Towards Effective and Efficient High Order Mutation

Pedro Reales Mateo and Macario Polo Usaola

University of Castilla-La Mancha, Paseo de la Universidad 4, 13071 Ciudad Real, Spain

Abstract. Mutation testing is a very effective testing technique. However, it
remains very expensive. Several techniques to reduce costs have been proposed,
One of them is High Order Mutation. This technique can reduce the costs of
mutation testing with a decrement of the effectiveness. This paper proposes and
evaluates a novel type of mutation, mutants-integration mutation that improves
the effectiveness of High Order Mutation keeping its advantages. The result ob-
tained in the experimentation leads one to think that using the new proposed
type of mutation improves test cases generations when high order mutation is
applied.

1 Introduction

Software testing is one of the most important tasks to ensure quality assurance. In
academic studies several testing techniques have been designed to find different types
of errors in different systems. One of the most effective testing techniques is mutation
testing [1]. This technique is considered as a reference by the science community and
it has been used traditionally to validate new proposals of testing techniques, although
currently it is starting to be used in the industry.

With mutation testing, the tester has to create copies of the system under test with
small syntactic changes (some of which represent errors) using mutation operators,
which are well-formed rules. Then, the tester has to design test cases in order to find
the inserted errors. Therefore, if the designed tests are able to find these simple errors,
they will be able to find more complex ones due to the coupling effect [1].

One of the main problems of mutation testing is the cost. Researchers have put a
lot of effort into the proposal of cost reduction techniques [2], being High Order Mu-
tation (HOM) a very promising technique. With HOM, first order mutants (created by
the injection of a single fault) are combined into high order mutants (created by the
insertion of two or more faults, each proceeding from a first-order mutant). This re-
duces the number of mutants and therefore the costs of mutation testing. However, it
also reduces the effectiveness of mutation testing because high order mutants are
easily killed than first order mutants.

In this paper a new mutation type, named mutants-integration mutation, is pro-
posed in order to keep the advantages of HOM and to reduce its disadvantages im-
proving the effectiveness. This novel mutation type can be applied to high order mu-
tants with the introduction of a more restricted condition to kill mutants that makes
harder to kill mutants, so getting better quality tests cases.

The paper is organized as follows. Section 2 describes High Order Mutation and

Reales Mateo P. and Polo Usaola M..

Towards Effective and Efficient High Order Mutation.

DOI: 10.5220/0004588200210029

In Proceedings of the 1st International Workshop in Software Evolution and Modernization (SEM-2013), pages 21-29
ISBN: 978-989-8565-66-2

Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

22

its advantages and disadvantages. Section 3 presents mutants-integration mutation, the
novel mutation type, which is the core of this paper. Section 4 explains the experi-
mental setting performed in order to evaluate the work. Section 5 analyzes the results
obtained in the experiment and, finally, section 6 shows the obtained conclusions and
the future work derived from this study.

2 High Order Mutation

High order mutation [3] is an advanced testing technique. Using it, the tester intro-
duces more than one fault in each copy of the system to create high order mutants.
Figure 1 shows a 2"-order mutant, where two mutations are combined (red text). In
the literature there are two different approaches to apply high order mutation.

Original HOM
method(x,y,z)

method(x,y,z)
intr;

intr;

if(x>y) if(x<y)
r=2+z ::> r=2-z;
else else
r =2%z; F =g 2-
return r/2; return r/2;

Fig. 1. Example of a high order mutant.

The first approach [3], [4], tries to improve the efficiency of mutation testing us-
ing high order mutation. With this approach, first order mutants or traditional mutants
are combined in order to reduce the total number of mutants. This reduction has two
important advantages. First, the number of equivalent mutants is reduced from 20% of
mutants to 5% [5], since most equivalent mutants are combined with non equivalent,
so making non-equivalent high order mutants; and, second, the total number of mu-
tants is reduced almost to half (in the case of 2™-order mutation) [3], so the computa-
tional requirements decrease. However, this approach has a disadvantage: the effec-
tiveness of mutation testing decreases [3], since some “good” mutants can be com-
bined with “bad” mutants creating a bad high order mutant: a good mutant contains a
difficult to reveal fault; if the HOM dies, it is probably because test cases have dis-
covered the easy fault.

The second approach [6] tries to improve the effectiveness looking for HOMs in
the search space of all the possible combinations of mutations. The goal is to find
those HOMs that are more difficult to be killed than the FOM that composed them.
The main advantage of this approach is that, since the final set of HOMs is more dif-
ficult to be killed, test cases designed for those mutants will have more quality than
test cases designed with traditional mutants. However, the main disadvantage of this
approach is related with its requirements: the generation of so good test cases needs
very high computational requirements. since a search-based technique must be used to
find the good high order mutants, what supposes several executions.

In order to overcome the problems of these two approaches and use HOM to im-

23

prove the efficiency and effectiveness of mutation testing, a novel high order mutation
technique is proposed in this paper. The main novel contributions of this technique is
a new mutation type, called mutants-integration mutation, that applies some special
conditions that must be fulfilled before considering a mutant is killed. Next section
describes this new kind of mutation in detail.

3 Efficient and Effective High Order Mutation

Theoretically, the combined effect of some mutations can produce some types of
HOM that are more difficult to kill than the isolated mutants because of the masking
or interactions effects [6]. However, sometimes the effect of the mutations of a HOM
is not combined. For instance, two mutations in different branches of an if-then-else
structure. In this case the high order mutant can be killed but only because the effect
of one mutation, so the other mutation goes unnoticed.

3.1 Mutants-integration Mutation

Using a combination algorithm, like anyone of the proposed algorithms [3], the prob-
ability to create a high order mutant where the mutations combine their effects is low,
and there are not warranties that mutations do not go unnoticed since the HOM can
only be killed by the effect of one mutation.

In order to mitigate this risk (mutations go unnoticed) and make high order muta-
tion testing more effective, a novel kind of mutation, called mutants-integration muta-
tion, is proposed. Unlike other mutation types, like Strong mutation [1] or flexible
weak mutation [7], a special condition is added to the output state of the system under
test A new rule (equation 1) is applied to determine when a mutant is considered
killed.

Kill(tc, hom) = output(tc, hom) # output(tc, original)
AND (1
V fom € hom: covers(tc, fom) = true

The formula determines that a HOM is only considered killed when the output state of
the mutant at the end of the execution is different from the original and all the FOMs
that compose the HOM have been reached by the test case. This special condition
ensures that at least all the mutations are executed in the same test execution path.
This rule implies that a test that does not cover all the mutants in a HOM is not able to
kill it, independently of the results of the test. Figure 2 illustrates when a high order
mutant is considered killed under mutants-integration mutation.

Figure 2 shows that test a reaches all the mutations and its output is different from
the output that would be obtained with the original system. In this case, all the re-
quired conditions are fulfilled and, therefore, a kills the mutant. However, b only
reaches one of the two mutations that compose the HOM. Thus, although the outputs
of test b are different when executed against the original and against the mutant, it
cannot be considered as killed because not all the required conditions are fulfilled.

24

)
Testa 3 ! Tfs_;_b Cyes
x=ly=22=3 | | |CHYELES
t
P !
7__;7‘: X<y k"‘-t——f____i
— ~ao —
r=2-z y r=2%
—— V4 —
> 7
return r/2 (
{ I
v v
Test a Testc
Unexpected Output =-0.5 Unexpected Output =3
Mutant killed Mutant not killed because not all

mutations have been covered

Fig. 2. An example of a killed mutant under mutants-integration mutation.

One of the main advantages of this new mutation type is related with the equiva-
lent mutants. In previous work [5], when the set of total mutants is reduced using
HOM, the number of equivalent mutants is also reduced. The required conditions by
the new type of mutation implies that when an equivalent mutation is included in a
high order mutant, the test only requires to cover it (jointly with the other mutations)
and creates an unexpected output (produced by the other mutations) in order to kill
the high order mutant. Therefore, the same advantage obtained in previous work re-
mains.

However, there is not warranty that mutations do not go unnoticed, because it only
requires that they are covered in the same execution path. This new mutation kind can
increase the probability that mutations do not remain unnoticed.

4 Empirical Analysis

In order to investigate how the new mutation type improves the effectiveness of high
order mutation, an experiment was performed. In this experiment we create some
different sets of high order mutants with three different combinations algorithms pro-
posed previously [3] and we generate test cases for each mutant set using strong mu-
tation and mutants-integration mutation. Finally, we compare the quality of the gener-
ated tests executing them against the first order mutants. The next sections described
the performed experiment.

4.1 Research Question

The main goal of this study is to determine if mutants-integration mutation is more
effective than strong mutation when high order mutation is applied. Therefore the
research question is established as:

Is Mutants-integration mutation more effective than strong mutation when high order
mutation is used?

In order to evaluate this question, two variables were measured in the experiment. The

25

independent variable is the mutation type used to create test case and has two values:
strong mutation and mutants-integration mutation; the dependent variable is the muta-
tion score achieved by the created test cases against the first order mutants.

4.2 Experimental Procedure

This section describes the experimental procedure, which is composed by 5 steps:

1- In the first step, first order mutants are created. These mutants will be combined to
create 2"-order mutants and will be used later to obtain comparable mutation
scores.

2- In step 2, three combination algorithms (see section 4.5) are applied with the cre-
ated first order mutants to create three sets of 2"-order mutants.

3- Then, tests cases are generated automatically (see section 4.4) using strong muta-
tion for each set of mutants.

4- In step 4, again test cases are generated automatically, but using mutants-
integration mutation for each set of mutants.

5- Finally, when all tests are created, each test suite is executed again the first order
mutants in order to obtain comparable mutation scores that will determine if mu-
tants-integration mutation improves the effectiveness of high order mutation.

Therefore, at the end of the experimental process, there will be available thirteen

different mutation scores for each selected class (see section 4.3) that can be com-

pared (7 mutation scores obtained with the 1¥-order mutants and 6 mutation scores
obtained with the 2"-order mutants).

4.3 Classes under Test

Two classes written in Java were selected for the presented experiments:

- Board. This class is from the monopoly application that has been used in previous
studies [3]. This class implements the board of a monopoly game.

- Month. This class is from a medical appointment manager application used in the
internal medicine consultation service at Hospital Gutierrez Ortega. This class
implements a month in the system.

Table 1 shows quantitative information about the selected classes. The selection of

these classes is motivated partially because the used test generation algorithm works

properly with them.

Table 1. Classes under test.

Class LOC Methods Mutants
Board 281 30 295
Month 478 18 708

4.4 Test Case Generation

One important element of the presented experiment is the test case generation. To

26

generate automatically test cases, a genetic algorithm was used [8]. This algorithm is
based on mutation testing and it is specially designed for Java software. It generates
tests iteratively and selects the best tests based on the killed and covered mutants.
Also, the algorithm implements a stop condition based on the evolution of the popula-
tion (in this case, the generated test cases).

The same configuration of the algorithm was applied to generate tests each time.
Table 3 of section 5 shows the number of generated tests for each set of mutants and
each kind of mutation.

4.5 Combination Algorithms

In the experiment, three combination algorithms were used to create high order mu-
tants: 1) Each choice, where first order mutants are combined in its order of genera-
tion and at least one time without any other restriction; 2) Each choice first-last,
where first order mutants are combined in its inverse order of generation and at least
one time without any other restriction; and 3) Between operators, where each first
order mutant is combined at least one time with mutants created with different muta-
tion operators. Table 2 shows the number of 2™-order mutants obtained with each
combination algorithm for each application.

Table 2. Number of 2"%-order mutants.

Class Each Choice Each choice first-last Between operators
Month 354 354 459
Board 148 148 150

5 Results

This sections shows the results obtained from the experiment. Table 3 presents the
tests cases generated and the mutation scores obtained with each test suite for the two
classes included in this study.

5.1 Generated Test Cases

The generated test cases for each set of high order mutants are shown in table 3. It
shows that when SM is used, the number of tests generated with 2"%-order mutants is
lower than the number of tests generated with 1*-order mutants. This indicates, like in
previous studies [3], that effectiveness of high order mutation is lower than first order
mutation because mutants are easily killed. However, when MIM is used, the number
of tests generated with the second order mutants is always higher than with the first
order mutants. This issue indicates that it is more difficult to find tests cases that kill
several mutants at the same time and therefore it is necessary to create more tests,
which kill concrete mutants.

This data indicates that using MIM it is more difficult to kill a HOMthan using
SM and, therefore, with MIM more test cases are generated that kills concrete mutants
(under MIM).

27

Table 3. Experimental result.

Test with 1stOrder Test with 2ndOrder Test with 2ndOrder Test with 2ndOrder
Mutants mutants BO mutants EC mutants FL
Kind of mutation
SM [sM [MIM [SM [MIM | sSM [MIM
Number of tests
129 | 81| 238 | 78 | 174 | 78 | 144
§ Mutation score against 1st-order Mutants (using SM)
s 82,61%] 76,58% | 7873%| 74,13%| 76,72%] 75% | 77,58%
Mutation score against 2nd-order Mutants
-1 95,88% | 82,9% | 9511%| 80,17% | 9542%| 78,57%
Number of tests
58 | 49| 93] 38] 64 | 40 | 52
E Mutation score against 1st-order Mutants (using SM)
g 87,79% | 71,18% | 73.,89% | 80% | 81,69% | 78,64%| 71,18%
Mutation score against 2nd-order Mutants
- 96% | 72,66% | 100% | 63.51%] 98.64% | 52,02%

5.2 Mutation Scores against Second Order Mutants

Regarding to the mutation scores obtained against second order mutants (table 3), it
shows that the score obtained under SM is always bigger that the score obtained under
MIM. Again, this indicates that under MIM, it is more difficult to kill mutants (due to
the special restrictions of MIM), and therefore, it is more difficult to reach a high
mutation score.

Taking into account that the test cases were automatically generated with a genetic
algorithm [8] using the same configuration in each case, it is possible to determine
that the test design becomes more specific under MIM since more test cases must be
generated and they kill less mutants that SM.

However, this issue introduces more costs to mutation testing, since test cases that
reach a higher mutation score are more difficult to be designed, currently, with the
automatic test generation techniques proposed in the literature [9], this cost increment
is not really important and can be overcome automatically.

On the other hand, the combination of HOM and MIM mutation does not incre-
ment the number of equivalent mutants, therefore MIM keeps the cost reduction of
HOM related with equivalent mutants [5]. Thus, under MIM, mutation scores with
second order mutants similar than the mutation scores with second order mutants
obtained under SM could be obtained, since there is the same number of equivalent
mutants. Only, more test cases must be created.

5.3 Scores against First Order Mutants

Table 3 also shows the mutation score obtained by the test cases against the first order
mutants. In all the cases (excepting the tests generated with the “BO mutants” of the
Board system), the score obtained with the tests generated under MIM and 2™-order
mutants is higher than the score obtained with the test generated under SM and 2™-
order mutants. This result suggests that, in fact, the test cases obtained with MIM

28

have better quality than test cases obtained with SM.

If we compare the mutation scores of the test cases obtained with MIM against the
1" and the 2™-order mutants, it shows that the differences are low, around 1% and 4
% (only in two cases, “FL and BO mutants” of Board class, the difference is around
20%). And, moreover, these differences are not always negative. In some cases (for
the board class) the mutation score obtained with second order mutants is lower than
the mutation score obtained with first order mutants (which indicates that the high
order mutants are more difficult to be killed than first order mutants).

In fact, the experiment results show that when a set of test executed against 2"-
order mutants under MIM reaches a mutation score lower than 75%, the same set of
tests executed against a 1*-order mutants reaches a mutation score higher than the
obtained against the 2™*-order mutants.

Finally, if we compare the mutation score obtained against 1*-order mutants by
the test cases generated with MIM and by the tests cases generated directly with the
first order mutants, it shows that the mutation score obtained by the test cases gener-
ated with the 1¥-order mutants is always higher than the score obtained by the test
cases generated with 2™-mutants and MIM. This shows the drawback of MIM muta-
tion: it reduces the probability that some mutations go unnoticed. However, as previ-
ously commented, more test cases could be generated under MIM in this experiment
until they reach the same mutation score than the test cases obtained with 2™-order
mutants and SM, which will improved the mutation score obtained against first order
mutants.

Summarizing, the results obtained from the experiment presented in table 3 shows
that in general the test cases designed under MIM has higher quality than test cases
designed under SM, and therefore, MIM reduces the drawbacks of high order muta-
tion keeping its advantages. There, the question formulated in section 4.1, “Is Mu-
tants-integration mutation more effective than strong mutation when high order muta-
tion is used?” can be answered as “yes, it is”.

5.4 Threads to Validity

There are some threads to validity that must be taken into account before accepting
the obtained results. In experimentation there are three kinds of threads to validity
[10]. First, the construct validity, which is the degree to which the variables are
properly measured. In the experiment the only variable measured was the mutation
score, which was properly measured, since tools measured it automatically.

Second, the internal validity is the degree of confidence in the cause-effect rela-
tionship between a factor and the experimental results. In the experiment, we ob-
served than in the 83% of the cases the interesting factor (mutation type: SM and
MIM) has the same effect. Thus, it must be taking into account than in the 17% of the
cases the effect was different before to accept the results of the experiment presented
in this paper.

Finally, the external validity is the degree to which the research results can be
generalized. This is the most important weakness of the presented experiment, since
only two classes were used and only one execution of the test generation algorithm
was performed (one execution for each case). These issues must be taken into account
before accepting the experimental results of this paper as definitive.

29

6 Conclusions

This paper presents a novel mutation type, mutants-integration mutation that increases
the effectiveness of high order mutation and keeps its advantages. This mutation tech-
nique introduces a new restriction to consider that a mutant is killed, which produces
that the designed tests have better quality than tests designed with traditional muta-
tion.

The experimentation section of this paper shows some promising early results that
leads to think that the theoretical advantages of mutants-integration mutation are ful-
filled in practice. Moreover, these preliminary results show that with mutants-
integration mutation and 2™-order mutation it is possible to design test cases that
achieve a mutation score similar against 2"*-order mutants and 1¥-order mutants.

As future work, we plan to extend the empirical analysis of mutants-integration
mutation in order to provide enough empirical data to validate the benefits of it. Also,
we are defining a new algorithm to create second order mutants that complements
mutants-integration mutation in order to obtain better results. Finally, we plan to de-
velop a test generation algorithm specially designed for mutants-integration mutation,
since, as section 5 shows, the current approach used in this paper cannot produce tests
that reach very high mutation scores.

References

1. R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on Test Data Selection: Help for the
Practicing Programmer,” Computer, vol. 11, no. 4, pp. 3441, Apr. 1978.

2. M. Polo and P. Reales, “Mutation Testing Cost Redution Techniques: A Survey,” IEEE
Software, vol. 27, no. 3, pp. 80-86, Jun. 2010.

3. P.R. Mateo, M. P. Usaola, and J. L. F. Aleman, “Validating 2nd-Order Mutation at System
Level,” IEEE Transactions on Software Engineering, vol. 99, no. 1, 5555.

4. M. Papadakis and N. Malevris, “An Empirical Evaluation of the First and Second Order
Mutation Testing Strategies,” presented at the Software Testing, Verification, and Valida-
tion Workshops (ICSTW), 6, pp. 90-99.

5. M. Polo, M. Piattini, and I. Garcia-Rodriguez, “Decreasing the cost of mutation testing with
2-order mutants,” Software Testing, Verification and Reliability, vol. 19, no. 2, pp. 111-
131, 2008.

6. M. Harman, Y. Jia, and W. B. Langdon, “A Manifesto for Higher Order Mutation Testing,”
in Proceedings of the 2010 Third International Conference on Software Testing, Verifica-
tion, and Validation Workshops, Washington, DC, USA, 2010, pp. 80—89.

7. P. R. Mateo, M. P. Usaola, and J. Offutt, “Mutation at the multi-class and system levels,”
Science of Computer Programming, 23.

8. Macario Polo and Pedro Reales, “Automated tests generation for multi-state systems,”
presented at the Genetic and evolutionary computation conference, Amsterdam, 2013.

9. G. Fraser and A. Zeller, “Mutation-driven generation of unit tests and oracles,” 2010, p.
147.

10. Experimentation in software engineering: an introduction. Boston: Kluwer Academic,
2000.

