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Abstract: Particle swarm optimization (PSO) algorithm is a successful general problem solver, thanks to its 
computationally inexpensive mechanisms. On the other hand, snake model is a specialized image processing 
algorithm widely used in applications such as boundary delineation, image segmentation, and object 
tracking. In this paper we discuss the suitability of a hybrid PSO/Snake algorithm for determining the 
differential rotation of the Sun’s coronal bright points. In the Snake/PSO hybrid algorithm each particle in 
the population represents only a portion of the solution and the whole population altogether will converge to 
the final complete solution. In this model a one-to-one relation between Snake model snaxels and PSO 
particles have been created and PSO’s evolution equations have been modified with snake model concepts. 
This hybrid model is tested for tracking the coronal bright points (CBPs) along time, on a set of full-disc 
solar images obtained with the Atmospheric Imaging Assembly (AIA) instrument, onboard the Solar 
Dynamics Observatory (SDO) satellite. The algorithm results are then used for determining the differential 
rotation of CBPs. These final results are compared with those already reported in the literature, to assess the 
versatility of the PSO/Snake hybrid approach. 

1 INTRODUCTION 

Particle swarm optimization (PSO), first introduced 
by (Kennedy and Eberhart, 1995), has become very 
popular as a general search strategy. It is 
computationally inexpensive to implement and yet it 
demonstrates a fast and reasonable performance. It is 
a stochastic algorithm based on the analogy of 
collective behavior of birds´ swarms. PSO consists 
of a population of particles, each similar to a bird 
searching for the best place to find food. Each 
particle in PSO is a candidate solution. In PSO, 
particles are governed under their cognitive and 
social behaviors. These mechanisms make it 
possible for particles to communicate and diffuse 
their experience of explored space, and finally 
converge towards the optimum of search space, 
which is the solution to the formulated problem.  

Image segmentation is one of the frequently 
addressed issues in digital image processing. 
Deformable contour was first used for object 
boundary delineation in the late 80s and its 
variations have been popular approaches ever since. 
Kass et al (1988) introduced a new kind of 
deformable contour called active contour model 

(ACM), which deforms contours to lock onto 
features of interest within an image. Active contour 
model is also known as snake model, since the 
evolution of contour resembles snakes crawling. 
Snakes are widely used as an interesting approach in 
many applications, including image segmentation, 
stereo matching and object tracking (Ballerini and 
Bocchi 2003; Tsechpenakis et al., 2004; Kass et al., 
1988). 

Snake model is an energy minimization 
algorithm induced not only by low level image 
features such as image gradient or image intensity, 
but also with higher level information such as object 
shape, continuity of the contour and user interaction. 
Given an approximation of the object boundary, the 
snake model will be able to find the precise 
boundary of that object (Ballerini 1999; Ballerini 
and Bocchi, 2003).  Snake model is in essence an 
optimization algorithm. Original snake model 
achieves this minimization by iteratively solving a 
pair of Euler equations on the discrete grid. 
Traditional active contour algorithms suffer from 
some limitations. One main drawback is the 
sensitivity of the initial contour; it must be within 
the vicinity of object boundary. An improper 
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initialization may lead the algorithm to fail. A 
solution to this problem is to expand the search 
domain or increase the capture range of image force 
to guide the contour evolution (Leroy et al., 1996; 
Park et al., 2001; Cohen and Cohen, 1993). Another 
limitation is that it can hardly converge on concave 
object boundaries (Bresson et al., 2007; Davatzikos 
and Prince, 1994). There are a number of other 
problems associated with classical active contours 
such as sensitivity to noise, convergence to local 
minima, parameter selection and instability (Amini 
et al., 1988; Bresson et al., 2007; Mun et al., 2004) . 
Several works addressed these problems but very 
few have produced satisfactory results. They either 
cannot address all the problems or if they can, they 
usually raise new drawbacks and impose further 
complexity and computational cost to the model. 
One successful approach is to minimize the snake 
energy by alternate strategies such as dynamic 
programming (Amini et al., 1988), greedy 
algorithms (Lam and Yan, 1994), genetic algorithms 
(Ballerini, 1999; Ballerini and Bocchi 2003; Mun et 
al., 2004) and swarm based optimization algorithms 
(Zeng and Zhou 2008; Nebti 2009; Tseng et al., 
2009; Li et al., 2009; Shahamatnia and Ebadzadeh, 
2011; Asl, 2006).  

PSO can be applied to drive control points on the 
snake, but particles must be prevented from 
convergence to the global best position experienced 
by the swarm. In the literature this is done by 
restraining the particle search space. (Tseng et al., 
2009; Li et al. 2009) use multi-population PSO in 
which each control point is confined to a sub-swarm 
spatially distinct from other sub-swarms. In 
(Ballerini, 1999; Nebti, 2009), polar coordinate 
system is used to restrict the search space of each 
contour control point. In (Zeng and Zhou, 2008) an 
iterative method has been used to rank the best 
position set of particles at each epoch and according 
to some equations prevent particles from 
intersecting.  

Most of the aforementioned methods act only as 
a general problem solver and take the approach of 
formulating the snake model calculations as a 
minimization problem and then just solving this 
optimization problem. In this paper, we take the 
hybrid PSO/Snake approach introduced in 
(Shahamatnia and Ebadzadeh, 2011) and show its 
versatility by further extending it to solve a real 
world problem from astrophysics domain. The 
method presented here customizes PSO algorithm to 
overcome snake model drawbacks including snake 
initialization, concave boundaries, sensitivity to 
noise and local minima. Yet, the simple structure of 

PSO is preserved yielding to an algorithm with low 
order of complexity and hence good processing 
time. These factors are of utmost importance for 
precisely calculating the differential rotation of solar 
features. 

Specifying the exact nature of the differential 
rotation of both the solar surface and the solar 
interior is a very important issue of solar physics. 
The solar surface rotates differentially. However, the 
differential rotation (DR) mechanism, most likely 
caused by interactions between convection and 
overall rotation, is not exactly known. DR plays an 
important role in generating solar activity (SA) – 
every manifestation of SA is related to changes in 
the local magnetic field and local changes of the 
differential rotation. Rotational irregularities may 
also serve as indicators of hypothetical processes, 
going on beneath the solar surface. One example 
could be the location of a layer where rotational 
speed changes abruptly (the so-called jet stream). 
Sometimes it is called a layer of torsional oscillation 
(Ulrich and Boyden, 2005). The location of this 
layer (its heliographic latitude) is likely related with 
a phase of the solar activity cycle, therefore it would 
be rather useful to have a tool for regular 
determination of its location. During a series of 
consecutive days or within an interval of a few days, 
we plan also to trace a location of a jet stream in 
images obtained by the Atmospheric Imaging 
Assembly (AIA) instrument on board the space 
Solar Dynamics Observatory (SDO).  

Coronal bright points (CBPs) or bright points, 
are small and bright structures observed in the 
extreme ultraviolet (EUV) and the X-ray part of the 
solar spectrum (Brajsa et al., 2001). They are known 
to have a mean lifetime of about 8 hours, a typical 
maximum area of 2×108 Km2, but still they look like 
a tiny shape on the solar images. Figure 1 illustrates 
several CBPs. Bright points are associated with 
bipolar magnetic features and a large quantity of 
them (several thousands) emerge over the surface of 
the Sun per day and thereby in total they bring up 
huge magnetic fluxes. Precisely tracking the coronal 
bright points over extended periods of time will help 
solar physicists and space weather scientists to better 
understand this important solar feature. Such 
automatic tools will allow solar researchers to 
precisely process large amount of solar data and 
hence improve solar models. The aim of this paper is 
to present the result of applying a hybrid PSO/Snake 
algorithm for tracking coronal bright points. The 
result of tracking is then used for calculating the 
differential rotation of coronal bright points. Further, 
the result of PSO/Snake hybrid algorithm is cross 
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referenced with a state of the art study which entails 
manual procedure done by an expert (Lorenc et al., 
2012). 

 

Figure 1: A sample solar image with several CBPs 
marked. (Image courtesy of NASAS/DO). 

The rest of this paper is organized as follows: Snake 
model, PSO, and PSO/Snake algorithms are 
reviewed in section 2. Section 3 provides the 
experimental results and discussions. Finally, 
conclusions are provided in section 4.  

2 PSO/SNAKE HYBRID 
ALGORITHM 

The hybrid algorithm is a merge of the snake model 
and PSO. It integrates the active contour evolving 
paradigms with PSO dynamics. Snake model also 
known as Active Contour Model, is an energy 
minimization algorithm which takes into account 
both low level image features such as image gradient 
or image intensity and higher level information such 
as object shape, continuity of the contour and user 
interaction (Kass et al., 1988). After that 
whereabouts of the Region Of Interest (ROI) is 
approximated, the snake model will be able to find 
the precise boundary of that object. Due to their 
flexibility snakes are widely used in several 
applications such as image segmentation, shape 
modeling, stereo matching and object tracking  (Niu, 
2006; Ballerini and Bocchi, 2003; Wildenauer et al., 
2006; Karlsson et al., 2003). 

In our model, contour or snake has an energy 
associated with it, which correlates with the location 

of the snake in the image and its geometrical 
characteristics. The idea is to minimize the integral 
measure which represents the total snake energy, by 
evolving the snake over time. Original snake model 
achieves this minimization by iteratively solving a 
pair of Euler equations on the discrete grid, resulting 
in a computationally expensive algorithm (Karlsson 
et al., 2003).  Two main approaches for snake 
presentation are Geometric and Parametric 
representations. Geometric models use an implicit 
presentation based on the curve evolution theory and 
are usually implemented with level-set techniques. 
Effectively handling multiple objects and topology 
alteration is the advantage of this approach, with the 
cost of being computationally more complex. On the 
other hand, the parametric approach is 
computationally efficient and easy to interact with 
users (Horng et al., 2010). In the parametric 
implementations, snake is defined as curve p(s) = 
(x(s),y(s)), having arc length s. As it is shown in 
equation (1), a number of discrete points called 
control points or snaxels characterize the snake 
(Kass et al., 1988). PSO/Snake hybrid uses this 
presentation since it well matches the snaxels and 
particles. The parametric implementation is as 
follows:  

,ݏሺ݌ ሻݐ ൌ ൫ݔሺݏ, ,ሻݐ ,ݏሺݕ ݏ			,ሻ൯ݐ ∈ ሾ0,1ሿ (1)

where t is the time step. Total snake energy is the 
sum of its internal (spatial) and external 
(geometrical) integrals as shown in equation (2). In 
the PSO/Snake hybrid algorithm, the objective 
function calculates the total snake energy. Since in 
this implementation the whole population altogether 
represents one candidate solution to the problem, the 
objective is to find the contour with the least total 
snake energy. The lesser the total snake energy, the 
better it matches the ROI or moves towards it. 

݁݇ܽ݊ݏܧ ൌ ׬ ݏሻ൯݀ݏሺ݌൫ݐ݊݅ܧ
1

0
൅ ׬ ݏሻ൯݀ݏሺ݌൫ݐݔ݁ܧ

1

0
 (2)

The snake model is considered to be a controlled 
continuity spline under the influence of internal and 
external forces, which induce the snake energy. 
Internal energy consists of two terms which are first 
and second derivatives of the snake with respect to s. 
First term coerces the spline to act like a membrane 
and the second term makes the snake act like a thin 
plate (Kass et al., 1988). The external energy 
determines the snake relationship to the image. It is 
formulated in a way that its local minima 
corresponds the image features of interest. Various 
external energies can be employed such as image 
intensity, image gradient, object size or shape. One 
common definition used for gray-level images is the 
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gradient of Gaussian.  
The leading part of PSO/Snake hybrid algorithm, 

is its PSO component. PSO is a population based 
evolutionary optimization algorithm. The population 
in the PSO is called swarm and consists of a number 
of particles; each potentially can be a solution to the 
optimization problem. Each particle has a position 
and a speed which are initialized with random 
values. Over a set of iterations, each particle’s 
position on the search space is updated by revising 
its velocity according to its best experience and also 
its neighbors’ experiences. Particle position and its 
corresponding fitness value are stored as personal 
best experience and form the cognitive aspect of 
particle evolution. Other aspect of the particle 
position update is called the social behavior and 
shows particles influence from its neighbors. The 
neighborhood can be defined with various 
topologies such as ring, star, Von Neumann and 
random. If the particle neighborhood is restricted to 
a subset of swarm it is called local best (lbest) PSO, 
while if the neighborhood equals whole swarm it is 
called global best (gbest) PSO. PSO/Snake hybrid 
used lbest with ring structure and radius of 3. The 
following equations show the dynamics of the 
canonical PSO algorithm for updating particle 
velocity and position:   

ݐ௜ሺݒ ൅ 1ሻ ൌ ߱ሺݐሻݒ௜ሺݐሻ ൅ ܿଵݎଵ൫ݕ௜ሺݐሻ െ ሻ൯ݐ௜ሺݔ   

 																																											൅ܿଶݎଶ൫ݕො௜ሺݐሻ െ ሻ൯ݐ௜ሺݔ


ݐ௜ሺݔ ൅ 1ሻ ൌ ሻݐ௜ሺݔ ൅ ݐ௜ሺݒ ൅ 1ሻ (4)

Where xi(t) and vi(t) are position and velocity of i-th 
particle at time t, yi(t) and ŷi(t) denote the best 
positions discovered by the i-th particle and its 
neighborhood up to the time t, i.e. pbest and lbest 
respectively. (t) is the inertia weight which 
controls the impact of the previous velocity and 
prevents radical changes. Usually inertia weight is 
decreased dynamically during the run time to 
balance between exploration in the early iterations 
and exploitation in the later iterations.  Coefficients 
r1 and r2 are random numbers. Weights of cognitive 
and social aspects of the algorithm are represented 
by acceleration factors c1 and c2 respectively. As it 
is shown in (Van den Bergh, 2002) regulated values 
for inertia and acceleration weights can be used to 
achieve guaranteed convergence.  

The PSO/Snake hybrid algorithm integrates the 
snake model mechanisms with PSO dynamics.  

While most of swarm intelligence approaches in 
the literature used in conjunction with snake model 
try to optimize the snake model equations, 
PSO/Snake hybrid does not employ PSO algorithm 

only as a general problem solver to optimize snake 
energy minimization, but it also customizes the 
standard PSO to better solve this specific type of 
image processing problems. Early experiments on 
medical image segmentation (Shahamatnia & 
Ebadzadeh 2011) and sunspot tracking (Shahamatnia 
et al. 2012) reported promising results. The hybrid 
model helps to overcome the major drawbacks of 
traditional snakes; initialization and poor 
convergence to the boundary concavities, while 
benefitting from PSO robustness and simplicity. In 
the Hybrid PSO/Snake model we use a population of 
particles where each particle is a snaxel of the 
contour. All particles together form the contour and 
hence the population is the final solution. As the 
algorithm runs, each particle updates its position and 
its velocity according to its personal best experience, 
local best experience, and also according to the 
internal force of the snake and external force of the 
image. This gives the PSO/Snake dynamics a wider 
range of informative guides to update the particle 
position so that it converges to the ROI.   

PSO/Snake hybrid explores the search space 
according to PSO trajectory disciplines. This 
eliminates the need to have a separate searching 
window around each particle as many swarm based 
snake optimization algorithms do (Nebti 2009; 
Horng et al. 2010; Tseng et al. 2009) . These 
methods consider a searching window around each 
particle and evaluate every position inside that 
window to determine the snaxels’ next position. 
Since this local search is performed for each particle 
per iteration, it is a computationally expensive 
operation that is avoided in the PSO/hybrid model. 
The velocity update equation in PSO/Snake is as 
follows: 

 

ݐ௜ሺݒ ൅ 1ሻ ൌ  ሻݐ௜ሺݒ	߱

൅ܿଵݎଵ൫ݐݏܾ݁݌௜ሺݐሻ െ  ሻ൯ݐ௜ሺݔ
 

൅ܿଶݎଶ൫݈ܾ݁ݐݏ௜ሺݐሻ െ 	ሻ൯ݐ௜ሺݔ

൅ܿଷݎଷ൫̅ݔሺݐሻ െ  ሻ൯ݐ௜ሺݔ
 

൅ܿସሺ݂.  ௜ሻ݁݃ܽ݉ܫ

(5)

where pbesti(t) and lbesti(t) are personal best 
velocity and local best velocity terms respectively. 
x̄(t) is the average of positions at time step t, 
approximating center of mass of particles. This term 
pushes the snake to contract or expand with respect 
to the sign of its weighting factor, r3. This term 
speeds up the algorithm and is particularly useful 
when the snake is stagnated and there is no other 
compelling force. If the snake is initialized far from 
the ROI, this term allows the snake to either expand 
or shrink towards the ROI and hence it increases the  
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Figure 2: Red circle denotes the initial snake around a 
CBP on the first image (16 June 2010). 

 

Figure 3: Detection and tracking process of the selected 
CBP (16 June 2010). In this figure the evolution of the 
snake to detect CBP boundaries can be seen. 

convergence rate and speed. f.Imagei is the 
normalized image force corresponding to external 
energy from snake model principles. For particle i, 
f.Imagei gives the image force at the position 
specified by that particle. Image force can be any 
arbitrary function depending on the application, but 
generally external energies such as image gradient 
and gradient of Gaussian functional are enough for 
satisfactory performance. It must also be noted that 
image force does not vary by time and it is 
calculated only once for an image pixel. c4 is the 
weighting factor to control the effect of image force. 
Inertia weight, , is taken to be a relatively small 
constant and r1, r2 and r3 denote random numbers. 

Coefficients c1, c2, c3 and c4 are determined 
dynamically in a way that if there is a higher image 
force c4 always gets a higher value. It ensures that if 
a snaxel is next to the object boundary, it will latch 
to the object of interest. The whole process can be 
summarized as: 

Step 1. Initialization. A pre-processing of images 
is done if required, i.e. normalizing the size of 
images, correcting the orientation and contrast of 
images, etc. 

Step 2. Initial Contour. The ROI is chosen by the 
operator. This is the initial snake. For most cases a 
rough estimation of the initial contour is enough. 
This step is done only once when the coronal bright 
point appears.  

Step 3. Internal parameters set-up. The weight 
parameters for the PSO/Snake hybrid algorithm are 
initialized in this step. 

Step 4. Snake force calculation. The external 
force (image force) is calculated, once for every 
image.  

Step 5. Calculation of social and cognitive parts. 
In this step we update the pbest value (the best 
velocity the snaxel ever experienced) and the lbest 
value as average of velocities of neighboring 
particles. 

Step 6. Moving snaxels. For each snaxel its 
velocity is evaluated and then each snaxel velocity 
and position are updated. 

Step 7. Snake detection. This step checks the 
convergence of snake contour to the coronal bright 
point outline, i.e. choosing the snake with the lowest 
total energy calculated. If the results are not 
satisfactory, algorithm goes back to step 5. The 
outcome of this step is the CBP contour for an image 
frame. 

Step 8. Tracking CBPs. This step tracks the same 
CBP in the next image by feeding the subsequent 
image frame to the system as input. The algorithm 
loops back to step 4, and passes the specifications of 
the detected SBP. 

Step 9. Stopping tracking. Tracking a CBP stops 
when it reaches the solar limb and disappears into 
the other side of the Sun, or when the CBP shrinks 
to a size smaller than a predefined threshold, 
according to the size and resolution of image. 

3 RESULTS AND DISCUSSIONS  

Our benchmark data are corona images at 9.4 nm. 
This line is emitted by the FeXVIII ion. We have 
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used selected JPEG images taken between 14 
September 2010 and 20 October 2010 downloaded 
from a freely accessible database at internet site 
http://sdo.gsfc.nasa.gov/ data/aiahmi/ browse.php. 
256 gray levels per pixel and image force is 
calculated by a gradient of Gaussian functional with 
=3. Images are resized  to  512x512 resolutions.  In 

 

Figure 4: Initial snake on first image (top panel, 16 June 
2010) and tracking process of the selected CBP during 
time (middle and bottom panels). The cyan contour is the 
boundary of tracked CBP, red square is the experts manual 
CBP positioning result and the yellow circle is the 
PSO/Snake hybrid algorithms automated tracking result 
for CBP’s center of mass. 

this automated process, the CBP to be tracked is 
chosen by an operator. For test purposes we’ve 
chosen the same CBPs for which we have the 
benchmark data available from the expert’s manual 
CBP positioning. It should be noted that in the 
automated process, after that each CBP is chosen 
(only once), the tracking process is automatic during 

life span of that CBP. Figure 2 shows a screen shot 
PSO/Snake hybrid algorithm tracking tool for a test 
image. The red circle is the initial snake around a 
CBP chosen by an operator. Figure 3 shows how the 
initial snake is evolved under PSO/Snake algorithm 
and the CBP boundary is detected. After CBP is 
detected, its characteristics including the 
heliographic coordinates of its center of mass are 
calculated and are stored. Then the next frame in the 
sequence is fed into the system. Detected CBP 
contour from previous frame is used as a baseline to 
automatically track the CBP in the new frame. 
Figure 4 shows a closer look on a tracked CBP. The 
results show that due to the dynamic nature of 
PSO/Snake hybrid algorithm, detected contours are 
flexible and can conform to the changes in shape and 
size of the deformable objects like CBPs. 

Altogether we have observed motion of 69 more-
or-less point-like structures in 674 images (4998 
measurements). In manual procedure (Lorenc et al. 
2012), the CBP structures were observed directly on 
a PC monitor in an interactive session. Figure 5 
shows latitudinal dependence of sidereal angular 
speed of coronal rotation obtained in this study in 
comparison  with other authors.  Further  details  can 

 
Figure 5: Derived values of the rotational speed with error 
bars showing the 95% confidence level intervals for 
individual point-like structures. The dotted curve shows 
the fit to the mean ߱(b) values as a function of latitude b. 
Over-plotted are the results of  Howard and Harvey 
(1970), in solid line and Hara (2009) and Brajsa et al. 
(2004) both in the dashed-dotted curve because they are 
almost identical. 

be found in (Lorenc et al., 2012). In that paper, an 
expert operator manually determines the 4998 CBPs 
positions. Then, we run our PSO/Snake hybrid 
algorithm on the images. Input images are converted 
to grayscale color map with  
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To compare the precision of the algorithm, we 
used several parameters that were reported in 
(Lorenc et al., 2012). In that paper, after an expert 
manually determined positions of CBPs on the solar 
images, the following measurements were calculated 
(reported in Table 1 of the referenced paper): 
angular rotation velocity denoted by ߱, and 
measurement error at 95% confidence level denoted 
by Δ߱. Tables 1 and 2 show the result obtained with 
manual CBP tracking and result obtained by 
PSO/Snake hybrid algorithm for some structures. In 
these tables, the structure is the identifier of CBP, b 
is the heliographic latitude of CBP. ߱E  is the orbital 
angular rotation velocity of the Earth which can be 
looked up from solar almanacs. Figure 6 illustrates 
the difference between our calculated values and the 
benchmark values for all 69 CBPs.  

Table 2 and Figure 6 show that the obtained 
results are very close to the result of manual CBP 
tracking.   Computed   angular   rotation   velocity  is 

Table 1: Results reported in (Lorenc et al., 2012). 

Structure n B ࣓ ઢ࣓ ࣓ࡱ 
xy0510.01 86 66.7 10.295 ±0.327 0.986 
xy0510.03 86 20.5 14.586 ±0.099 0.986 

xy0510.04 86 -
33.8 13.648 ±0.209 0.986 

xy0510.07 86 27.8 14.478 ±0.116 0.986 

Table 2: Results obtained by PSO/Snake hybrid algorithm. 

Structure n b ࣓ ઢ࣓ ࣓ࡱ 

xy0510.01 
8
6 

67.103 11.213 ±0.642 0.985 

xy0510.03 
8
6 

21.057 14.387 ±0.303 0.9 

xy0510.04 
8
6 

-32.27 13.803 ±0.342 0.985 

xy0510.07 
8
6 

28.170 15.112 ±0.439 0.985 

 
Figure 6: Deviation of PSO/Snake hybrid result from 
benchmark data. The differences in  b, ߱, Δ߱, and ߱E are 
presented with blue, cyan, red and green lines. 

within ±0.2 of the benchmark data most of the time. 
However, it should be noted that part of this 
deviation is due to code implementation differences, 
which, in precise calculations, impose a minute 
variation. It is also worth mentioning, that in several 
cases, results displayed bigger differences, and by 
further investigation by a solar physicist expert (co-
author), we found out that PSO/Snake hybrid 
algorithm behaves consistently and the user-error is 
the main cause. 

4 CONCLUSIONS 

In this paper the PSO/Snake hybrid algorithm has 
been used to solve a real solar physic/space weather 
problem. By tracking CBPs over time, the angular 
rotational velocity in the Sun can be automatically 
calculated.  

Based on the results analysis and comparison 
with a manual method the obtained values of 
rotational speed are reliable. We also observed that 
the manual method is laborious and with a large 
number of images becomes unworkable for practical 
reasons. Therefore, we developed an automatic 
image-processing tool (with a hybrid Snake/PSO 
algorithm) capable of providing the same precision. 
Here we discussed the suitability of using a 
computer aided tool for tracking coronal bright 
points, which includes a combined optimization 
process, based on a Snake model and the PSO 
evolutionary algorithm. 

The combination of PSO dynamics with snake 
model kinematics makes it possible to successfully 
overcome active contour difficulties, while 
preserving the simplicity of PSO. By adding two 
new terms to the PSO velocity update equations, 
PSO/Snake model still can evolve even if some of 
the components are missing or misleading. The 
PSO/Snake model can be used for different 
applications in image processing for object 
detection, image segmentation or tracking. It is 
especially suitable for object tracking, since the 
particle/snaxels have embedded velocity 
information, which adapts itself to the movement of 
the object in the images.  
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