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Abstract: The memory of Hopfield-type neural nets is understood as the ground state of the net – a set of 
configurations providing a global energy minimum. The use of thresholds allows good control over the 
ground state. It is possible to build multiplicative networks with the degeneracy of the ground state 
exceeding considerably the dimensionality of the problem (that is, the net memory can be much greater than 
the dimensionality of the problem). The paper considers the potentials and limitations of the approach. 

1 INTRODUCTION 

Let us consider a Hopfield-type neural network with 
a multiplicative connection matrix 

(1 )ij ij i jM u u  , , 1,..,i j p . Here ij  is the 

Kronecker symbol, p  is the space dimensionality, 

real numbers iu  are the coordinates of normalized 

vector 1( ,..., )pu uu = : 
2

pu . The fixed point of 

the net is a configuration whose binary coordinates 
are the signs of coordinates of vector u : 

1 2( , ,..., ) is a fixed point;

sgn( ), 1,.., .

p

i i

s s s

s u i p



 

s
 

The set of fixed points changes significantly if we 
define the dynamics of the same matrix by using 
thresholds iT , which are not only non-zero, but also 

proportional to coordinates iu : 

 1

( ) , ( ) ,

( 1) sgn ( )

ij ij i i

p

i ij j ij

J f x M T g x u

s J s T 


 
    

 (1)

Being functions of parameter x , multipliers  ( )f x  

and ( )g x  themselves serve as free parameters of the 

model. ( )is   is the i -th coordinate of configuration 

( )s  determining the state of the net at time  . The 

arrangement of the set of fixed points of this sort of 
net is more complicated and more interesting. It 
turns out to be possible to determine fully the 

configuration sets that bring the energy functional to 
a global minimum. Such configurations are usually 
called the ground state of the net (the term is 
borrowed from physics). It is the ground state that is 
regarded as the memory of a net: it is also the case 
with the Hebb matrix and projection connection 
matrix (Hertz et al., 1991). 

Given model (1), it is possible to determine 
analytically the dependence of the ground state on 
external parameters f , g , x  and u . It is possible 

to control the ground state by varying external 
parameters. In short, the findings are as follows. 
Generally speaking, the whole set of 
2 p configurations s  falls into sets of configurations 
that are equally distant from vector u . Let us call 
such sets equidistant classes. It proves that only 
equidistant classes can serve as the ground state of 
the net: under particular conditions all 
configurations of one class (and no other) provide a 
global minimum to the energy functional. The 
composition and the number of equidistant classes 
are defined by vector u . The conditions that make 
one or another class become the ground state are 
determined by ( )f x  and ( )g x . 

The possibility to make the ground state multiply 
degenerate by choosing vector u  is a valuable 
advantage of the approach. The ground state can 
hold a great deal of configurations: the number of 
configurations is a polynomial function of the 
dimensionality p . That is to say, it becomes 

possible to build networks of very large memory. 
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The disadvantage of the method is that not any set of 
configuration can serve as the ground state. This 
state can’t consist of fully random configurations 
because the configurations must be equally distant 
from vector u . Equidistant configurations are 
located around vector u  symmetrically. And that is 
the limitation of the whole approach. How we can 
overcome this restriction is considered at the end of 
the paper. 

In the next section we give the main results of 
the work and their short explanations, and consider 
one specific example. In the final section we analyze 
the potentials and limitations of the approach. 

2 MAIN RESULTS 

The energy of state s  of network (1) is equal to 

 
, 1 1

2

( ) ~ 2

( )( ) 2 ( )( ) ,

p p

ij i j i i
i j i

E J s s T s

f x g x

 

 
   
 

  

 s

u,s u,s

 

where ( )u,s  is the scalar product of p -dimensional 

normalized vectors u  and s : 
1

( )
p

i ii
u s


 u,s . In 

further consideration it will be better to seek maxima 
of ( ) ( )F E s s : 

2( ) ( )( ) 2 ( )( ) maxF f x g x  s u,s u,s  (2)

2.1 Classes kΣ  

Functional ( )F s  takes the same value for all 

configurations the scalar products of which by 
vector  u  have the same value. Let us introduce the 
cosine of the angle between vectors s  and u : 

 cos , / .w p s u  

When s  runs over 2 p  possible configurations, 

cos w  doesn’t necessarily takes 2 p  different values. 

Let us number different values of the cosine in 
descending order starting the numbering with 0: 

0 1 1cos cos ... 0 ... cos cos .t tw w w w       (3)

The number  1t   of different values of the cosine 

does not exceed 2 p . Let k  stand for the class of 

configurations s  such that the cosine of the angle 
between s  and vector u  is cos kw : 

  : , cos , 0,1,..., .k kp w k t    s s u  (4)

Clear that each configuration from class k  is the 

same distance away from vector u , other 
configurations being a different distance off u . 

We see that functional ( )F s  (2) takes 1t   

values no matter what value x  takes. All we have to 
do to find the ground state is to find the greatest 
among 1t   values: 

2 ( )
~ ( )cos 2 cos , 0,1,.., .k k k

g x
F f x w w k t

p
   (5)

The number of classes k  and their composition are 

determined by vector u  solely. With that, kF  are 

determined by cosines  cos ~ ,kw s u  for fixed f , 

g  and x . We restrict our consideration to the case 

when vectors u  have only nonnegative coordinates. 
The results can be easily extended to the case when 
some of iu are negative (see below). We will assume 

that iu  are arranged in ascending order: 

1 20 ... .pu u u     

It is easy to see that the sequence of cosines (3) is 
symmetric about its middle point: 

cos cos , , .k t k k t kw w k t         

If the number of different classes is even 
( 1 2t l  ), the cosines first go down to their 
positive minimum 1cos lw  , then they become 

negative: 

0 1 1

1 0

cos cos ... cos 0

cos cos ... cos cos .
l

l l t

w w w

w w w w




    
      

 

None of the cosines of the sequence is zero. On the 
other hand, when 2t l , one of the cosines (3) is 
zero, and the sequence has the form: 

0 1

1 1 0

cos ... cos cos 0

cos cos ... cos cos .
l l

l l t

w w w

w w w w


 

    
      

 

In this case l -class configurations are orthogonal 

to vector u . 
By way of example let us build a few starting 

classes k  when the coordinates of vector u  obey 

the following rule: 1 2 3 40 ... pu u u u u       

with 2 42u u . Class 0  holds configurations that 

are nearest to vector u , so  0  e , where 

(1,1,..,1)e . The corresponding cosine is equal to 

0 1
cos /

p

iw u p . Class 1  consists of 
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configurations that are a bit more distant from u  
than 0 -class configurations. In our case it gives 

 1 ( 1,1,...,1)   , and 1 0 1cos cos 2 /w w u p  . 

The next class holds two configurations (1, 1,1,..,1)  

and (1,1, 1,..,1) , and 2 0 2cos cos 2 /w w u p  . 

Class 3  also consists of two configurations 

( 1, 1,1,..,1)   and ( 1,1, 1,..,1)  , and 

3 0 1 2cos cos 2( ) /w w u u p   . Class 4  holds one 

configuration  4 (1, 1, 1,1,...,1)    , and 

4 0 2cos cos 4 /w w u p  . So does class 5 : 

 5 (1,1,1, 1,...,1)   , 5 0 4cos cos 2 /w w u p  . And 

so on. To distribute all configurations into classes 

k , it is necessary to arrange in ascending order all 

2 p possible sums 
1

p

i ii
u

 where coefficient i  can 

be either 0 or 1. This task is similar to the number 
partitioning problem (Mertens, 2001). In our case it 
is not necessary to try to solve the problem in 
general. 

Another example. It is not difficult to describe 
the distribution of configurations among equidistant 
classes when vector (1,1,...,1) u e . It is easy to 

see that in this case the cosines take 1p   different 

values: 

cos 1 2 , 0,1,..., ,kw k p k p    (6)

and the k -th class holds the configurations that have 
exactly k  negative coordinates. Let us introduce a 
special notification for such classes: 

 ( )

1

: , 2 , 0,1,..., .
p

k i
i

s p k k p


 
      

 
e s s e  (7)

The number of configurations in class ( )
k
e  is  p

k . 

Further one or another σ -configuration will be 

often used as vector u . Basing on classes ( )
k
e  it is 

simple to understand the structure of equidistant 
classes in this case. Clear that both the number of 
different cosines and their values remains the same 
as with u e  (see (6)). Coordinatewise 

multiplication of all configurations from class ( )
k
e  

by σ -configuration is used to obtain class ( )
k
σ  from 

class ( )
k
e  (7): 

 ( )

1

: , 2 , 0,1,..., .
p

k i i
i

s p k k p


 
      

 
σ s s σ  

 

2.2 Functions f(x)  and g(x)   

Now let us consider the role of functions ( )f x  

and ( )g x . Collection of  0
( )

t

kF x  (5) is a family of 

functions of x . Function ( )lF x , which surpasses 

other functions at particular x , determines ground-
state class l . 

Let the amplitude of function ( )lF x  at point 0x  

be greater than amplitudes of other functions: 

0 0( ) ( )l kF x F x k l   . If ( )f x  and ( )g x  are 

continuous functions, a small variation of x  does 
not change the superiority of ( )lF x  over other 

functions in the general case. Class l  keeps being 

the ground state in a small vicinity of 0x . If x  

changes on, it becomes almost inevitable that 
function ( )lF x  intersects another function, say, 

( )nF x . After that it is ( )nF x  that starts exceeding 

all other functions. At the point of intersection of 
functions the ground state passes to class n : the 

transition of the ground state l n    takes place. 

Of course, the transition point is defined by forms of 
functions ( )f x , ( )g x  and cosines (3). However, 

something about the way the ground state changes 
can be understood from the general considerations. 

Let us rearrange formula (5) by taking ( )f x  out 

of the brackets and completing the expression in the 
brackets to the square. Accurate to insignificant 
items, the formula we get is 

 2
~ ( ) cos ( ) ,

( )
( ) , 0,1,.., .

( )

k kF f x w x

g x
x k t

p f x







  


 (8)

Let us first assume that ( ) 0f x  . In this event it is 

necessary to maximize the modulus of the bracketed 
expression with respect to k  to find the largest kF : 

max cos ( ) .k
k

w x  (9)

If ( )x  is negative, the maximum of modulus (9) is 

ensured by the greatest value of the cosine, and the 
solution of (9) is 0k  . In this case, the ground state 
is associated to class 0 . Conversely, if ( )x is 

positive, the maximum of modulus (9) is ensured by 
the smallest value of the cosine. The solution of (9) 
is k t  in this event, and the ground state is 
attributed to class 0t   . So, when ( )f x  is 

positive, either class 0  (if ( ) 0g x  ) or class t  (if 
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( ) 0g x  ) becomes the ground state. 

Let us now examine what happens if ( ) 0f x  . 

In this case it is necessary to minimize the modulus 
of the bracketed expression (8) with respect to k  to 
find the largest kF . Generally speaking, to do it is 

not at all difficult: it is just necessary to define 
cos kw  that is closest to the current value of ( )x . 

The corresponding class k  will be the ground state 

of the net. Let us look at Figure 1 to understand 
collisions that occur in this case. 

In Figure 1 the Y -axis carries representative 
values of cos kw  for 1, and 1k l l l   . The 

steadily decreasing curve represents function ( )x . 

kc  denotes the half sum of two successive values of 

the cosine: 

1cos cos
, 1, 2,..., .

2
k k

k

w w
c k t 

   (10)

The value of x  at which ( ) kx c   is indicated 

as kx : 

1( ) ( ).k k k kx c x c      (11)

Let x  belong to interval  1,l lx x   initially: 

1l lx x x   . It is easy to see that for any x  from 

this interval it is cos lw  that is nearest to ( )x . So, 

k l  is the solution of (9), and class l  serves as 

the ground state of the net. Note that it is true for all 
x  in the interval  1,l lx x  . Variable x  can grow 

(fall) until it steps over 1lx   ( 1lx  ) and the ground 

state passes to class 1l  ( 1l ), and so on. 

 

Figure 1: Graphical solution of the problem (9): see body 
of the paper. 

We see that when ( ) 0f x   and ( )x  is a 

continuous function, the changing of the ground 

state changes its number by 1: 1k k   . There is a 

kind of continuity in its number changing with 
parameter x . In principle, it is possible to organize 
“discontinuous” control over ground-state “jumps” 

k l    so that class numbers k  and l  would 

differ by more than 1. For this purpose one should 
use either discontinuous function ( )g x , or the fact 

that when ( )f x becomes positive, the ground state 

passes from any class k  to either class 0 or t . 

2.3 Example 

To exemplify the results let us consider functions 
( )f x  and ( )g x of the following form (Litinskii, 

1999): 

( ) 1 2 , ( ) (1 ), 1.f x x g x q x q      

In this case ( )kF x  in (5) takes the form: 

   2
( ) cos 2 cos cos .k k k kF x q p w xqp w q p w     

Competing functions ( )kF x  are a family of straight 

lines whose structure can be examined easily. As a 
result, we get the following statement. 

Theorem. When x  grows indefinitely from the 
initial value of 0, the ground state of a net passes 
consecutively to classes k  (4): 

max0 1 2 ... k       . Transition 1k k    

occurs at critical point 

 1
max

1

/ cos cos / 2
, 1,2,..., ,

/ cos cos
k k

k
k k

q p w w
x k k

q p w w




 
 

 
 

and as long as  1,k kx x x  , class k  is the ground 

state of the net. Number maxk of the last transition is 

determined by the requirement that denominator 

1/ cos cosk kq p w w  should be positive. If vector 

u  is configuration, the ground-state configurations 
are the only fixed points of the net. 

The composition of classes k  is not detailed in 

the theorem at all: classes consist of configurations 
equally distant from vector u . After classes k are 

defined with the aid of u , change of parameter x  
results in the ground state jumping from one class to 
another. It is possible to show that independently of 
vector u  the first transition of the ground state 

0 1   occurs after ½: 1 1/ 2x  . Additionally, it 

turns out that maxk is always greater than / 2p , and 

max
1kx  . The use of factor q  makes it possible to 

regulate the total number of ground-state transitions. 
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3 DISCUSSION 
AND CONCLUSIONS 

The findings from the previous paragraph allow us 
to control the ground state of the net to a 
considerable extent. Let us consider a p -

dimensional hyper-cube with edge length of 2 and 
center at the origin of coordinates. Configurations s  
are located at cube vertexes. Symmetric directions in 
the hyper-cube must be chosen as vector u . For 

each u  of that kind 2 p  s -configurations are 
distributed in symmetric sets with vector u  being 
the axis of symmetry. Each set like that forms one of 

k  classes. It can be turned into the ground state by 

using the approach offered. Particularly, it is 
possible to create the ground state from a very large 
number of configurations. For example, the number 
of ( )

k
e -class configurations (7) is equal to 

  ! ! !p k p k . 

Some coordinates of vector u  can be zero. Let 

1 0u  . Then the same class will comprise not only 

configuration 1 2( , ,..., )ps s ss , but also 

configuration 1 2' ( , ,..., )ps s s s . In other words, 

vector u  having a zero coordinate results in the 
number of configurations doubling in each class k . 

In this event the conclusive statement of Theorem is 
more general and should read: if non-zero 
coordinates of vector u are equal to each other, the 
ground-state configurations are the only fixed points 
of the net. 

What possible consequences the approach can 
have are not known yet. It is necessary to look 
through all symmetric directions of u  in the hyper-
cube and arrange cube vertexes with respect to 
vertex-to-vector u distance in each case. It is 
necessary to turn to methods of the group theory 
here (Davis, 2007). 

The disadvantage of the whole approach is that 
configurations comprising the ground state can’t be 
arbitrary. They are the same distance from vector 
u and, therefore, form a symmetric set. We hope that 
the following tricks (or their combinations) can help 
us to avoid total symmetry of the ground state. First, 
we can use a few vectors like u  into the connection 
matrix and thresholds rather just one vector. For 
example, let there be vector 1 2( , ,..., )pv v vv , 

2
pv , and let us consider a neural net similar to 

(1): 
 

 

 1

( ) (1 )( ) ,

( )( ),

( 1) sgn ( ) .

ij ij i j i j

i i i

p

i ij j ij

J f x u u v v

T g x u v

s J s T



 


   
  
    

 (12)

If vectors u  and v  are configurations, it proves that 
as long as x  does not exceed the first transition 
point 1x , the initial configurations u  

and v themselves are the ground state. If 1x x , a set 

of configurations equally distant from both u  and v  
will constitute the ground state. The net (12) will not 
have other fixed points. Supported by a computer 
simulation, this result arouses cautious optimism.  

Second, it is possible to “separate” in (1) 
thresholds iT  and numbers iu  used for building the 

multiplicative matrix ijM . Let us use earlier-

introduced vector v  and consider a neural net 

 1

( )(1 ) , ( ) ,

( 1) sgn ( ) .

ij ij i j i i

p

i ij j ij

J f x u u T g x v

s J s T



 


  
    

 

Tentative considerations show that its ground state is 
formed by k -class configurations nearest to the 

vector difference u v . In other words, the trick 
allows us to avoid the total symmetry of the ground 
state. Of course the results need closer research. 

The memory of the standard Hopfield model 
with the Hebbian connection matrix and random and 
independent patterns ( )s  is well understood. 
However, if the connection matrix is of the general 
form, the memory of such a network is practically 
unknown. In the same time an arbitrary connection 
matrix J  can be presented as a quasi-Hebbian one, 

when using: i) orthogonal vectors (μ)u  related to the 
eigenvectors of the matrix J , 

( ) ( )

1 1
(1 )ij ij i jJ u u   

 


 
    ( )+ ( )J ~ u u  

where ( ) ( )
1 ,..., pu u (μ)u = ( ) , ( )

iu   1R , ,(μ) (ν)u u   

ii) or configuration vectors (μ)s  with the weights r  

(Kryzhanovsky, 2007): 

1
r  
 ( )+ ( )J ~ s s , ( ) 1is    , 1r R . 

Our multiplicative matrix M  is only one term of the 
quasi-Hebbian expansion. We hope that a detailed 
analysis of the network with the connection matrix 
M  will allow us to make headway on investigating 
a more general case. 
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