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Abstract: Cryptographic hash functions are an important building block used in many cryptosystems. The flexibility and
ability of a system designer to choose the most fitting function for a given system enables fast, efficient and
secure designs. In this position paper we give preliminary results of porting three selected hash algorithms
to Iris and MicaZ Sensor nodes in terms of achieved performance, memory requirements and the influence
of different compiler optimizations on these measurements. Our main goal is to provide a sort of baseline
approximation of how much effort is needed to port reference code of these algorithms to a new platform
without trying to optimize it, leaving all this work to the compiler; enabling designers to not having to stick to
already ported algorithms, when they might be suboptimally suited for a given environment.

1 INTRODUCTION

With the advent of wireless sensor networks (WSNs),
the need for efficient cryptography in these environ-
ments rises too. A WSN typically consists of a po-
tentially huge number of small, independent sensor
nodes (motes), dispatched over a wide area, commu-
nicating their sensor readings in a hop-to-hop fashion
over the air to a central basestation.

Since the messages are transfered over the air in-
terface and can be intercepted, manipulated, or even
injected by potential malicious eavesdroppers, certain
precautions have to be taken to secure the communi-
cation between the individual nodes. This gets com-
plicated by the severe restrictions in terms of available
energy, memory and processing power of the single
motes. Ordinary cryptographic systems, as they are
used in wired PC-based surroundings, usually cannot
be easily adapted to sensor networks. Every single
primitive of the cryptosystem has to be either care-
fully selected and evaluated for the use on the con-
strained, usually 8-bit, platforms, or even specifically
tailored to fit this environment.

This makes deploying a new, secure network, or
even the switch from one mote-processor architecture
to a different one, often cumbersome and expensive.
In addition it entices to only use already existing ver-
sions of algorithms, thereby creating possible danger-
ous dependencies on certain primitives.

In this position paper, we focus on one such prim-
itive, used as a basic building block for secure net-
works: hash functions. We try porting three se-
lected hash algorithms, based on very different con-
cepts (SHA-1 for its still widespread use, Grøstl as a
SHA-3 final candidate, and Tiger, as an example for
a 64-bit based hash), to Iris and MicaZ motes with
an 8-bit ATmega microcontroller and 8, respectively
4, kilobytes of RAM. The main questions we are try-
ing to answer are: how much effort is required to fit
the algorithms to these constrained environments? Do
all of these algorithms work efficiently on the sensor
motes? How much ROM and RAM are required to
perform the hashing? How much, if any, influence do
standard compiler optimizations in this environment
have on the performance of the implementation?

The availability of grounded results for the feasi-
bility of using different hash algorithms in sensor net-
works should allow for a more diverse approach when
selecting appropriate primitives and giving system de-
signers more flexibility in their decisions, as well as
the possibility to choose the kind of algorithm best
suited for the environment at hand.

The remainder of this paper is now structured as
follows:

Section 2 gives an overview of cryptographic hash
functions in general and details the internal structures
of the three functions examined in this work. Sec-
tion 3 describes our implementation and discusses the
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preliminary results, while finally Section 4 provides
some closing remarks and shortly discusses our next
steps.

2 CRYPTOGRAPHIC HASH
FUNCTIONS

A general hash function has two important properties:

Compression. an input of arbitrary length is mapped
to an output of fixed length, e.g. 160 or 192 bits

Efficiency. calculation of the hash value for a given
input is fast and easy

In addition to the properties mentioned above, acryp-
tographichash function also has to have three addi-
tional characteristics ((Menezes et al., 2001)):

Pre-image Resistance.given a hash functionH, an
input x, andy= H(x), it should be practically in-
feasible to determinex from the knowledge ofH
andy.

Second Pre-image Resistance.given a hash func-
tion H and an inputx, it should be practically in-
feasible to find anx′ 6= x, such thatH(x) = H(x′).

Collision Resistance.given a hash functionH, it
should be practically infeasible to find two dis-
tinct inputsxandx′ (with x 6= x′), such thatH(x)=
H(x′).

The last property (collision resistance) is the hard-
est one to fulfill and, due to the birthday paradox,
the output of an up-to-date hash function should be
at the very least 160 bits long, so that the effort for
an attacker to brute-force a collision stays above 280

(=
√

2160).
All the hash functions that were observed in this

work qualify as secure cryptographic hash functions
with, at least currently, no known weaknesses that
would prevent their use in practice, although in the
case of SHA-1 a possible complete break is already
long overdue. The following Subsections give a short
overview of the three hash functions that were se-
lected for this work.

2.1 SHA-1

The Secure Hash Algorithm (Eastlake and Jones,
2001) is still the de-facto standard for secure hash
functions. Although in October 2012 a new SHA-
3 standard (based on KECCAK, see (Bertoni et al.,
2011)) has been selected, and several members of the
SHA-2 family with different digest sizes are available

since 2001 (National Institute of Standards and Tech-
nology, 2012), SHA-1 is still very often used in practi-
cal applications, also due to the huge number of read-
ily available implementations for a variety of devices
and environments.

SHA-1 produces a 160-bit digest and processes
a message in blocks of 64 bytes. Internally it uses
32-bit words and 80 rounds. Collision attacks with a
complexity of 251 have been reported (Manuel, 2011)
and new designs should avoid the algorithm whenever
possible, but due to its current prevalence we included
it in this work.

The main body of the SHA-1 implementation con-
sists of a sequence of circular shifts, xors and addi-
tions, together with a nonlinear combination of five
intermediate words that change every twenty rounds.
For this work we used the reference code from the
SDCC port of the SHA-1 implementation by Vinicius
Kursancew1. The main loops are given in Listing 1.

Listing 1: SHA-1 Kernel.

f o r ( t =0 ; t<20; t ++){
temp = A ≪5 + ( (B & C)

| ( ( ˜ B) & D) ) + E + W[ t ] + K [ 0 ] ;

E = D; D = C; C = B ≪30 ; B = A; A = temp ;

}

f o r ( t =20; t<40; t ++){
temp = A ≪5 + (B ˆ C ˆ D) + E + W[ t ] + K[ 1 ] ;

E = D; D = C; C = B ≪30 ; B = A; A = temp ;

}

f o r ( t =40; t<60; t ++){
temp = A ≪5 + ( (B & C)

| (B & D) | (C & D) ) + E + W[ t ] + K [ 2 ] ;

E = D; D = C; C = B ≪30 ; B = A; A = temp ;

}

f o r ( t =60; t<80; t ++){
temp = A ≪5 + (B ˆ C ˆ D) + E + W[ t ] + K[ 3 ] ;

E = D; D = C; C = B ≪30 ; B = A; A = temp ;

}

2.2 Grøstl

Grøstl (Gauravaram et al., 2011) was one of the five
finalists in the SHA-3 competition, producing digest
sizes of either 256 and 512 bits. The internal struc-
ture of Grøstl is very similar to the one of the Ad-
vanced Encryption Standard (AES, (National Institute
of Standards and Technology, 2001)), even sharing its
256-byte S-Box. After 10 rounds (for the 256-bit vari-
ant), operating on 64-byte message blocks, the inter-
nal 512-bit state is truncated to the final output. The

1www.vkcorp.org
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operations performed in the individual functions dur-
ing a round are either table lookups, shifts or xors.
The main loops are given in Listing 2. The code was
taken from the reference implementation by Soeren S.
Thomsen and Krystian Matusiewicz2.

Listing 2: Grøstl Kernel.

c a l l G r o e s t l P r o c e s s . P ( c tx , temp1 ) ;/∗ P( h+m) ∗ /

c a l l G r o e s t l P r o c e s s .Q( c tx , temp2 ) ;/∗ Q(m) ∗ /

/∗ app l y P−pe r mu ta t i on to x ∗ /

vo id P ( h a s h S t a t e∗ c tx , u8 x [ROWS] [ COLS1024 ] ) {
u8 i ;

V a r i a n t v = P512 ;

f o r ( i = 0 ; i < c tx−>rounds ; i ++) {
AddRoundConstant ( x , c tx−>columns , i , v ) ; / / x o r s

and s h i f t s

SubBytes ( x , c tx−>columns ) ; / / t a b l e l ook ups

S h i f t B y t e s ( x , c tx−>columns , v ) ; / / s h i f t s

MixBytes ( x , c tx−>columns ) ; / / x o r s and s h i f t s

}
}

/∗ app l y Q−pe r mu ta t i on to x ∗ /

vo id Q( h a s h S t a t e∗ c tx , u8 x [ROWS] [ COLS1024 ] ) {
u8 i ;

V a r i a n t v = Q512 ;

f o r ( i = 0 ; i < c tx−>rounds ; i ++) {
AddRoundConstant ( x , c tx−>columns , i , v ) ; / / x o r s

and s h i f t s

SubBytes ( x , c tx−>columns ) ; / / t a b l e l ook ups

S h i f t B y t e s ( x , c tx−>columns , v ) ; / / s h i f t s

MixBytes ( x , c tx−>columns ) ; / / x o r s and s h i f t s

}
}

2.3 Tiger

The Tiger hash function (Anderson and Biham, 1996)
is, while already quite old, an interesting case for
our study, since it heavily relies on arithmetic on
64-bit words. Several weaknesses in the algorithm
have already been discovered (Mendel and Rijmen,
2007; Wang and Sasaki, 2010), yet currently there
is no feasible attack against a full round version of
Tiger known. Tiger also operates on 64-byte message
blocks, using three passes with eight rounds each, and
producing a 192-bit digest. At its core it makes heavy
use of lookups into four tables, each consisting of
256 64-bit words, thereby requiring(4∗256∗64)/8=
8,192 bytes only for storing the tables. In this work
we were particularly interested if it was possible to
port an algorithm like this (using 64-bit arithmetic
and quite a lot of memory) to our constrained environ-
ments, how much effort would be required to perform

2http://www.groestl.info/implementations.html

the port, and how fast the result would be. Listing 3
gives the main kernel of the hash function, taken from
the reference code3.

Listing 3: Tiger Kernel.

s a ve a bc ( ) ; / / on l y as s ignme n ts

pa s s ( a , b , c , 5 ) ; / / t a b l e l ook ups and x o r s

ke y s c he du le ( ) ; / / x o r s and s u b t r a c t i o n s

pa s s ( c , a , b , 7 ) ; / / t a b l e l ook ups and x o r s

ke y s c he du le ( ) ; / / x o r s and s u b t r a c t i o n s

pa s s ( b , c , a , 9 ) ; / / t a b l e l ook ups and x o r s

f e e d fo rwa rd ( ) ; / / x o r s and s u b t r a c t i o n s

vo id pa s s ( a , b , c , mul ){
round ( a , b , c , x0 , mul ) ;

round ( b , c , a , x1 , mul ) ;

round ( c , a , b , x2 , mul ) ;

round ( a , b , c , x3 , mul ) ;

round ( b , c , a , x4 , mul ) ;

round ( c , a , b , x5 , mul ) ;

round ( a , b , c , x6 , mul ) ;

round ( b , c , a , x7 , mul ) ;

}

vo id round ( a , b , c , x , mul ){
c ˆ= x ;

a −= t1 [ c 0 ] ˆ t 2 [ c 2 ] ˆ t 3 [ c 4 ] ˆ t 4 [ c 6 ] ;

b += t4 [ c 1 ] ˆ t 3 [ c 3 ] ˆ t 2 [ c 5 ] ˆ t 1 [ c 7 ] ;

b ∗= mul ;

}

3 IMPLEMENTATION AND
PRELIMINARY RESULTS

We implemented the three algorithms detailed in Sec-
tion 2 on Memsic Iris and MicaZ motes4. Both are
equipped with an 8-bit Atmel AVR ATmega128 mi-
croprocessor (the 1281 version in the case of Iris, the
128L variant for the MicaZ), clocked at 8 MHz, with
the Iris motes able to utilize up to 8KB of RAM,
whereas the MicaZ motes are limited to only 4KB.
Both motes are provided with 128KB of Flash ROM,
in addition to 512KB of measurement ROM to hold
sampled values (which was not used for our evalua-
tion).

In practice, there was next to no runtime differ-
ence between the two nodes (which was to be ex-
pected, since they share a common processor archi-
tecture), the only implementation difference emerged
in terms of available RAM; in the Tiger implementa-
tion for the MicaZ node we had to move six of the
lookup tables from RAM to ROM in order to get be-

3http://www.cs.technion.ac.il/∼biham/Reports/Tiger/
4http://www.memsic.com/wireless-sensor-networks/
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Figure 1: Runtime in milliseconds per 64-Byte Input block onthe Iris Mote(note the logarithmic scale of the ordinate).

low the 4KB limit. On the Iris platform, moving two
tables to ROM sufficed.

The motes ran TinyOS5 and were programmed us-
ing NesC, with the ncc compiler version 1.2.4 and the
underlying avr-gcc 4.1.2. Our main goal, as already
mentioned in Section 1, was not to find the perfect op-
timization of the algorithms for a given architecture,
but rather to (a) find out how much effort has to be
put in modifying reference implementations to run on
embedded 8-bit microcontrollers, (b) how much per-
formance can be expected by these implementations,
and, finally, (c) how different algorithms with differ-
ent internal structures react to compiler optimizations.

Both the SHA-1 and Grøstl reference code could
be ported without any large modifications, since they
use at most 32-bit datatypes that are supported on our
target platforms, through the use ofunsigned long
long. Tiger, on the other hand, had to be largely
rewritten; all the 64-bit operations had to be sepa-
rated into a high and a low part, the tables had to be
split into eight tables of 256 32-bit words each, and
carry/borrow propagation had to be taken care of for
each operation individually. Listing 4 gives a short
excerpt of how the round function looks like after this
treatment (see also Listing 3 for the original 64-bit-
based implementation).

Table 1 and Figure 1 give the time needed to
process a single 64-byte block for each hash algo-
rithm on the Iris mote, with four different ncc com-
pile switches, from -Os (“optimize for size”) up to
-O3 (“optimize yet more”). This time was obtained
by performing multiple runs with inputs of varying
length, resulting in a different number of blocks to be
processed. By subtracting two runtime values with a
consecutive number of blocks, adding two such dif-
ferences, and dividing by two, we tried to eliminate
any fixed setup or preprocessing time needed by the

5http://www.tinyos.net/

Listing 4: Modified Tiger Kernel.

/ / c ˆ= x ;

cz low ˆ= x low ; a tomic c z h i g h ˆ= x h igh ;

/ / a −= t1 [ c 0 ] ˆ t 2 [ c 2 ] ˆ t 3 [ c 4 ] ˆ t 4 [ c 6 ] ;

az low −=

pgm read dword (&( t1 l ow [ ( t b y t e ) ( c z h i g h ) ] ) ) ˆ

pgm read dword (&( t2 l ow [ ( ( t b y t e ∗ ) (& c z h i g h ) )

[ 2 ] ] ) ) ˆ

t 3 l ow [ ( t b y t e ) ( cz low ) ] ˆ

t 4 l ow [ ( ( t b y t e ∗ ) (& cz low ) ) [ 2 ] ] ;

a z h i g h −=

pgm read dword (&( t 1 h i g h [ ( t b y t e ) ( c z h i g h ) ] ) ) ˆ

pgm read dword (&( t 2 h i g h [ ( ( t b y t e∗ ) (& c z h i g h ) )

[ 2 ] ] ) ) ˆ

t 3 h i g h [ ( t b y t e ) ( cz low ) ] ˆ

t 4 h i g h [ ( ( t b y t e∗ ) (& cz low ) ) [ 2 ] ] ;

/ / f i x t he borrow

i f ( a z h i g h > tempr ) ( az low )−−;

algorithms.
Note that the ordinate of Figure 1 is given in loga-
rithmic scale to account for the big time difference
between the algorithms. In this first preliminary run
we were not so much concerned with the individual
switches triggered by these options, but more with
their overall impact on performance and code size.
Which algorithms are affected by these switches?
And if they are affected, how? The results we ob-
tained were consistent with our earlier implemen-
tations on different hardware platforms (Koschuch
et al., 2012); especially noteworthy are two observa-
tions: although the most complex algorithm from a
code point-of-view, Tiger outperformed even SHA-1
by a factor of 2. And Grøstl’s runtime is very sensi-
tive to different compiler switches, whereby the Tiger
and SHA-1 implementations are almost unaffected by
them in terms of performance.

Table 2 gives an overview of the RAM needed by
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Table 1: Time in Milliseconds per 64-byte Input Block on
the Iris Mote.

Tiger SHA-1 Grøstl
-Os 4.5 8.5 167.5
-O1 4 8 444.5
-O2 3 8.5 147.5
-O3 3.5 8 145.5

Table 2: RAM Usage in Bytes on the Iris Mote.

Tiger SHA-1 Grøstl
5,332 1,512 1,667

Table 3: ROM Usage in Bytes on the Iris Mote.

Tiger SHA-1 Grøstl
-Os 53,388 9,808 18,852
-O1 16,970 5,110 13,620
-O2 16,424 4,952 13,840
-O3 55,180 16,640 21,268

the different implementations on the Iris mote. Since
the RAM usage is completely unaffected by the vari-
ous compiler switches, only one row is given there.
Tiger was the only algorithm that, due to the 8KB
lookup tables, did not fit into the RAM without fur-
ther modifications. So four of the tables (six for the
MicaZ mote) were moved to the ROM using compiler
directives.

Finally, Table 3 details the ROM usage (in bytes)
of the algorithms on the Iris mote. It is evident that
Tiger is by far the largest of the three algorithms ex-
amined, followed by Grøstl and SHA-1. In contrast to
the performance figures, the compiler switches affect
all three algorithms when it comes to the amount of
allocated ROM, with the -O2 option generally being
the best choice (apart from a minor deviation in the
Grøstl case) for the hash functions tested.

4 CONCLUSIONS
AND OUTLOOK

In this work we performed a preliminary performance
analysis of three selected hash functions on Iris and
MicaZ sensor nodes. Our main goal was to give an
estimate of the effort that is to be expected when port-
ing a reference implementation of a hash algorithm
to an 8-bit microcontroller, and how much gain in
terms of performance and memory requirements can
be achieved by utilizing simple compiler switches.

Our first results look promising, with the addi-
tional surprise of the ported 64-bit Tiger hash to be
the best performing, albeit most memory and porting
effort demanding, algorithm of the tested set.

Our next steps will be to perform the same analysis
with the other SHA-3 final candidates as well as the
new SHA-3 (KECCAK) itself, and also compare the
results obtained here with results from our previous
works, in order to give potential implementers a foun-
dation for an informed decision when having to select
a particular hash function for the use in a new (or old,
or extended) sensor network.
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