
données industrielles à l’aide du datamining – 
Perspectives. 9
ème
 colloque national AIP PRIMECA. 
Breiman, L., 1996. Bagging predictors. Machine Learning, 
24, 2, 123-140. 
Cybenko, G., 1989. Approximation by superposition of a 
sigmoïdal function. Math. Control Systems Signals, 2, 
4, 303-314. 
Dai, Q., 2013. A competitive ensemble pruning approach 
based on cross-validation technique. Knowledge-
Based Systems. 37, 394-414. 
Engelbrecht, A. P., 2001. A new pruning heurisitc based 
on variance analysis of sensitivity information. IEEE 
trasanctions on Neural Networks, 1386-1399. 
Funahashi, K., 1989. On the approximate realisation of 
continuous mapping by neural networks. Neural 
Networks, 2, 183-192.  
Guo, L., Boukir, S., 2013. Margin-based ordered 
aggregation for ensemble pruning. Pattern 
Recognition Letters, 34, 603-609. 
Hajek, P., Olej, V., 2010. Municipal revenue prediction by 
ensembles of neural networks and support vector 
machines.  WSEAS Transactions on Computers, 9, 
1255-1264. 
Hansen, L. K., Salomon, P., 1990. Neural network 
ensembles.  IEEE Transactions on Pattern Analysis 
and Machine Intelligence. 12, 10, 993-1001. 
Hernandez-Lobato, D., Martinez-Munoz, G., Suarez, A., 
2013. How large should ensembles of classifiers be? 
Pattern Recognition. 46, 1323-1336. 
Ho, T., 1998. The random subspace method for 
constructing decision forests. IEEE Transactions on 
Pattern Analysis and Machine Intelligence. 20, 8, 832-
844. 
Ishikawa, K., 1986. Guide to quality control. Asian 
Productivity Organization. 
Kuncheva, L. I., 2002. Switching between selection and 
fusion in combining classifiers: An experiment. IEEE 
Transactions on Systems, Man and Cybernetics, part 
B: Cybernetics. 32, 2, 146-156. 
Kuncheva, L. I., 2004. Combining pattern classifiers: 
Methods and algorithms. Wiley-Intersciences. 
Kuncheva, L. I., Whitaker, C. J., Shipp, C. A., 2003. 
Limits on the majority vote accuracy in classifier 
fusion. Pattern Analysis and Applications. 6, 22-31. 
Kusiak, A., 2001. Rough set theory: a data mining tool for 
semiconductor manufacturing. Electronics Packaging 
Manufacturing, IEEE Transactions on, 24, 44-50. 
Ma, L., Khorasani, K., 2004. New training strategies for 
constructive neural networks with application to 
regression problems. Neural Network, 589-609. 
Meyer, D., Leisch, F., Hornik, K., 2003. The support 
vector machine under test. Neurocomputing, 55, 169-
186. 
Nguyen, D., Widrow, B., 1990. Improving the learning 
speed of 2-layer neural networks by choosing initial 
values of the adaptative weights. Proc. of the Int. Joint 
Conference on Neural Networks IJCNN'90, 3, 21-26.  
Paliwal, M., Kumar, U. A., 2009. Neural networks and 
statistical techniques: A review of applications. Expert 
Systems with Applications, 36, 2-17. 
Patel, M. C., Panchal, M., 2012. A review on ensemble of 
diverse artificial neural networks. Int. J. of Advanced 
Research in Computer Engineering and Technology, 
1, 10, 63-70. 
Ruta, D., Gabrys, B., 2005. Classifier selection for 
majority voting. Information Fusion. 6, 63-81. 
Setiono, R., Leow, W.K., 2000. Pruned neural networks 
for regression. 6th Pacific RIM Int. Conf. on Artificial 
Intelligence PRICAI’00, Melbourne, Australia, 500-
509. 
Thomas, P., Bloch, G., 1997. Initialization of one hidden 
layer feedforward neural networks for non-linear 
system identification. 15
th
 IMACS World Congress on 
Scientific Computation, Modelling and Applied 
Mathematics WC'97, 4, 295-300. 
Thomas, P., Bloch, G., Sirou, F., Eustache, V., 1999. 
Neural modeling of an induction furnace using robust 
learning criteria. J. of Integrated Computer Aided 
Engineering, 6, 1, 5-23. 
Thomas, P., Thomas, A., 2008. Elagage d'un perceptron 
multicouches : utilisation de l'analyse de la variance de 
la sensibilité des paramètres. 5
ème
 Conférence 
Internationale Francophone d'Automatique CIFA'08. 
Bucarest, Roumanie. 
Thomas, P., Thomas, A., 2009. How deals with discrete 
data for the reduction of simulation models using 
neural network. 13
th
 IFAC Symp. On Information 
Control Problems in Manufacturing INCOM’09, 
Moscow, Russia, june3-5, 1177-1182. 
Tsoumakas, G., Patalas, I., Vlahavas, I., 2009. An 
ensemble pruning primer. in  Applications of 
supervised and unsupervised ensemble methods O. 
Okun, G. Valentini Ed. Studies in Computational 
Intelligence, Springer. 
Vollmann, T. E., Berry, W.L. and Whybark, C. D., 1984. 
Manufacturing Planning and Control Systems, Dow 
Jones-Irwin. 
IJCCI2013-InternationalJointConferenceonComputationalIntelligence
522