
A Multi-version Database Damage Assessment Model

Kranthi Kurra1, Brajendra Panda1 and Yi Hu2

1Computer Science and Computer Engineering Department
University of Arkansas, Fayetteville, AR 72701, U.S.A.

2Computer Science Department, Northern Kentucky University
Highland Heights, KY 41099, U.S.A.

Abstract. Unauthorized data access and malicious data corruption can have
very deleterious impact on an organization. To minimize the effect fast and ac-
curate damage assessment and appropriate recovery must be performed as soon
as such an attack is detected. This research focuses on damage assessment pro-
cedures using multi-version data in the Database System. By utilizing the pro-
posed multi-version data scheme, it is possible to eliminate the impact of mali-
cious database transactions by providing appropriate versions of data items to
transactions during damage assessment procedure.

1 Introduction

In any critical information system, defending data from illegal accesses is extremely
important [1]. Since protection mechanisms do fail, databases containing sensitive
information can be accessed by malicious users. Thus, database intrusion detection
systems [2, 3, 8] are employed for detecting malicious activities in Database Man-
agement Systems (DBMSs). Evaluating to what extent a database is damaged and
which data items are corrupted are extremely important for database recovery. In this
research, we propose a damage assessment model that employs multi-version data
scheme for the database damage assessment procedure.

2 Past Research on Database Damage Assessment and Recovery

Many researchers have proposed different approaches for post information warfare
database damage assessment. Ammann et al. presented an approach based on marking
damage to maintain the database consistency [4]. Liu et al. [5] pursued damage as-
sessment by employing relationships among transactions. Panda and Lala [6] elimi-
nated the damage assessment time by saving the dependency relationship to avoid
frequent log access. In [9] Jia et al. proposed an approach that uses virtual machines
to do “out-of-the-box” cross-layer damage assessment by combining instruction and
OS level taint tracking and efficient “what-if” damage assessment methods. In [10],
Liu et al. proposed an efficient algorithm for damage assessment and recovery in
attack resilient distributed database systems. Yu et al. [7] proposed a model for on-
line attack recovery of work flows. They introduced multi-version data objects that

Kurra K., Panda B. and Hu Y..
A Multi-version Database Damage Assessment Model.
DOI: 10.5220/0004590501000108
In Proceedings of the 10th International Workshop on Security in Information Systems (WOSIS-2013), pages 100-108
ISBN: 978-989-8565-64-8
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

facilitate finding all damages caused by malicious tasks and repairing them automati-
cally. However Yu’s approach tries to save every revision of each data item where
most revisions may not be useful for future damage assessment and recovery. Our
approach also uses multi-version data, whereas transaction characteristics are consid-
ered and data revisions that are not useful for future damage assessment are truncated
during transaction validation procedure. Thus this approach can save a significant
amount of disk spaces and facilitate fast damage assessment.

3 Methodology

The purpose of the database damage assessment and recovery procedure is to assess
the damaged or affected data items after an attack and restore the database to a con-
sistent state. Our proposed multi-version database damage assessment approach is
based on a model that keeps multi-version data in the DBMS. That is, in order to
facilitate the database damage assessment procedure and reduce the denial of service
during this procedure, we keep multiple versions of each data in a separate data revi-
sion log. For one specific data item, each updating transaction will cause a new ver-
sion of the data item to be added to the data revision log. In this work, we introduce
the concept of transaction validation. Transaction validation process is a separate
system process that is utilized to check whether each transaction is legitimate or not.
For transactions validated by this process, the corresponding revisions of data updat-
ed by these transactions are removed from the data revision log. Basically, we store
the most recent validated values for each data item and keep deleting the older values.
Each version of data item has to be validated before it is deleted.

3.1 Data Versioning

In order to facilitate the database damage assessment procedure, we keep multiple
versions of each data item in the data revision log. Although the transaction id (or
transaction timestamp) can be used for this purpose to help identify the transaction
that is responsible for a particular revision, it only illustrates the order of transactions
submitted to the DBMS instead of the order of transactions committed. Thus it cannot
reflect the inter-transaction relationships. For example, transaction T1 can actually
read from a later submitted transaction T2 that committed earlier. The inter-transaction
relationship is decided by the commit sequence of transactions. Each transaction has a
commit sequence number associated with it. A transaction with a lesser commit se-
quence number indicates that it committed before a transaction having a higher com-
mit sequence number.

Definition 1: Data Revision

A Data Revision xi, j for data item x is represented by two numbers, i and j, where i
represents the transaction number, j represents the commit sequence number of a
transaction updating x.

It must be noted that the transaction number i is normally the timestamp of the
transaction. For one particular data item, each revision is uniquely represented by xi,j.

101

But for two different data items, they can have the identical pair of numbers i and j
which depicts that both of these two data items are updated by the same transaction.

We illustrate some example transactions as shown in Example 1 given below. It
can be observed that we have three transactions: T1, T2, and T5. Suppose transaction
T1 has the commit sequence number 1. Then transaction T2 and T5 have the commit
sequence numbers 2 and 3 respectively. Table 1 illustrates the data revisions of each
data item shown in part of the database log. For example, after the commit of transac-
tion T5, q’s revision is q5,3. Number 5 and 3 is the transaction number and commit
sequence number of transaction T5 respectively.

Example 1: Consider the following as a part of a database log.
…..r1(x), w1(y), commit; r2(x), w2(x), w2(y), commit; r5(z), w5(q), commit;…..

Table 1. Transactions and Data Revisions.

 x y z q
T1 1, 1
T2 2, 2 2,2
T5 5,3

Definition 2: Margin of Error of a Data Item

The Margin of Error of a Data Item x is represented by x[l, u], where l represents the
lower bound of data item x and u represents the upper bound of data item x. The mar-
gin of error of data item x depicts the possible value range of it in case there are
committed transactions which are committed but not yet validated.

3.2 Transaction Classification

We classify each transaction with respect to the data items it reads to perform its
functionality. Each transaction is classified into one of the three categories listed
below depending on how sensitive the transaction is related to the value of a data item
it reads.

Definition 3: Sensitive/Critical Transaction

A transaction Ti is a Sensitive/Critical Transaction to data item x if transaction Ti has
to read data item x before updating some other data items and the value of data item x
must be validated before Ti is executed. We represent this relationship between trans-
action Ti and data item x as: x Ti.

Definition 4: Unimportant Transaction

A transaction Ti is an Unimportant Transaction to data item x if transaction Ti does
not read data item x or does not care about the value of data item x for its updating
operation even in case it reads data item x before updating some other data item. We
represent this relationship between transaction Ti and data item x as: x <> Ti.

Definition 5: Tolerating Margin of Error Transaction

A transaction Ti is a Tolerating Margin of Error Transaction to data item x if transac-
tion Ti reads data item x before its updating operations and the update operations can

102

tolerate the margin of error of data item x in case the latest value has not yet been
validated. We represent this relationship between transaction Ti and data item x as: x
[l, u] Ti.

To better understand the above definitions related to different categories of trans-
actions, let us look at some banking examples.

Example 2: A customer withdraws 2000 dollars from its savings account. The corre-
sponding SQL statement would look like as follows:

T1: update SavingsAccount where balance = balance – 2000 where Acc# = …
We observe the following relationship balance T1. Because the update opera-

tion needs to read the current balance of the customer’s savings account before doing
the update operation, transaction T1 is sensitive to the balance of the account. Thus
transaction T1 is a sensitive transaction to the balance of the savings account.

Example 3: A customer deposits 500 dollars to its savings account. The correspond-
ing SQL statement would look like as follows:

T2: update SavingsAccount where balance = balance + 500 where Acc# = …
It can be seen that the relationship balance <> T2 holds for transaction T2. Alt-

hough the update operation needs to read the current balance of the customer’s sav-
ings account before doing update operations, transaction T1 is not sensitive to the
balance of the account. This is because even some previously submitted transactions
are malicious transactions, the transaction used for this deposit operation can still be
executed without affecting the customer or bank’s operations.

Example 4: A customer makes two deposits and one withdraw operations in three
transactions as follows.

T3: update SavingsAccount where balance = balance + 1000 where Acc# = …
T4: update SavingsAccount where balance = balance + 200 where Acc# = …
T5: update SavingsAccount where balance = balance - 800 where Acc# = …
If we assume that the balance of the customer’s savings account before the submis-

sion of transaction T3 is 1000 dollars, then the margin of error of data item x after
commit of each transaction is illustrated in Table 2. The calculation of margin of error
of balance is based on the initial balance and the transaction validation process.

For example, after the execution of transaction T3, depending on the validity of T3,
the correct balance could be 2000 in case T3 is valid, and it could be 1000 when T3 is
a malicious transaction thus cancelled later. Thus the margin of error is [1000, 2000].
Similarly for transaction T5

 which follows the execution of transaction T4, when T5 is
a valid user transaction, the balance range would be [200, 1400]. Also, when T5 is a
malicious transaction, the balance range would be [1000, 2200] after malicious effect
caused by it is cancelled later. Thus the margin of error of balance is [200, 2200] for
transaction T5.

Table 2. Example Margin of Error and its Relationship with Transactions.

Transaction Margin of Error of balance
T3 [1000, 2000]

T4 [1000, 2200]
T5 [200, 2200]

103

4 Our Model

Our model of database damage assessment includes two steps, namely, Transaction
Validation Procedure and Clean Data Identification Procedure. Transaction validation
procedure is responsible for identifying malicious transactions and validating legiti-
mate user transactions. Clean data identification procedure involves identifying clean
data which can be made available immediately to users for their transactions during
damage assessment process. We illustrate each of these two procedures in following
sub-sections.

4.1 Data Dependency

It’s observed from real-world database applications that a user transaction usually
reads some data items before updating a data item and also very likely updates some
other data items subsequently in the same transaction. Although transaction program
changes often, the whole database structure and essential data correlations rarely
change. Hu et al. proposed a model [8] that describes data dependencies using Read
Sequence Set and Write Sequence Set. In this paper, we reuse the same concepts as
illustrated in the following Definition 6, 7, and 8.

Definition 6: The Read Sequence of data item x is the sequence with the format
<r(d1), r(d2), …, r(dn), w(x)> which represents that the transaction may need to read
all data items d1, d2, …, dn in this order before the transaction updates data item x. It
must be noted that each data item may have several read sequences each having a
different length. All these sequences together are called Read Sequence Set R(x) of
this data item.

Definition 7: The Write Sequence of data item x is the sequence with the format
<w(x), w(d1), w(d2), …, w(dn)> which represents that the transaction may need to
write all data items d1, d2, …, dn in this order after the transaction updates data item x.
It must be noted that each data item may have several write sequences each having a
different length. All these sequences together are called Write Sequence Set W(x) of
this data item.

Definition 8: We define the relationship between data item x and its dependent, i.e.,
Read Sequence Set R(x) and Write Sequence Set W(x), as Data Dependency Relation-
ship.

Figure 1 illustrates an example data dependency. Data item x has read dependency
relationships with {a, b, c} and {d, e}. It also has write dependency relationships with
{y, z}, {l, m, n}, and {u, v, w}. Suppose the predefined threshold for weight of data
dependency is 40%. Then for the read dependency only {a, b, c} has strong data
dependency with x. Likewise, for the write dependency only {u, v, w} has strong data
dependency with x.

104

Fig. 1. Data Dependency Concept Example.

We chose to employ the data mining approach proposed in [8] for determining data
dependencies in the database system. The classification rules reflecting data depend-
encies are deduced directly from the database log. These rules represent what data
items probably need to be read before an update operation and what data items are
most likely to be written following this update operation. Transactions that are not
compliant to the data dependencies generated are flagged as anomalous transactions
[8]. Compared to other existing approaches for modeling database behaviors [2] and
transaction characteristics [3] to detect malicious database transactions, the advantage
of this approach is that it is less sensitive to the change of user behaviors and database
transactions.

In addition, this technique employed the sequential pattern mining algorithm and a
data dependency rule generation algorithm. These dependencies generated are in the
form of classification rules, i.e., before one data item is updated in the database what
other data items probably need to be read and after this data item is updated what
other data items are most likely to be updated by the same transaction. Interested
readers may refer to the work on mining data dependencies [8] for further infor-
mation.

Followings are some example data dependency rules. The first rule states that be-
fore updating data item x, data item a, c, d and g have to be read in the transaction.
The second rule states that after transaction x is updated, data item m, n, and o need to
be updated subsequently in the same transaction and m, n, o need to be updated in the
sequence specified. If in the database log there are transactions that update data item x
and are not compliant to any of these rules, these transactions are not valid user trans-
actions. The transaction validation procedure raises alarm after identifying malicious
transactions.

Example 5: Data Dependency Rules
Read rule: w(x) r(a), r(c), r(d), r(g)
Write rule: w(x) w(m), w(n), w(o)

4.2 Transaction and Data Revision Validation Procedure

Since storage of multiple versions of each data item leads to a space constraint, we
designed an algorithm to validate each committed transaction and the corresponding
revisions of data items updated. A transaction Ti is a validated transaction if Ti is

105

compliant to the read and write rules of data items updated by Ti. If a transaction Ti is
validated, all corresponding revisions of data items updated by it are also validated.
Also we cannot validate a particular data revision unless the previous version of that
particular data item is validated. The transaction validation procedure runs in back-
ground while the DBMS is running. It does not have to be run in real time. Although
the main purpose of it is to validate transactions submitted to DBMS, it is a user pro-
cess with low priority and should not significantly affect performance of the DBMS.

Algorithm
1. Initialize the validated transaction list LV =
2. Initialize the malicious transaction list LM =
3. For each committed transaction Ti

 For each data item x updated in Ti
If Ti is not compliant to any of these read rules

Add Ti to malicious transaction list LM, LM=LM{Ti}
Else if Ti is not compliant to any of these write rules

Add Ti to malicious transaction list LM, LM=LM{Ti}
Mark revision xi, j of data item x to be validated
Add Transaction Ti to LV, i.e., LV = LV {Ti}
Delete previous revision of data item x from data revision log

4.3 Clean Data Identification Procedure

To reduce the denial of service impact by malicious transactions, the database damage
assessment procedure should make the clean data, i.e., unaffected data, available to
legitimate users as soon as possible. Our proposed data versioning procedure helps in
identifying the correct version of data to serve future data access requests of transac-
tions. The process for identifying the correct version of data proceeds as follows.
 First, the data items that are updated by unimportant transactions are made avail-
able to users. This is because these unimportant transactions are not affected by the
previous value of the data items. For example, these unimportant transactions may
simply refresh the old value of the data item, irrespective of whether the old values
are correct or not. Second, the data items that are updated by tolerating margin of
error transactions are made available to users next. What value of this kind of data
items is used to serve the transaction’s request? The lower risk value of each of these
data items are made available to transactions. Depending on the data semantics, the
lower risk value of each data item could be either the lower bound or upper bound of
the margin of error of it. The rationale is that even in the case when some previous
transactions are either malicious or affected and have not had a chance to be validat-
ed, using the lower risk value would have little or no harmful impact to users. Rather,
using the lower risk value can help constrain the spreading of damaged data. Third,
the DBMS serves transactions the latest revision of data items that are updated by
sensitive transactions. The idea is that instead of blocking the user access to these
data items until clean data identification process completes, simply serve user the
version that is guaranteed to be correct at some past time although the latest image of
the data item might be affected. Below we present the formal algorithm for finding

106

the most desirable data revision for serving the transactions during clean data identifi-
cation procedure.

Algorithm
1. For each transaction Ti

For each data item x updated
If x <> Ti Then

xm1, n1 is made available to the transactions, where n1=max(N),
N is the set of commit sequence numbers of x,
m1 is the transaction number of the transaction with commit se-
quence number n1

Else if x[l, u] Ti Then
If l is the lower risk value Then

l is made available to the transactions
Else

 u is made available to the transactions
Else if x Ti Then

xm2, n2 is made available to the transactions, where n2=min(N), N
is the set of commit sequence numbers of x,
m2 is the transaction number of the transaction with commit se-
quence number n2

5 Conclusions

In this paper, we have presented an approach for database damage assessment using
multi-version data scheme, which facilitates identifying unaffected and damaged data
items during the damage assessment procedure. It must be noted that we do not guar-
antee that the revision provided to transactions is the latest or correct value. Instead,
our approach provides the data revision that has the least negative effect on the proper
execution of transactions.

Acknowledgements

This work has been supported in part by US AFOSR under grant FA 9550-08-1-
0255. We are thankful to Dr. Robert. L. Herklotz for his support, which made this
work possible.

References

1. Defending America’s cyberspace: National plan for information system protection, version
 1.0. The White House, Washington, DC, 2000.
2. D. Barbara, R. Goel, and S. Jajodia. Mining Malicious Data Corruption with Hidden Mar-

kov Models. In Proceedings of the 16th Annual IFIP WG 11.3 Working Conference on Da-
ta and Application Security, Cambridge, England, July 2002.

3. Y. Hu and B. Panda. Identification of Malicious Transactions in Database Systems. In

107

Proceedings of the 7th International Database Engineering and Applications Symposium
July, 2003.

4. P. Ammann, S. Jajodia, C.D. McCollum, and B.T. Blaustein. Surviving information war-
fare attacks on databases. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 164--174, Oakland, CA, May 1997.

5. P. Liu, P.Ammann, and S. Jajodia. Rewriting Histories: Recovering from Malicious
Transactions. In Distributed and Parallel Databases, Vol. 18, No. 1, pages 7-40, January
2000.

6. C. Lala and B. Panda. Evaluating Damage from Cyber Attacks: A Model and Analysis.
IEEE Transactions on System, Man, and Cybernetics – Part A, Special Issue on Infor-
mation Assurance, Vol. 31, No. 4, July 2001.

7. M. Yu, P. Liu, W. Zang, Multi-Version Data Objects Based Attack Recovery of Work-
flows, Proc. 19th Annual Computer Security Applications Conference (ACSAC ’03), Las
Vegas, Dec, 2003, pages 142-151.

8. Y. Hu and B. Panda, A Data Mining Approach for Database Intrusion Detection, In Pro-
ceedings of the 19th ACM Symposium on Applied Computing, Nicosia, Cyprus, Mar.
2004.

9. X. Jia, S. Zhang, J. Jing, and P. Liu, “Using Virtual Machines to Do Cross-Layer Damage
Assessment”, In the Proceedings of ACM Workshop on Virtual Machine Security, in asso-
ciation with ACM CCS, 2008.

10. P. Liu and M. Yu. Damage assessment and repair in attack resilient distributed database
systems. Computer Standards and Interfaces, 33:96–107, January 2011.

108

