: 
http://www.intechopen.com/books/amyotrophic-
lateral-sclerosis. 
Bustamante, P., Solas, G. and Grandez, K., 2011. 
Neurodegenerative Disease Monitoring Using a 
Portable Wireless Sensor Device. In Chang, R. (Ed) 
Neurodegenerative Diseases - Processes, Prevention, 
Protection and Monitoring, InTech Publisher. 
Available from: http://www.intechopen.com/books/ 
neurodegenerative-diseases-processes-prevention-
protection-and-monitoring. 
Cedarbaum, J. M., Stambler, N., Malta, E., Fuller, C., Hilt, 
D., Thurmond, B., Nakanishi. A., 1999. The ALSFRS-
R: a revised ALS functional rating scale that 
incorporates assessments of respiratory function. 
BDNF ALS Study Group (Phase III). In Journal of the 
Neurological Sciences,169(1-2),13-21. 
Godfrey, A., Conway, R., Meagher, D. and ÓLaighin, G., 
2008. Direct measurement of human movement by 
accelerometry, In Medical Engineering & Physics, 30, 
1364–1386. 
Korner, S., Siniawski, M., Kollowe, K., Rath, K.J., 
Krampfl, K., Zapf, A., Dengler, R., Petri, S., 2013. 
Speech therapy and communication device: Impact on 
NEUROTECHNIX2013-InternationalCongressonNeurotechnology,ElectronicsandInformatics
58