
From Functional Test Scripts to Performance Test
Scripts for Web Systems

Federico Toledo Rodríguez1, Matías Reina1, Fabián Baptista1,
Macario Polo Usaola2 and Beatriz Pérez Lamancha2

1 Abstracta, Montevideo, Uruguay

2 Universidad de Castilla-La Mancha, Ciudad Real, Spain

Abstract. When modernizing systems the software is migrated from one
platform to another. There are big risks concerning the performance the system
should have in the new platform. A new system cannot take more time to
perform the same operations than the previous one as the users will refuse it.
Therefore, the preventive performance test is crucial to guarantee the success of
the modernization project. However, the automation tasks for performance
testing are too demanding, in terms of time and effort, as the tools work at a
communication protocol level. Though not free, the functional testing
automation is easier to accomplish than the performance testing automation as
the tools work at a graphic user interface level; the tools are therefore more
intuitive and they have to handle less variables and technical issues. In this
article we present a tool that we developed for industrial usage to automatically
generate performance tests scripts from automated functional tests. The tool has
been used in several projects in the industry, achieving important effort savings
and improving flexibility.

1 Introduction

Two very important quality aspects to reduce risk at the moment of going live with a
system (the day that the system is released to the users) are the correctness and the
performance of the functionalities. Typically, we can perform tests at different levels
to verify and improve system functionalities: unit, component, integration or system
testing. Development projects are generally iterative, planning many product releases
during software project lifecycle, because they were planned as such or because
different bug fixes and maintenance have to be implemented after release to
production environment. Regression testing is needed (the test useful to verify in
every release that the software does not have quality regressions), and because of this,
different tools are available to automate the execution of these tests [1], generating
tests scripts as a sequence of commands to simulate user’s actions. In performance
testing, load simulation tools are used to concurrently generate hundreds of users
connected to the system under test (SUT) [2]. When the load is simulated the
infrastructure experts analyze the health status of the system, looking for bottlenecks
and improvement opportunities.

Toledo Rodríguez F., Reina M., Baptista F., Polo Usaola M. and Pérez Lamancha B..
From Functional Test Scripts to Performance Test Scripts for Web Systems.
DOI: 10.5220/0004586500120020
In Proceedings of the 1st International Workshop in Software Evolution and Modernization (SEM-2013), pages 12-20
ISBN: 978-989-8565-66-2
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

Taking into account that the automation for functional testing is easier than the
automation for performance testing, and also easier to maintain and to understand, our
proposal is to take advantage of the functional test scripts to automatically generate
performance test scripts. Basically, for web systems, the functional test scripts are
automatically executed while the HTTP traffic is captured. Later, the HTTP trace is
analyzed to generate a performance test script model which is finally used to generate
the script code to be executed by a load generator.

The rest of the article is organized as follows: section 2 goes deeper on automation
of functional tests (regression tests) and performance tests, especially for web
systems; section 3 presents the proposal that is then validated in section 4, showing
the first results for the usage of the tool in the industry; and after mentioning the
related work in section 5, the conclusions and future work is presented in section 6.

2 Background

An extended and current practice in the development of web systems is the
automation of functional tests, using tools to simulate the user’s actions, like
Selenium (seleniumhq.org) and WatiN (watin.org), just to mention some of the most
popular open source projects. This kind of tools offers the possibility to follow a
record-and-playback approach. Basically, it is necessary to manually execute the test
case while the tool captures every action performed by the user on the browser. Then,
the tool stores the actions in a file with a specific format or language (the test script)
that the same tool can reproduce later. The same test case can be executed as many
times as needed, performing the defined validations. Every command of the test script
simulates a user action. These commands have as parameters the HTML element on
which the captured action has been executed (for example, the input entered in a
form), and the values entered. Fig. 1 shows an excerpt of a Selenium test script that
accesses to an application (1st line), clicks the “Search” link (2nd line), enters the
“computer” value in the HTML field “vSEARCHQUERY” (3rd line), and finishes by
clicking the button with name “BUTTON1” (4th line).

Fig. 1. Selenium script for functional testing.

This schema, in most of the tools, can be complemented with a data-driven testing
approach, by which the test case takes test data from a separated source as a text file
or a database (called data pool). Therefore, the same script can be reproduced with
different data sets, testing in that way different cases with just little extra effort:
adding lines to the test data source.

A performance test is defined as a technical research to determine or validate the
velocity, scalability and stability characteristics of a SUT, in order to analyze its
performance under load conditions [2]. Performance tests are useful to reduce risks

13

towards the going live day, analyzing and improving the performance of the
application and the different servers when they are exposed to the concurrent users [3,
4]. There are specific tools to do that, called load generators or load testing tools,
simulating concurrent users accessing to the system. Two of the most popular open
source load generators are OpenSTA (opensta.org) and JMeter (jmeter.apache.org).

Unlike the functional test scripts, in the performance test scripts, even though the
record and playback approach is used, the tools do not record at a graphic user
interface level, instead, they do it at a communication protocol level. This happens
because a functional test script reproduces the user actions on a real browser, whilst
load generators try to “save” resources doing the simulation at a protocol level, as, for
the HTTP protocol, the tool will execute hundreds of processes that just send and
receive text through a network connection, with no necessity of showing graphic
elements or any other task that requires major resource consumption.

Fig. 2. OpenSTA Script for performance test.

The performance test script contains a sequence of commands that manage HTTP
requests and responses according to the protocol. This script is much more complex
than the equivalent functional test script. For example, for the same actions presented
in Fig. 1, where the script has only four lines of Selenium code, the equivalent
performance test script has 848 lines using OpenSTA. That corresponds to each
HTTP requests sent to the server, considering that each request triggers a sequence of
secondary requests, which correspond to images included in the webpage, CSS files,
Javascripts, etc. Each request (primary or secondary) is composed by a header and a
body, as shown in the example in Fig. 2. Embedded, there are parameters, cookies,
session variables, and any kind of elements used in the communication with the
server. The example in this figure corresponds to the primary HTTP request of the last
step of the test case; so, it includes the value “computer” in the parameter
“vSEARCHQUERY” (the box).

Once the script is recorded, a number of adjustments must be performed in order
to make it completely reproducible and representative of a real user. These scripts will
be executed by concurrent processes (known as virtual users), so that it does not make
any sense to execute them with the same user name and password to get connected to
the system, or that all of them to use the same search key (because in these kind of
cases the system will work faster thanks to the caches, at a database level and a web
server level, obtaining misleading results). The cost of this kind of adjustments
depends on the automation tool and on the SUT. In most of the cases, it is necessary
to adjust the management of cookies and session variables (because in dynamic
systems, the values cannot be simply used as they were obtained during the recording,
because they should be unique or according to other restrictions). Adjustment of the
parameters in the header and in the body will also be required.

14

From our experience in performance testing for more than 8 years, the scripting
phase takes between 30% and 50% of the total effort of a performance testing project.
On the other hand, the maintenance of these scripts (when the SUT changes) tends to
be so complex that it is better to rebuild a script from scratch instead of trying to
adjust it. Because of that, the process becomes pragmatically inflexible. The test
generally will identify improvement opportunities, which imply modification on the
system; however, our scripts will stop working if we change the system. How can we
verify that the changes take a positive effect?

3 Automatic Generation of Performance Tests Scripts

The methodology proposed extends only the automation phase of the process
presented in Vázquez et al. [3]. Instead of building the performance test scripts from
scratch, the user has to provide a set of functional test scripts. As shown in Error!
Reference source not found., the tool will build a model of the HTTP traffic
captured from the execution of each of these scripts. The model is the entry of the tool
that generates the script code for the preferred load testing tool.

Fig. 3. Scripts generation proposal for performance tests.

The tool executes Selenium and WatiN scripts, but it can be easily extended for
more automated testing tools. During the execution of the functional test scripts, it
captures the HTTP traffic between the browser and the SUT with an HTTP sniffer (a
tool capable to capture network traffic) called Fiddler (fiddler2.com). With this
information it builds a model that is used to generate the scripts for OpenSTA. Also, it
is easily extensible to generate scripts for different performance testing tools.

Fig. shows the main elements of the HTTP traffic model, which is useful to
generate the performance test scripts. This model is built using the information
obtained by the sniffer (all the HTTP requests and responses) and by the functional
test script, correlating the user actions with the corresponding HTTP traffic. It is
therefore composed of an ordered sequence of actions, including invocations to the
application through HTTP (requests), or validations on the response to verify that it is

15

as expected. Each HTTP request is composed of a header and a message body. Both
parts of the message are composed of parameters with their corresponding values. The
header also has a set of fields that include, among others, cookies and session data.
Each value can be hardcoded or can be taken from a data pool. It is important to keep
the references between each HTTP request and its response, and with the
corresponding functional test script command that generated it.

Fig. 4. HTTP session metamodel.

This model is used to generate code according to the language provided by the
load generation tool. The generated code is specifically for OpenSTA. To perform
this code generation the tool has an approach similar to the one proposed in model-
driven environments for the model-to-text transformations [5], where the code
generation is defined with code templates for each element of the model. Table 1
includes some examples of those templates; the first one is for the general structure of
the script, used for each test case of the model, and the second one corresponds to an
HTTP request, according to the specification of the HTTP protocol.

Table 1. Templates for scripts generation.

[template public generateScript(s: Session)]
[file (s.testcase_name().concat('.scl'), false, 'UTF‐8')]
Definitions
 Timer T_TestCase_[s.testcase_name/]
 [s.variableDeclarations()/]
 CONSTANT DEFAULT_HEADERS = "Host: [s.getBaseURL()/]
 User‐Agent: Mozilla/4.0"
Code
 Entry USER_AGENT,USE_PAGE_TIMERS
 Start Timer T_TestCase_[s.testcase_name/]
 [s.processActions()/]
 End Timer T_TestCase_[s.testcase_name/]
Exit
[/file]
[/template]
[template public processRequest(r: Request)]
Start Timer [r.name/]
[if ([r.isPrimary/])]PRIMARY [/if] [r.header.method/] URI [r.header.url/]
HTTP/1.1" ON [r.header.connection_id/] &
 HEADER DEFAULT_HEADERS, WITH [r.header.processFields()/]}
 [r.processBody()/]
[r.response.processLoadCookies()/]
End Timer [r.name/]
[/template]

16

As mentioned, after the recording the resulting script must be adjusted. Many of
them are very repetitive tasks. Our tool makes this kind of things automatically, using
the templates mechanism. Some of them are:

 Adding timers to each user action in order to measure the response time when
executing the test scenarios, considering the kind of actions performed in the
functional test script and the corresponding HTTP requests for each one.

 Taking advantage of different design aspects of the functional test script, in the
performance test scripts: (1) the data are taken from the same data pools; (2) the
same validations are performed; (3) same structure and modularization in different
files promoting the readability of the test script.

By this way we get scripts even better than when recording them with the OpenSTA
recorder. The more we use the tool, the more improvements and automatic
adjustments we add to the scripts, avoiding that the tester commits mistakes during
the preparation of the performance test.

Once the scripts are finished, the effort can be invested in the most important part
(and the most interesting and beneficial) of a performance testing project which is the
execution of the load scenario and the system’s behavior analysis.

4 First Experiences in the Industrial Usage of the Tool

The tool has been used in five different projects within the services offered by the
Uruguayan company Abstracta, where the tool has been developed. There were two
testers working in all the projects, both with high knowledge about Selenium and
OpenSTA. The SUTs were web systems from different domains and on different
platforms, and very good results were obtained in all of them. Table 2 shows the
number of generated scripts for each project, and the amount of simulated virtual
users concurrently accessing to the SUT.

Table 2. Use of the tool in performance testing projects.

Project SUT # Scripts # VU
Human Resources System AS400 database, Java Web system on Websphere 14 317
Production Management
System

AS400 database, C# Web system on Internet
Information Services 5 55

Courts Management
System

Java Web system on Tomcat with Oracle database 5 144

Auction System Java Web system on Tomcat with MySQL database 1 2000
Logisitcs System Java Web system on Weblogic with Oracle database 9 117

It is important to highlight that there are cases with few scripts, like in the 4th row,
where only one script was required. That was defined based on the statistical analysis
about the normal use of the system, which revealed that the 80% of the load is
generated only with few use cases, perhaps with different flows internally represented
in each script. Also, each script was executed with big and varied data sets.

In some projects the SUT were developed with Model-driven Development tools
(particularly with GeneXus: genexus.com) which generates code from models with
high level of abstraction. This raises a special complication, because just small

17

modifications to the models could mean many modifications on the generated code
and therefore on the HTTP traffic. The process was the same as in the rest of the
systems that were tested: first it is necessary to adjust the functional test scripts to
regenerate the performance test scripts with our tool. It is in this kind of systems,
where the SUT suffers many modifications during the testing project, where our
approach reports the best benefits, because it was necessary to regenerate the scripts
several times, and this would have required a major effort if manually executed.

In one of the projects there were no previous functional test scripts, so it was
necessary to automate functional test scripts to use the tool. These functional test
scripts were developed by a user (without knowledge about regression testing) which
is almost impossible with any load generator. Once the project ended, the testing team
started to manage a regression testing environment, using the scripts that were
developed in the performance test project. In a certain way, the performance quality
control favored the functionality quality control.

To summarize, the case studies have shown promising results in the performance
testing, demonstrating that it can be made in a more flexible way and with less effort,
according with what the testers involved in the projects reported. These results are
also in line with the ones reported in the case study of [6].

5 Related Work

There are tools that, in order to ease the construction and maintenance of the
performance test scripts, work at a graphic user interface, using Selenium scripts to
execute load tests. The limitation of this approach comes from the fact that using PCs
is probably not enough to simulate the typical number of users of a load test. These
tools typically execute the tests scenarios from the Cloud, or with huge
infrastructures. Some examples are Scaleborn (www.scaleborn.com) and Test Maker
(www.pushtotest.com). With our approach instead, the number of required machines
is kept low, being in that way a cheaper alternative, and obtaining the same results.

As far as we know, there are few proposals to generate performance tests. Some
propose to design models as the basis of the performance test scripts generation, as in
the one published by García-Domínguez et al. [7], which points to performance
testing of workflows systems invoking Web Services. There are also some proposals
to use stereotyped UML models, such as [8–10], or even others that extend a UML
design tool to generate a complete set of performance test artifacts from the modeled
diagrams [11]. The main disadvantage of these proposals is that a big effort is
required to design the input artifacts for the generator. Last but not least, we would
like to highlight the article of de Sousa et al. [6] where an approach similar to ours is
proposed, taking advantage of the functional test scripts to generate performance test
scripts. We observe two important limitations with this approach: on the one hand, as
they do not consider the HTTP traffic (they only use the functional test script as
input), it is impossible to generate the secondary requests and the primary requests
coming from redirects that the SUT is doing, and on the other hand, it is not
considering any javascript modification on the requests; therefore, the resulting
simulation is not faithful to the real users load.

18

6 Conclusions and Future Work

Performance testing is needed to reduce risk in the going live process of any system,
but, as it is expensive and resource demanding, it is typically made in a poor or
incomplete way, or the results come too late. The most demanding task is the
automation of the functionalities to be tested, taking part of the time that could be
used to execute tests and analyze how to improve the system.

Taking this into account, this article presented a tool to generate performance test
scripts in a cheaper way, taking advantage of the functional test scripts. This not only
gives major flexibility when adjusting test scripts according to the changes and
improvements performed on the application (that are always performed during any
performance testing project), but it also helps generating better scripts, with better
quality, in less time and with less effort.

The tool from this approach has being used in different projects to test the
performance of a variety of systems, demonstrating the benefits of the proposal.

We plan to extend the performance test script generation to different load
generators, like JMeter, which supports different communication protocols, allowing
the execution of tests against systems that are accessed by different interfaces (HTTP,
SOAP, FTP), and managing the test centralized in one single tool.

Acknowledgements

This work has been partially funded by Agencia Nacional de Investigación e
Innovación (ANII, Uruguay) and by the GEODAS-BC project (TIN2012-37493-C03-
01). We would also like to express our special acknowledgement to Abstracta team.

References

1. Graham, D., Fewster, M.: Experiences of Test Automation: Case Studies of Software Test
Automation. Addison-Wesley Professional (2012).

2. Meier, J., Farre, C., Bansode, P., Barber, S., Rea, D.: Performance testing guidance for web
applications: patterns & practices. Microsoft Press (2007).

3. Vázquez, G., Reina, M., Toledo, F., de Uvarow, S., Greisin, E., López, H.: Metodología de
Pruebas de Performance. Presented at the JCC (2008).

4. Barber, S.: User Experience, not Metrics. (2001).
5. OMG: MOF Model to Text Transformation Language (MOFM2T), 1.0. (2008).
6. Santos, I. de S., Santos, A.R., Neto, P. de A. dos S.: Reusing Functional Testing in order to

Decrease Performance and Stress Testing Costs. SEKE. pp. 470–474 (2011).
7. García-Domínguez, A., Medina-Bulo, I., Marcos-Bárcena, M.: Performance Test Case

Generation for Java and WSDL-based Web Services from MARTE. Advances in Internet
Technology. 5, 173–185 (2012).

8. Garousi, V., Briand, L.C., Labiche, Y.: Traffic-aware stress testing of distributed systems
based on UML models. ICSE. pp. 391–400. ACM, New York, NY, USA (2006).

9. Shams, M., Krishnamurthy, D., Far, B.: A model-based approach for testing the
performance of web applications. Presented at the SOQUA (2006).

19

10. Da Silveira, M., Rodrigues, E., Zorzo, A., Costa, L., Vieira, H., Oliveira, F.: Generation of
Scripts for Performance Testing Based on UML Models. SEKE. pp. 258–263 (2011).

11. Cai, Y., Grundy, J., Hosking, J.: Experiences Integrating and Scaling a Performance Test
Bed Generator with an Open Source CASE Tool. Presented at the ASE (2004).

20

