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Abstract: We investigate via Monte Carlo numerical simulations and theoretical considerations the outflux of random
walkers moving in an interval bounded by an interface exhibiting channels (pores, doors) which undergo an
open/close cycle according to a periodic schedule. We examine the onset of a limiting boundary behavior
characterized by a constant ratio between the outflux and the local density, in the thermodynamic limit. We
compare such a limit with the predictions of a theoretical model already obtained in the literature as the
homogenization limit of a suitable diffusion problem.

1 INTRODUCTION uees behave (for instance if they cooperate or not) has
an influence on the outgoing flux magnitude.
A bunch of individuals moves at random inside a In some situations, for instance when the outgo-

bounded region, say tiayground On the boundary  ing flux is compensated by an incoming one, a sta-
of the playground there are one or mdaorsthrough tionary state with constant (in time) outgoing flux is
which they can exit the playground itself. The time achieved. In this case the ratio between the outgoing
average flux of individuals exiting the playground will  flux and the density close to the doors will be, obvi-
depend on the local density close to the doors. An in- ously, a constant, which can be interpreted as the rate
teresting question is the following: suppose to know at which the individuals close to the doors succeed to
the rule governing the opening of the doors, what is exit the playground. This situation is also realized on
the relation between the local individual density close a short time scale when the number of individuals in
to the doors and the outgoing flux? the region is large with respect to the number of them

This simple situation models many interesting exiting the doors per unit of time.
phenomena on different space and time scales. We A different situation is that in which no incoming
mention two examples: (i) the playground is a cell, fluxis present. In this case the number of individuals
the individuals are potassium ions, the door is a potas-inside the playground decreases and so does the typi-
sium channel (Hille, 2001; VanDongen, 2004), and cal outgoing flux. The natural question is that of un-
the problem is that of computing the ionic current derstanding if some time averaged flux has a constant
through the channel (Andreucci et al., 2011; An- ratio with respect to the average local density close
dreucci et al., 2012). This is a very important question to the door (Andreucci and Bellaveglia, 2012). This
in biology, indeed ionic channel are presentin almost question has been posed in (Andreucci and Bellaveg-
all living beings and play a key role in regulating the lia, 2012) under the assumption that the doors open
ionic concentration inside the cells. with a periodic schedule.

(ii) The playground is a smoky room (imagine a The setup considered in (Andreucci and Bellaveg-
fire in a cinema), the individuals are evacuees, the lia, 2012) is very basic and, hence, their result is ab-
door is the door of the room, and the problem is solutely general. A scalar field is defined orda
that of computing at which rate the pedestrian are dimensional open hypercube where the field evolves
able to escape from the room itself (Schadschneideraccording to the diffusion equation. Homogeneous
et al., 2009; Cirillo and Muntean, 2012; Cirillo and Neumann boundary conditions are assumed on the
Muntean, 2013). In this case the interesting problem boundary of the hypercube excepting “small” circles
is that of understanding if the way in which the evac- lying on one of the(d — 1)-hypercubic faces the
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boundary is made of. In those circles the boundary viceversa. We tune the parameters so that the dis-
condition is time—dependent on a periodic schedule, crete and the continuum space models have equiv-
more precisely the positive time axis is subdivided alent behaviors. Moreover, in the thermodynamics
in disjoint intervals (periodic cycles) of equal length limit, namely, when the number of site of the discrete
and any of such intervals is subdived into two disjoint space model tends to infinity, the homogeneization re-
parts. The boundary condition on the circles is then sult proven in the framework of the continuum space
assumed to be homogeneous Dirichlet into the first model is recovered. This is not proven rigorously, but
part of each of these time intervals and homogeneousit is demonstrated via heuristc arguments and Monte
Neumann in the second part. (More general shapesCarlo simulations.

than circles are actually considered in (Andreucciand  The paper is organized as follows. In Sec-
Bellaveglia, 2012).) tion 2 we summarize the homogenization results

If the field is interpreted as the density of indi- found in (Andreucci and Bellaveglia, 2012) in the
viduals in the playgroud, the boundary condition in one—dimensional case. In Section 3 the discrete space
(Andreucci and Bellaveglia, 2012) can be described model is introduced and its behavior is discussed on
as follows: the boundary is a|WayS reﬂecting except heuristic grOUndS. This model is studied via Monte
for the small circles which are reflecting only in the Carlo simulations in-Section 4, where all the numeri-
second part of each of the time intervals considered cal results are discussed. Section 5 is flna”y devoted
above, while the individuals are allowed to exit the t0 some brief conclusions.
playground through these circles in the first part of
each of these intervals. In other words the small cir-
cles are doors of the playground and those doorsare2 A CONTINUUM SPACE MODEL
open only in the first part of each of the time intervals.

The time periodic micro—structured boundary In this section we approach the problem via a con-
conditions suggest to approach the problem from tinuum space model. We summarize, in the one-
the homogenization theory point of view (Bensous- dimensional case, the results found in (Andreucci and
san et al., 1978). With this approach in (Andreucci Bellaveglia, 2012). We first introduce the mathemati-
and Bellaveglia, 2012) it is proven that, provided the cal model and then discuss its physical interpretation.
length of the open time is suitably small with respect Pick the two reals > o > 0, the integem, and
to the length of the cycle, the ratio between the out- the functionup € L?([0,L]). SetT = (m+ 1)t and
going flux and the field on the small circles (the door) consider the boundary value problem consisting in the
is not trivial, in the sense that it tends to a real num- diffusion equation
ber when the length of the periodic cycles tends to
zero. This constant ratio is explicitely computed in U —Dux=0 on(0,L)x(0,T) (1)
(Andreucci and Bellaveglia, 2012) and is proven to wjith D > 0 thediffusion coefficientthe initial condi-
depend on the way in which each time interval is sub- tjgn
divided into two parts, that is to say on the length of u(x,0) =up(x) Vxe (0,L) (2)
the open door and on that of the closed door time sub—
intervals. This result is, in this context, an answer
to the question that opened the paper, namely, to the u(0,t) =0 Vvt € [0,T) 3)
guestion about the relation between the outgoing flux
and the local density of individuals close to the exit. and

The present paper has a two—fold aim. In the one— ulL,t)=0Vvtc A and u(L,t)=0VvteC (4)
dimensional case we setup a Monte Carlo simulation
aiming to (i) test numerically the homogenization lim- Where
iting result (in the spirit for example of (Haynes et al., M M
2010)), (ii) compute the ratio between the outgoing A= [Jlkt,kt+0) and C= | J[kt+o,kt+1).
flux and the local density close to the exit when the k=0 k=0
length of the periodic cycles is finite. According to the discussion in Section 1, the
This project is realized by introducing a one— model above can be interpreted as follows: the field
dimensional discrete space model on which indepen-u is the density of individuals in the playgrouna,
dent particles perform symmetric random walks. The is the number of the door opening/closing cycles
space is a finite interval oA with a boundary point  the length of each cycley is the length of the time
which is reflecting, whereas the other periodically interval in each cycle during which the door is open,
changes its status from absorbing to reflecting and and, finally,A andC are, respectively, the parts of the

and the boundary conditions
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global time intervalO, T) when the door is open and
closed.

In (Andreucci and Bellaveglia, 2012), via an ho-
mogenization approach, it has been proven the fol-
lowing convergence result in the limit— O for the
solution of the boundary value problem (1)—(4) pro-
viding an answer to the question about the relation
between the individual density(L,t) at the door and
the outgoing flux—Duy(L,t).

Theorem 2.1. Assume

NG

Jlim —

=0 T u=0

5)
and let U be the solution of the boundary value prob-
lem(1)+4). Then, ag — 0O, U’ converges in the sense
of L?([0,L] x [0,T)) to the solution u of the problem
(2), (2) with boundary conditions

w(0,t)=0 Wte[0,T) (6)
and
ux(L,t) = —iu(L t) vtel0,T). (7
) /o )
Assume
I3 = ®

then the solution of the boundary value probl€&p-
(4) converges to the solution of the probléf), (2)
with boundary condition

Ux(0,t) = u(L,t) =0 ¥t € [0, T). )

The physical meaning of the above theorem can
be summarized as follows. If the lengtlof each pe-
riodic unit (cycle) is small with respect t¢/c (see
condition (8)), then, in tha — 0 limit, the system
behaves as if the door were always open, namely
u(L,t) = 0. On the other hand, if is large with re-
spect to,/o (see condition (5) withu = 0), then, in
the t — O limit, the system behaves as if the door
were always closed, namely(L,t) = 0. Finally,
if T is of the same order of magnitude ¢fc (see
condition (5) withp > 0), then, in thet — 0O limit,
the system behaves as if the door were open with
the outgoing flux constrained to satisfy the condition

—Dux(L,t) = (2uy/D/mMu(L,t).

2.1 A Glimpse of the Proof of
Theorem 2.1

In order to explain the mathematical meaning of the
convergence result stated in the theorem, we sketc
the proof of the first part of Theorem 2.1. We refer

the interested reader to (Andreucci and Bellaveglia, t

2012) for more details. First of all we note that for

628

the solutioru® of the boundary value problem (1)—(4)

it is not difficult to perform classical energy estimates
and to prove compactness properties in time. Then,
possibly by extracting subsequences, we have that a
functionu exists such that as— 0

u® converges strongly ih?([0,L] x [0,T)) tou,
and
ul converges weakly ih?([0,L] x [0,T)) to uy.

Moreover, it is easily proven thatsatisfies (1)—(3) in
a standard weak sense. It is important to remark that,
via these simple compactness considerations, it is not
possible to say anything about the limiting boundary
condition satisfied at = L.

In order to identify such a limiting boundary con-
dition, we consider the weak formulation of problem
(1)-(4). We choose a smooth test function such that

x=0 andt e (0,T)
x=L andteA
xe[0,L] andt=T.

By multiplying (1) againstp and by integrating by
parts we get

T rL T rL L
[ [Ty [ [ D= [ uobx0).
o Jo o Jo 0
(10)
Next we use the equation above with= ¢w, where

¢ € C*([0,L] x [0, T]) is such that

B x=L andte (0,T)
o(xt)=0 for { xe[0,L] andt=T

andw is chosen as follows.

The choice of the functiomv is the key ingredi-
ent of the proof. Identifying the properties that the
function w has to satisfy in the setting of alternat-
ing pores is the main point of the paper (Andreucci
and Bellaveglia, 2012), but the general idea of the
definition of w was introduced by (Friedman et al.,
1995) in a stationary case. We consider the interval
It = (L—+/Dr,L) and definew in Iy x (0,T) as the
T—periodic solution of the equation

Y(x,t)=0 for {

\NI+DWXX:0 Onl'[ X (O,T) (11)
with boundary conditions
w(L,t)=0teA, wy(L,t)=0teC,

and, setting for the sake of notational simplicity
X(1)=L—+/Dr,
w(X(1),t)=11t€(0,T).

pNotice that we extenav = 1 for x € (0,X(1)). In

(Andreucci and Bellaveglia, 2012) it is proven that as
-0

w converges strongly to 1 in?((0,L) x (0,T))
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and
wx converges weakly to 0 ib?([0,L] x [0,T)).

Moreover, it is also proven the following highly non—
trivial property: ast — 0

(0,000 (X(0.000(0,0) -
2u (T
_ﬁ/o DU(L,t)o(L,t). (12)

Recall, now, equation (10) and notice that

_/OT/OLqu)\MJr/OT/OLDU;de’:
[ [ o [ [ urow
o " oW 0)(x,0)

Sincew converges strongly to 1, we get that

o [ o =
_/()T/()LDUX¢X+/()T/()Lu¢t_|_/0Lu0(x)¢(x,0).

(13)

We consider next the left hand side in (13) and com-
pute itst — O limit in a different way. First of all we
note that

[T [ uows [T [ ot -
_/(;T/OLUT(')V\&'F/(;T/OLD(UTCP)XWX
T L
—/0 /0 u"Wydy .

On the other hand, by usif{@®u'¢) as a test function
forwin (11), and integrating by parts we obtain

[ oo [T o=

— [ WX, 0PI X(0).)6 (X 1), 1)

Recalling, now, thaiv= 1 for x € (0, X(1)), from the
two equations above we get

T oL T L
— / / u'ow; + / / Duywyd =
o Jo o Jo

~ [ w00, 0P (0,00 X(1). 1)

T oL .
—/ / U Wy Oy .
0 JO

Recalling thatv, converges weakly to 0 ib?((0,L) x
(0,T)) ast — 0, by (12), the above equality yields

T /L T L
—/ / uTcl)vvt—i—/ / Duiwyd La
o Jo o Jo
A/TDu(L DL, (14)
v DrtJo ’ T
By comparing (13) and (14) we finally get

/OT /OL[—Duxtbx +ude] + /OL Uo(X)® (x, 0)

.
_ %T /O Du(L,t)$(L,t)

which'is the weak formulation of the limiting bound-
ary flux condition foruonx = L, given by

_ﬂDu(L’t)

vDn

The theoretical approach just sketched will be com-
mented upon also in the Conclusions.

Duy(L,t) = fort € (0,T).

3 A DISCRETE SPACE MODEL

We now approach the problem via a discrete space
model. In this section we first define the model and
then discuss heuristically the relation between the out-
going flux and the individual density close to the door.
This problem will be investigated in the following
section via Monte Carlo simulations.

We consideN one—dimensional independent ran-
dom walkers onA = {¢,2¢,....n¢} C ¢Z and de-
note byt € §Z, the time variable. We assume that
each random walk is symmetric, only jumps between
neighboring sites are allowed, that 0 is a reflecting
boundary point, and that at the initial time tRevalk-
ers are distributed uniformly on the s&t Moreover,
we pick the two integers ¥ o < T, we partition the
time spacesZ . in

A= O{s(i —Dr,...,8[(i—-Dt+0-1]}
i=1
and
C= O{s[(i —Dt+o0],...,9it—-1]},
i=1

and assume that the boundary pgimt- 1) is absorb-
ing at times inA and reflecting at times iG.

More precisely, if we lep(x,y) be the probability
that the walker at sit& jumps to sitey we have that

1
= for x=1¢,...,

2 (n_ 1)£a

1
p(gaé) = Ev p(X,X—i—g) =
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and 1
p(x,x—¢) = > for x=2¢,...,n¢;
moreover
0 at times inA
p(né,nﬁ)_{ 1/2 attimesirC
and

1/2 attimesinA
p(nf,(nJrl)f):{ o/ attimesirC.

Note that when the walker reaches the &ite-1)¢

itis freezed there, so that this system is a model for the
proposed problem in the following sense: each walker

is an individual, the room is the sét= {¢,...,n¢},

at the initial time there arBl individuals in the room,
each walker absorbed at the dte+ 1)£ is counted as
an individual which exited the room. We denote by
P[-] andE[-] the probability and the average along the
trajectories of the process.

In the framework of this model an estimator for
the ratio between the outgoing individual flux and
the typical number of individuals close to the door is
given by

E[F]/(sT)
Uil/1)/¢

where F is the number of walkers that reach the
boundary pointn+ 1)¢ during thei-th cycle,U; is
the sum over the time steps in theh cycle of the
number of walkers at the siti.

We are interested into two main problems. The

Ki = forallie Z, (15)

3.1 TheEstimator K; isa Constant

Under the first of the two assumptions (16), it is
reasonable to guess that during any cycle the walk-
ers in the system are distributed uniformly Ay so
that at each time and at each site/ofthe number

of walker on that site is approximatively given by
E[Ui]/T. Sinceo is much smaller tham, the mean
number of walker&[F] that reach the boundary point
(n+1)¢ during the cycle is proportional tdt[U;_1] /T
and the constant depends only@rso that we have

6)

E[R] = E[Ui-4]. (17)

We also note that, sinae> o, we have that

1

n?E[Ui] = n%_E[Ui—l] — E[F]

By combining the two equations above we get that

1 1} -11¢
a(o) nl TS
showing that the estimator (15) does not depend on
time, namely, it is equal t& for eachi.

Ki:KE[ (18)

3.2 Estimating a(0)

As it will be discussed in the following subsection,
we are interested in finding an estimate &qio) in
the limit o large.

First of all we give a very rough estimate of such a

first question that we address is the dependence orconstant. As noted above, since we assumes,o,

time of the above ratio, in other words we wonder
if this quantity does depend dn The second prob-

it is reasonable to imagine that the walkers are dis-
tributed uniformly with densityE[U;_1]/T when the

lem that we investigate is the connection between the —th cycle begins (opening of the door). Hence, since

predictions of this discrete time model and those pro-
vided by the continuous space one introduced in Sec-

tion 2. These two problems will be discussed in this

section via heuristic estimates and in the next one

via Monte Carlo simulations. Both analytic and nu-
merical computations will be performed under the as-
sumptions

(16)

The first hypothesis says that the time interval in
which the right hand boundary point is absorbing is
much smaller than that in which it is reflecting. In

>0 and n>20.

other words in each cycle the door is open in a very
short time subinterval. The second assumption says

that the length of the space interval is larger than 2

and this will ensure that particles being absorbed by

the right hand boundary in a given cycle do not feel
the presence of the left hand endpoint in that cycle.

630

the walkers are independent, we get

E[Ui,l]
T

E[R] = xS

)

where we denote bgthe sum over the particles that
attime(i —1)T— 1 are less thawo sites from the ab-
sorbing boundary point of the probability that each of
them reaches the absorbing boundary in the mext
time steps. Recalling (17), we have
a(o) =S. (19)
This representation allows an immediate rough es-
timate of the quantity(o). If o is large, at timeo
each walker space distribution probability can be ap-
proximated by a gaussian function with varian2o
(Central Limit Theorem). Hence, the number of par-
ticles that reach in the following steps the boundary
(n+ 1)¢ is approximatively given by the number of
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walkers at the/20 sites counted starting from the ab-
sorbing boudary point divided by 2. Hence, we find

the estimate
1 — o
)~ =V20 =14/ =
a(0)~ 5v20 \/;

suggesting that the quantity(c) depends oro as
V0.

We now discuss a more precise argument. In or
der to compute the right hand term in (19) we con-
sider a particle performing a simple symmetric ran-
dom walk onZ and denote b{) the probability along

the trajectories of the process. Since we have assume

n > 20, see (16), the probability that a particle in the
original model starting at a position whichyisite far
from the absorbing boundary point, with<ly < g,
reaches such a point in a time smaller than or equal t
o is equal to the probability that the single symmet-
ric walker onZ starting at 0 reaches the poyin a
time smaller than or equal . Then, if we letTy be
the first hitting time toy € Z for the simple symmetric
walker onZ started at O, from (19), we have that

a ]
20m=el=2 5 el =n
G O

-2 zy’ﬁ’@[sh =

where$S, denotes the position of the walker at titne

HMCH

a(o) =

Qrry

and in the last equality we have used (Grimmet and
Stirzaker, 2001, Theorem 14 in Section 3.10). Recall-

ing, now, (Grimmet and Stirzaker, 2001, equation (2)
in Section 3. 10) we have that
1
V/2) 20

a(o
@37 5 Mot
h+yeven

We first remark that, since(o) is a double sum
of positive terms, we have thato) is an increasing
function ofg. In the next theorem we state two im-
portant properties afi(g). The proof of the theorem
will use the result stated in the following lemma.

(20)

eriodic Gate - Monte Carlo Test of a Homogenization Result

The statement follows by the Stolz-Cesaro theorem.

O
Theorem 3.2. The functior : Z; — R satisfies
a(r) \F
JEEL N (21)

Proof. We assumea even; the case odd can be
~ treated similarly. In order to get (21) we rewrite (20)

as
a(r) = de(r) +do(r) (22)
dvith
B r/2 r/2 1 25 1
0e1= 3.3 5o 20/2) 7
oand
r/2
oo(n =Y (2k—1)
K=1
| 25— 1 1
Zsz 1((23+2k 2)/2) 2251
We shall prove that
(r) _ 1 o(r) _ 1
i w0 M F =V @9

and hence (22) will imply (21).

We are then left with the proof of (23). We only
prove the first of the two limits; the argument leading
to the second one is similar. First of all we note that

r/21/2 1
n-555(5)=

r/2 s K r/2  2s 1

DD EAEES P (P

Thus, by using the properties of the binomial coeffi-
cients we get

r/2 2s r/2 2s

1 h Zs 1
Lemma 3.1. Let f:Z, — R be a function such that Zih 92s + Zlh z 92s
the IimitIimnHm f (m) does exist. Then, st Sinssia S
r/2 2s r/2 2s
__Z Z ( ) 1 Z (23—1) 1
lim. \/_ Zl\/ =2 lim f(m) P 22s Zih:Hl h—1)22s1
: and, hence,
Proof. First note that
2 3 s\ 1
lim ——=— _1 [21\/ —i;\—ﬁf(')] Einsa\h/) 2%
/2251
1 f(m+1) _ . (25— 1> 1
= lim =2lim f(m + P
W v vt o ORENES
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Now, by the Newton’s binomial theorem we get
2s
-m(3)]+2)

21 (2s
= S; 22511 < s> (24)

which is a notable expression fag. The Stirling’s
approximation finally yields

r/2

Oe(r) = ;{ -

1
2

1
5%

1

2

r/2

wr =3 e S SEREC)
1 21
= m;%[“' 9(s)]
whereg(s) — 0 ass— . Hence,
r/2
S0 = o/l 2, sl o)
t
= sumim £ 3 Eles) @9

The first of the two limits (23) finally follows from
(25) and Lemma 3.1. O

Moreover, also relying upon the numerical simu-
lations, we conjecture that there exists a positive inte-
gerrg such that

ar+1) «af(r)
T >0 (26)

for any integer > ro.

3.3 Comparison with the Continuum
Space Model

In order to compare the results discussed above in
this section with those in Section 2 referring to the

continuous space model defined therein, we have to K=

consider two limits. The parametémaslo be taken
large (recall, also, that we always assume o, see
(16)) so that, due to the Central Limit Theorem, the

limit T — 0. We then have to understand how to im-
plement such a limit in our discrete time model.

We perform this analysis in the critical cage=
2

1212, In order to compare the discrete and the contin-
uum space models we first let
L
= 27
n+1 @7)

As already remarked above, from the Central Limit
Theorem, it follows that the two models give the same
long time predictions if Bs= ¢2; hence, the time unit
is setto
22 L2

=20~ D(n+ 12
We then consider the random walk model introduced
above by choosing andt such that the equalitys =
(uts)? is satisfied as closely as possible (note that
ando are integers). This can be done as follows: we
fix L, n, 1, ando and we then consider

{1 J_lnﬂ\/ﬁ_é

H oL
where || denotes the integer part of a real humber
andd € [0,1]. With the above choice of the parame-
ters, the behavior of the random walk model has to be
compared with that of the continuum space model in
Section 2 with period

N 1 LJo L2
- M(n+1)v2D 2D(n+1)?

The equation (30) is very important in our compu-
tation, since it suggests that the homogenization limit
T — 0 studied in the continuum model should be cap-
tured by the discrete space model via the thermody-
namics limitn — c. We then expect that the estimator
K has to converge to the constapt,2D/+/Ttin this
limit.

This seems to be the case if we use the heuristic
estimate of the constaKtobtained above. Indeed, by
(18) and (30), we have that

B

a©)

<1

(28)

o

S

(29)

0.

(30)

1 1\/5

ﬁ} oH
ouL 1

+\/ﬁn+1+o

()] o

discrete and the continuous space model have similarfor the ratio between the outgoing flux and the lo-
behaviors provided the other parameters are related agal density close to the door, wheoél/(n+ 1)) is

2Ds= (2. With this choice of the parameters, then, we
expect that, provided the ratw/t? is chosen prop-
erly, the discrete space model will give results similar
to those predicted by the continuous space one with
finite T.

In (Andreucci and Bellaveglia, 2012), see Theo-
rem 2.1, the relation between the outoing flux and the
density close to the pore is worked out only in the
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a function tending to zero faster thapi(h+ 1) in the
limit n — c. In the next section we shall obtain such
an estimate via a Monte Carlo computation, but here,
by using (21), we get that

n—so0 0((6) G—00 \/? - \/E
K— —\/6_ v2Du — n\/2Dp_ 2u =

which is the desired limit.
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4 MONTE CARLO RESULTS 5 0:00030

In this section we describe the Monte Carlo computa- © 0:00028

tion of the constant (15). This measure is quite diffi- _§

cult since in this problem the stationary state is triv- % 0:00026

ial, in the sense that, since there is an outgoing flux %,

through the boudary pointn + 1)¢ and no ingoing é 0.00024

flux is present, all the particles will eventually exit 5 | | | | |

the system itself. 0.00022
Our problem can be rephrased as follows: both
the outgoing flux and the local density at the door are
two “globally decreasing” random variables, but their
mutual ratio is constant in average. We then have to

0 100 200 300 400 500 600
cycle

Figure 2: The quantitk; is plotted vs. the cycle numbeér
in the casey = 200 andn = 5000.

setup a prqcedure to capture this constant ratio. (15), (27) and (28), will be taken as an estimateor
sidgrOtLt:?otlllrgv(\e/iIr?g;]\%gllu(gsthe open state, we shall con- In other words the output of our computation will be
the quantity
o = 30,50,70,100, 120 150,200. K 4 R Ap— (32)
For each of them, in order to perform the limit> 0, S

we shall consider 1.15

o |
n=200400,600,800,1000 1500 3000 5000 10000 110'; o ]
; ]
for the number of sites of the lattide = % 1 ¢ P 4
For each choice of the two parametérandn we g 09 om® * 2 0% ]
shall run the process and compute at each dyttie g 09 S 70 %
. S 085 + 100 O A
guantity 08 120 m |
F/(T) : 150 ©
ki = U/(f) 0":)73 i ‘ ‘ 200‘ o
| c
where, we recallT is defined in (29) andr andU; 0l 013 02 025
have been defined below (15). periodic schedule T
0.00028 Figure 3: The Monte Carlo estimate of the constamhea-
> sured as in (32) vs. the periodic time schedulEach series
§ 0.00026 - i of data refers to the value reported on the right bottom part
© of the figure.
S 0.00024 1
X 09 °
&  0.00022 4 0.88 - s
2 0.86 - o m & .
§, 0.0002 |- . v 084 O Gy y X
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3 00018 ‘ ‘ ‘ ‘ ‘ g 0'082 .gQ ¥ X H& +
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cycle © 078 LR + 1
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Figure 1: The quantity; is plotted vs. the cycle numbeér 0.74 ii* i
in the casey = 30 andn = 5000. 0.72 ! ! ! !
0 001 002 003 004 0.05
The quantityk; is a random variable fluctuating periodic schedule T

withi, but, as itis illustrated in the Figures 1 and 2, it rigyre 4: The same data as in figure 3 zoomed in the interval
performs random oscillations around a constant refer- [0,0.05).

ence value. We shall measure this reference value by

computing the time average of the quantity We We perform the computation described above with

shall averagek, by neglecting the very last cycles D =1, L = 1, p= 1/v/2; with this choice the

which are characterized by large oscillations due to continuum space model prediction for the ratio is

the smallness of the number of residual particles in 2uy/D/\/Tt= 0.798.

the system. Our numerical results are illustrated in Figures 3
The product of the reference value for the ran- and 4. We note that by increasingthe numeri-

dom variableék and the quantity/s, see the equations  cal series tend to collapse to one limiting behavior.
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Table 1: The parameter computed via (30), for the specified valuesoadndn.

n
200 400 600 800 1000 | 1500 | 3000 | 5000 | 10000
30 | 0.0865| 0.0431| 0.0287| 0.0215| 0.0172| 0.0115| 0.0057| 0.0034| 0.0017
100 | 0.1579| 0.0787| 0.0524| 0.0393| 0.0314| 0.0210| 0.0105| 0.0063| 0.0031
200 | 0.2233]| 0.1114| 0.0742| 0.0556| 0.0445| 0.0296| 0.0148| 0.0089| 0.0044

Sl

Table 2: Measured constalitfor the specified values af andn.

n
200 400 600 800 1000 | 1500 | 3000 | 5000 | 10000
30 | 0.8660| 0.8140| 0.7916| 0.7794| 0.7723| 0.7624| 0.7476| 0.7371] 0.7351
o | 100] 1.0059] 0.9099| 0.8772] 0.8559{ 0.8430| 0.8245| 0.8017| 0.7906| 0.7772
200 | 1.1135| 0.9738| 0.9269| 0.8994| 0.8852| 0.8564| 0.8280| 0.8155| 0.7944

This is in agreement with what we proved in Sec- walk which, albeit not tackled in this paper, seem to
tion 3.2. Moreover, provided is large enough, for  deserve a theoretical investigation (see Section 3.1).
T — 0 the measured constant tends to the theoretical - As to our second goal of investigating the prob-
value 0798. Foro = 30,100,200 we have also re- lem for finite T, we have found clear evidence of a
ported in Tables 1 and 2 the data plotted in Figure 3. monotonic behavior im of the estimatoK, which we

We can finally state that the Monte Carlo measure deem believable in view of the just commented co-
of the constankK is in very good agreement with the herence shown by the Monte Carlo method with the
theoretical predictions discussed above. theoretical Theorem 2.1.

We also note that, both the continuum space study  In this connection we must remark that even from
outlined in Section 2 and the heuristic discussion of the short account of the main steps in the proof of
its discrete space counterpart given in Section 3 were Theorem 2.1, givenin Section 2.1, itis quite clear that
just able to predict the value of the const#nin the the monotonic behavior identified by the Monte Carlo

limit T — 0. No information was given on its behavior approach is not easily amenable to investigation, or
at finitet. even discovery, by means of that theoretical approach.
The Monte Carlo computations, on the other hand, ~ AS remarked in the previous Section, we do not
suggest thak increases with the periodic schedule ~ Presently provide a fullinsightin the origin and mean-
We cannot give, at this stage of our reasearch, a phys-N9 of this behavior, which however is connected with
ical interpretation of this result. This is for sure avery OUr conjecture (26), and with the efficiency of the
interesting point in the framework of this problem, in- €vacuation phenomenon as a functiorrofit is im-
deed, it is connected with the efficiency of the evacu- Portantto recall, finally, that at least in biological ap-

ation phenomenon in connection with the periodicity Plications the efficiency of this mechanism is not the
of the open/close door cycles. only concern. For example the alternating schedule

of ion channels has been connected to the selection of
a preferred ion species (VanDongen, 2004). Thus in
general we expeat to satisfy several different con-

5 CONCLUSIONS straints coming from different features of the biologi-
cal system.
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