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Abstract: An algorithm that can automatically identify slow eye movements from the electro-oculogram is presented. 
The automatic procedure is trained using the visual classification of an expert scorer. The algorithm makes 
use of both the spectral and morphological signal information to detect single slow eye movements. On the 
basis of this detection some parameters that characterize the slow eye movements (amplitude, duration, 
velocity and number) are extracted. A few possible applications of the algorithm are shown by means of a 
preliminary study: the average patterns of slow eye movements parameters at sleep onset are evaluated for 
healthy volunteers and for patients affected by obstructive sleep apnea syndrome. Finally, general 
considerations are drawn regarding the clinical interest of the study. 

1 INTRODUCTION 

Eye movements – controlled by a wide neural 
network involving the cerebellum, brain stem and 
cerebral cortex – may convey important information 
on the state and activity of the central nervous 
system. Eye movements vary from wakefulness to 
sleep and during the different sleep stages. Since 
1968, with the recommendation for visual sleep 
scoring (Rechtschaffen and Kales, 1968), inspection 
of eye movements in electro-oculogram (EOG) is 
routinely performed in clinical polysomnography 
(PSG) to increase the accuracy and reliability of 
sleep stage categorization. 

In this work we focus on slow eye movements 
(SEMs), which are pendular, predominantly 
horizontal eye movements (Aserinsky and Kleitman, 
1955); (Värri et al., 1996). SEMs are characteristic 
of drowsy wakefulness and light sleep (stages 1 and 
2), and occur at the beginning and end of sleep 
(Aserinsky and Kleitman, 1955). In recent years, 
rising attention has been devoted to SEMs. First, 
SEM activity at sleep onset has been investigated in 
relation to other physiological and behavioural 
measures in order to shed light on the mechanisms 
underlying wake-sleep transition (Santamaria and 
Chiappa, 1987); (Ogilvie et al., 1988); (De Gennaro 

et al., 2000). Furthermore, several studies have 
specifically investigated SEMs with the aim of 
identifying early predictor of sleep onset to be used 
in clinical and occupational settings (Torsvall and 
Akerstedt, 1987); (Torsvall and Akerstedt, 1988); 
(Marzano et al., 2007). 

The growing interest in SEMs has led to 
development of various algorithms for automated 
SEMs detection in EOG, based on different 
techniques and with different aims. However, some 
of these algorithms do not identify single SEMs 
(Värri et al., 1995); (Virkkala et al., 2007); others 
identify single SEMs, but the validation procedure 
either exhibits moderate performance  (48% 
sensitivity) (Värri et al., 1996), or is not examined in 
depth (consisting only in the autodetection/visual 
scoring ratio) (Hiroshige, 1999); (Suzuki et al., 
2001), or is absent (Shin et al., 2011). Moreover, so 
far none of these studies has characterized SEMs in 
terms of their parameters (such as amplitude or 
duration) nor has investigated how SEMs parameters 
evolve across the sleep onset period. 

In recent years, we developed an automatic 
method for off-line detection of SEM activity in 
EOG. The method is based on the wavelet transform 
of two unipolar EOG channels; SEM activity is 
identified on the basis of EOG power redistribution 
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towards higher scales (i.e. lower frequencies) of 
wavelet decomposition (Magosso et al., 2006). The 
method was validated against visual scoring on both 
8 h and 24 h PSG recordings acquired in a 
laboratory setting (Magosso et al., 2006); (Magosso 
et al., 2007); (Magosso et al., 2009). The automatic 
method for detection of SEM activity was proven to 
perform reliably in detecting sleep onset in 
obstructive sleep apnea syndrome (OSAS) patients 
(Fabbri et al., 2009); (Fabbri et al., 2010). In a 
further study (Pizza et al., 2011), the algorithm was 
applied to quantify SEMs distribution during the 
different sleep stages and across the sleep cycle. 

Despite the promising applications of this 
method, it suffers from some drawbacks that may 
limit its future use. The main weakness is that the 
method was conceived, developed and trained to 
detect SEM activity periods – that may consist of an 
isolated SEM, a few consecutive SEMs or a long 
burst of consecutive SEMs – identifying the initial 
and final instants of each period, but without 
distinguishing the single eye movements within each 
SEM period. Hence, the method is not suitable to 
count the number of single SEMs, nor to extract 
parameters characterizing each single SEM. 

The aim of the present work is to present an 
advanced version of the algorithm that overcomes 
the previous limitations and a potential application 
with some preliminary results. In particular, the new 
version of the algorithm improves the previous one 
as to the following points: i) it allows the detection 
of single slow eye movements in the EOG, 
segmenting each identified SEM activity period into 
single movements; ii) more importantly, it is able to 
extract parameters characterizing each detected slow 
eye movement. 

The proposed algorithm, being able to extract 
and quantify the parameters of SEMs, may have 
important clinical implications. In particular, 
determination of SEMs parameters (number, 
amplitude, duration, velocity) and analysis of their 
evolution at the wake-sleep transition may be of 
value to characterize – by means of quantitative and 
objective measures – the process of falling asleep in 
normal, healthy sleepers. This may contribute to a 
better description and comprehension of the 
complex process of falling asleep. Moreover, the 
algorithm can be used to investigate abnormalities of 
SEMs parameters in patients suffering from sleep-
related disorders (such as insomnia, OSAS, 
narcolepsy), in order to identify potential different 
SEMs signatures related to different pathologies, 
which may be of clinical significance. In this regard, 
the algorithm has been used to assess the evolution 

of SEM parameters (amplitude, duration, velocity, 
number) at the wake-sleep transition in healthy 
volunteers and in OSAS patients, and the obtained 
results are critically discussed. 

2 METHOD 

The new version of the algorithm consists of two 
steps. In the first step, the algorithm identifies SEM 
activity periods in the EOG: the original version of 
the algorithm (Magosso et al., 2006), based on EOG 
wavelet decomposition, has been refined in order to 
improve its performances. In the second step, the 
algorithm segments each identified SEM period into 
single SEMs and extracts some fundamental 
parameters from the detected movements. The 
algorithm was trained and validated on the basis of 
visual identification of SEMs performed by a sleep 
medicine expert on EOG tracings. 

2.1 Data Acquisition 

12 healthy subjects and 8 OSAS patients participated 
in the study. All subjects gave their written informed 
consent for participation in the study which was 
conducted with the approval of the local Ethics 
Committee. The study consisted in a 24 hours PSG 
recording performed in real-life conditions with a 
portable digital polygraph (Trex by XLTeck). 
Volunteers and patients came to the laboratory for 
about 2 hours in the early morning for device 
setting, then they left the laboratory, performed their 
normal life activities for 24 hours and slept at home. 
The next morning returned to the laboratory for 
device removing. Recordings included three EEG 
derivations (F3-A2, C3-A2, O1-A2; filters: 0.5-70 
Hz), one submentalis EMG (filters: 30-100 Hz), two 
EOG derivations (E1-A1, E2-A2; filters: 0.1-15 Hz), 
and one ECG derivation (filters 1-70 Hz). Each 
recording was scored by an expert for sleep staging, 
according to the standard visual criteria 
(Rechtschaffen and Kales, 1968). Stages were 
evaluated in 30-s epochs and labeled as wakefulness 
(W) or as one of the five sleep stages (1, 2, 3, 4 
NREM, and REM). Signals are sampled at 512 Hz 
and resampled at 64 Hz before the processing. 

2.2 Visual SEM Scoring 

An expert scorer recognized the SEMs on the EOG 
traces, in particular in a time window around the 
sleep onset (from 15 minutes before stage 1 to 10 
minutes after the beginning of stage 2) and the 
awakening (from 10 minutes before the end of stage 
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2 to 20 minutes after the first wake epoch), since 
these are the moments in which the SEMs are more 
frequent and distinguishable from other 
superimposed activity. 

An eye movement was identified as an SEM by 
the expert if it met the following criteria: i) single 
period of an almost sinusoidal excursion (0.1–1 Hz), 
beginning and ending at near-zero velocity; (ii) 
amplitude between 20 and 200 µV; (iii) binocular 
synchrony with opposed-phase deflections in the 
two channels; (iv) onsets of the right and left eye 
movement occur within 300 ms of one another; (v) 
absence of artefacts (such as blinks, EEG/EMG 
artefacts). All the parts of the examined EOG 
portions not identified as SEMs, were defined as 
Non-SEM (NSEM) activity. 

2.3 Identification of SEM Epochs 

Following visual detection of single SEMs, the 
inspected EOG traces were split into 0.5 s epochs: 
one epoch was defined as an SEM epoch according 
to the visual classification if at least 50% of the 
epoch was covered by an SEM marked by the 
expert; otherwise it was classified as an NSEM 
epoch. On the basis of this classification we trained 
a classifier that categorizes each 0.5 s epoch of EOG 
as belonging to SEM or NSEM periods. 

To this end, we calculated the discrete wavelet 
transform of ΔEOG(t) = EOGR(t) - EOGL(t) (eye 
movements give opposite contributions to the two 
electrodes) using Daubechies order 4 as wavelet 
function, and evaluated 8 scales that approximately 
cover the frequency bands 16-32 Hz, 8-16 Hz, 4-8 
Hz, 2-4 Hz, 1-2 Hz, 0.5-1 Hz, 0.25-0.5 Hz and 
0.125-0.25 Hz respectively. From the wavelet 
coefficients we generated another set of 8 time series 
pc(t) = [pc(1,t),…,pc(8,t)]: in particular we 
performed the principal component analysis (PCA) 
of the logarithm to base 10 of the squared wavelet 
coefficients. The aim of this processing is to extract 
power measures, to make their distribution “more 
normal” and then make them uncorrelated through a 
change in coordinates. 

The 8 quantities pc(n,t) (n = 1,…,8) are 
resampled with a time resolution of 0.5 s and 
represent the features used in the classifier. Using 
the classification of the human scorer we have 
generated the distributions Pn,SEM(pc(n,t)) and 
Pn,NSEM(pc(n,t)) that represent the probability that a 
given value of pc(n,t) is observed during SEM and 
NSEM epochs, respectively. As the features are 
continuous quantities, the range covering the 98% of 
each feature distribution was uniformly divided into 

20 bins. Figure 1 shows the frequency distributions 
of the features on visually classified SEM and 
NSEM epochs (in grey and black respectively). 

 

Figure 1: Distributions Pn,SEM(pc(n,t)) in gray and 
Pn,NSEM(pc(n,t)) in black. 

The information carried by the 8 values of pc(t) 
is then composed into two functions 

SEM t P , pc n, t  (1)

NSEM t P , pc n, t  (2)

that represent the likelihood that an EOG epoch at 
the time t belongs to an SEM or NSEM period 
respectively. So the EOG epoch at time t is 
classified as an SEM epoch if SEM(t) > NSEM(t), 
and as an NSEM epoch otherwise. 

The final outcome of this first step is the 
identification of SEM activity periods in the EOG 
consisting of a single SEM epoch or consecutive 
SEM epochs. This first step of the algorithm may be 
viewed as a refinement of the algorithm previously 
developed and validated by Magosso and colleagues 
(Magosso et al., 2006); (Magosso et al., 2007). 
Indeed, that algorithm was tested only on EOG 
recorded in clinical settings and showed reduced 
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performances (results not presented) on EOG 
acquired in real-life environments. 

2.4 Identification of Single SEMs 

The next step of the algorithm is devoted to obtain 
an ideal prototype waveform of SEM, φ(t), to be 
used as a template to detect single SEMs in each 
SEM period identified according to the previous 
step. To generate the SEM prototype all the SEMs 
identified by the experts have been preprocessed by 
i) removing biases and slow trends; ii) normalizing 
them in time (all SEMs have been interpolated to 
have the same number of time samples) and in 
amplitude (each SEM has been divided by its 
standard deviation). In this way, only morphological 
information is left (figure 2). The generation of this 
prototype corresponds to training the algorithm for 
the identification of single SEMs. 

 

Figure 2: SEM prototype. The grayscale image on the 
background represents the overall distribution of all the 
visually scored SEMs (some example are drawn in gray), 
while the black plot represents their mean, φ(t). 

To identify the single SEMs, we implemented an 
“SEM transform” which is very similar to a 
continuous wavelet transform, in which the wavelet 
function is φ(t). The wavelet functions at different 
scales have been obtained by resampling φ(t): for 
each length L (in samples) spanning from the 
shortest to the longest SEM classified by the expert 
(Lmin < L < Lmax) we have created a φL(k), where 
k ∈ 1,… , L  is the resampling index. After the 
resampling, φL(k) is treated as if it had the same 
sampling time as the EOG signal, so the smaller L 
the smaller the scale of φL(k). 

For each SEM period identified in the first step, 
we can evaluate the correlation coefficient between 
the EOG differential mode and each φL(k), thus 
obtaining a map of similarity in the time-scale 
domain. In particular, we computed the correlation 
coefficient ρ(L,i) between each φL(k) and 

ΔEOG(i+k-L/2) 

ρ L, i
c L, i

∑ ∆EOG i k
L
2 ∙ ∑ φ k

(3)

c L, i ∆EOG i k
L
2

∙ φ k  (4)

where c(L,i) represents the correlation. ρ(L,i) has 
values between -1 and 1, where ±1 indicate perfect 
match (the concavity of the SEM is not relevant), 
while 0 indicates complete uncorrelation. A high 
value of |ρ(L,i)| suggests the presence of an SEM 
that begins at the time index i-L/2 and ends at time 
index i+L/2. 

Then a path of points (Ln,in) is found along this 
map - where each in corresponds to the centre of a 
SEM of length Ln - that satisfies the following 
conditions: i) the mean of ρ(Ln,in) is maximized; ii) 
each SEM begins within half second the end of the 
previous one; iii) the union of all of these SEMs 
covers completely the SEM period analysed. For the 
sake of brevity, we will not discuss here the 
procedure to find the best path that we used in 
particular, but any optimization algorithm can 
reasonably work. 

At the end of this procedure, each SEM period is 
subdivided into single SEMs of length Ln and 
centred in in. An example of application is illustrated 
in figure 3. A 45 s portion of the EOG was 
recognized by the algorithm as belonging to a SEM 
period; the SEM period was fragmented into single 
SEMs on the basis of the similarity with the SEM 
prototype at different scales and time shifts. 

Note that for each of these SEMs, we can easily 
derive the peak-to-peak amplitude in µV, which is 
proportional to the correlation c(Ln,in), and the 
duration in seconds, which is proportional to Ln. 

2.5 SEMs Parameters Extraction 

The present algorithm, being able to identify single 
SEMs, can extract parameters that characterize the 
SEM activity. In this work we focused on the 
amplitude, duration, velocity and the number of the 
identified SEMs. The algorithm automatically 
supplies the amplitude and the duration, while the 
other two parameters can be easily derived. 

The nth SEM detected by the algorithm, of length 
Ln and centred in in, can be modelled as 

φ k c L , i φ k i  (5)

(see for example the panel c of figure 3). It is worth 
noting that φfit(k) fits the differential EOG. 
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Figure 3: Example of detection of single SEMs in a 45 s 
EOG trace. Panel a shows the 2 EOG channels; panel b 
shows the differential mode ΔEOG(t); panel c shows the 
recognized SEM superimposed to ΔEOG(t); panel d shows 
the scale frequency map of the correlation coefficient 
ρ(L,i); the black dots indicate the coordinate (Ln,in) of the 
SEMs detected. 

The amplitude (Amp) in μV and duration (Dur) 
in seconds of the SEM are computed as follows: 

Amp G
c L , i

2
 (6)

Dur L ⋅ Δt (7)
 

where G is the ratio between the peak-to-peak 
amplitude and the standard deviation of φ(t), and Δt 
is the sampling period of the EOG signal (= 1/64 s). 
In amplitude computation, the correlation value has 
been divided by 2, to obtain measures relative to the 
single EOG channels, rather than their difference 
(during SEMs the EOG channels have opposite 
phases, so ΔEOG(t) has double amplitude with 
respect to the single channels). 

The velocity (expressed in μV/s) is taken as the 
highest mean velocity of the waveform from its 
beginning, according to the following formulas: 

v max
φ k φ i

L
2

k i
L
2 ⋅ Δt

 (8)

Vel
v
2

 (9)

where in–Ln/2 is the initial time index of the 
analysed SEM and k is a general time index. As in 
amplitude computation, the quantity v is divided by 
2, to obtain a measure relative to the single EOG 
channels. 

Finally, we consider the number (Num) of SEMs 
that are recognized in a given time window (e.g. in 
Sections 3.2 and 3.3 we will consider 5 minutes time 
windows, so Num will be a measure of frequency of 
SEMs detected). 

A calibration procedure was used to express the 
values of the SEM amplitude (Amp) in deg and the 
values of the SEM velocity (Vel) in deg/s. 

3 RESULTS 

In this section, we briefly present the algorithm 
performances vs visual scoring. Then we show some 
results on SEMs parameters evolution in a time 
window around the sleep onset of the healthy 
subjects. Finally, the values obtained for healthy 
subjects are compared with those obtained for OSAS 
patients. Implications of these differences will be 
discussed in the Conclusions. 

3.1 Validation 

A leave one out cross validation has been performed 
to assess the performances of the algorithm: all the 
subjects but one were used to estimate the 
distributions Pn,SEM(pc(n,t)) and Pn,NSEM(pc(n,t)) of 
SEM and NSEM epochs and to construct the SEM 
prototype; then, the distributions and the prototype 
φ(t) were used to segment SEMs on the remaining 
subject. The procedure has been applied 20 times, 
once for each subject. The performances in the 
identification of SEM epochs have been assessed in 
terms of sensitivity (78.1%) and specificity (87.8%). 
As to identification of single SEMs, only the 
sensitivity was evaluated (86.0%); the specificity 
could not be evaluated since the NSEM epochs are 
not subdivided into single eye movements. 

3.2 SEMs Parameters Pattern at Sleep 
Onset: Healthy Subjects 

We analysed the parameters characterizing SEM 
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activity (extracted as described in 2.5) to describe 
how they evolve during the transition from 
wakefulness to sleep in healthy subjects. 

 

Figure 4: SEM parameters around the sleep onset for the 
healthy subjects. Panels a, b, c and d show the 
distributions of the values of Amp, Dur, Vel, and Num in 
5 time windows of 5 minutes each. 

For each healthy subject, we gathered the values 
of SEM amplitude (Amp), duration (Dur), velocity 
(Vel) and number (Num) of the automatically 
identified SEMs during all the wake-sleep 
transitions. More specifically, for each transition the 
time interval from 12.5 min before to 12.5 min after 
the beginning of stage 2 sleep (first epoch of stage 2 
sleep) was considered, and all the wake-sleep 
transitions occurring in the subjects were aligned to 
stage 2 onset. The 25 minutes period at the wake-
sleep transition was subdivided into 5 bins of 5 min 
each; all the values of Amp, Dur, Vel and Num of 
the SEMs occurring in each bin were collected. 
Then, we have generated 5 distributions for each 
parameter (one per bin); each distribution is 
represented by a boxplot (figure 4). Each panel in 
the figure describes the evolution of the parameter 
distribution in all the recorded wake-sleep 
transitions. As shown in figure 4, SEMs amplitude 
(Amp) has a tendency to grow before the beginning 
of stage 2, and to decrease afterwards; on the 
contrary, SEMs duration (Dur) keeps on increasing 
as sleep deepens. Accordingly, SEMs velocity (Vel) 

tends to increase before the stage 2 onset, begins to 
decrease before the beginning of stage 2 and keeps 
on decreasing afterwards. Finally, as shown by the 
evolution of Num, SEMs become denser as stage 2 
sleep approaches, and gradually become less 
frequent as sleep further deepens. 

To test the significance of these changes we have 
used a Mann-Whitney U-test to compare the 
distributions of the parameters between different 
time bins. In particular, for each parameter, we 
compared the first bin (-10 min) with the second (-5 
min) to assess early changes, the second bin with the 
third (0 min) to assess changes just before the 
beginning of stage 2, and the third bin with the last 
(+10 min) to assess changes that take place as sleep 
deepens. The amplitude increases significantly 
several minutes before stage 2 (from -10 to -5 min) 
and decreases significantly during sleep (from 0 to 
10 min). The duration significantly increases later 
with respect to the amplitude (from -5 to 0 min) 
while during the sleep it increases by a non-
significant amount. Velocity, which is proportional 
to amplitude and inversely proportional to duration, 
behaves accordingly: it increases significantly from -
10 to -5 minutes and decreases significantly both 
from -5 to 0 minutes and from 0 to 10 minutes. The 
number of SEMs also changes significantly on the 
whole 25 minutes of analysis: it increases before 
stage 2 and decreases afterwards. The p-values, 
corrected with Bonferroni correction (24 
comparisons, 12 for healthy subjects and 12 for 
OSAS patients), are given in table 1. 

Table 1: p-Values of the statistical analysis for the healthy 
subjects. 

 -10 Vs. -5 -5 Vs. 0 0 Vs. 10 

Amp 
2.93e-8 

*** 
5.71 

6.32e-10 
*** 

Dur 9.40 
1.58e-7 

*** 
2.71 

Vel 
4.14e-9 

*** 
6.32e-7 

*** 
4.53e-15 

*** 

Num 
2.20e-3 

** 
7.20e-3 

** 
1.01e-4 

*** 

3.3 SEMs Parameters Pattern at Sleep 
Onset: OSAS Patients 

The same analysis has been performed for the OSAS 
patients (figure 5). The results suggest that the 
parameters for this second category of subjects have 
less significant excursions. Before the sleep, the 
increase in amplitude is delayed with respect to 
healthy subjects, becoming significant from -5 to 0 
min, rather than from -10 to -5, and the p-values are 
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globally larger. The duration increases continuously 
but always by a non-significant amount. 

 

Figure 5: SEM parameters around the sleep onset for the 
OSAS patients. The panels show the same measures as 
those of figure 4. 

The velocity has a completely different evolution 
in OSAS patients, since in the second bin it totally 
lacks the very high values that are observed in 
healthy subjects. Finally, the number of SEMs 
follows qualitatively the same evolution as for the 
healthy subjects, but the changes are not significant. 
The p-values, corrected with Bonferroni correction 
(see 3.2), are given in table 2. 

Table 2: p-values of the statistical analysis for the OSAS 
patients. 

 -10 Vs. -5 -5 Vs. 0 0 Vs. 10 

Amp 6.22e-1 
2.49e-4 

*** 
8.39e-5 

*** 
Dur 7.99e-2 1.95e-1 16.6 

Vel 23.9 
2.69e-2 

* 
1.59e-9 

*** 
Num 8.85e-1 8.11e-1 6.30e-1 

4 CONCLUSIONS 

In this work we have presented an algorithm for 
SEM detection which represents a substantial 
improvement of our previous version (Magosso et 
al., 2006; Magosso et al., 2007). Whereas the latter 

was able to merely detect periods of SEM activity, 
without segmenting single SEMs, the new algorithm 
takes advantage of spectral and morphological 
information to automatically detect single SEMs in 
EOG, showing high performances vs. visual scoring. 
Hence, the algorithm is able to count the single 
SEMs that occurred in a given time window; 
furthermore, and of great relevancy, the algorithm 
extracts specific parameters from each recognized 
SEM, in particular amplitude, velocity and duration. 

These new features of the algorithm open 
important perspectives for basic and clinical 
research. As SEMs are a phenomenon typical of the 
sleep onset period, quantification of SEMs 
parameters and analysis of their evolution at the 
wake-sleep transition can contribute to improve the 
understanding of the process of falling asleep. 
Indeed, this process - although widely investigated - 
is still far from being fully understood and its 
comprehension can benefit from a more precise 
depiction of oculomotor changes. Furthermore, the 
algorithm may be a valid tool to detect potential 
modifications of SEMs parameters at sleep onset in 
patients suffering from sleep-related disorders 
(insomnia, narcolepsy, OSAS) compared to normal 
sleepers, thus characterizing abnormalities in the 
process of falling asleep via quantitative measures 
provided by SEMs behavior. Regarding to this point, 
this paper presents some preliminary results 
obtained on a limited number of subjects. In 
particular, SEMs parameters in the healthy subjects 
and OSAS patients seem to exhibit different 
evolutions at the sleep onset period. On average, in 
healthy subjects, SEMs parameters change clearly: 
they increase in number, amplitude and velocity 
before stage 2 onset; afterwards, SEMs rapidly 
decrease in number, and change their morphology 
flattening and lengthening. On the contrary, in 
OSAS patients, SEMs parameters change by a less 
amount, exhibiting on the overall a flatter pattern 
across the five temporal bins that cover the sleep 
onset period. The obtained results suggest that SEMs 
might signal differences in the process of falling 
asleep in the patients compared to normal. The 
healthy volunteers fall asleep starting from relaxed 
vigilance state that consists of a few epochs of stage 
1 sleep followed by stage 2 sleep and deeper stages 
later on. On the other hand, the OSAS patients fall 
asleep with a longer, uneven pattern of vigilance 
states and they are more prone to wake up from 
stage 1 and even stage 2 sleep. The absence of a 
definite evolution of SEMs parameters in OSAS 
patients could be a marker of the pathological route 
into sleep. However, it is worth noticing that this 
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interpretation is far from being conclusive especially 
because of the reduced size of the OSAS sample; 
further and deeper analyses with a higher number of 
subjects are mandatory to confirm these results and 
eventually disclose other potential explanations. 

In future, the algorithm will also be applied to 
patients suffering from other sleep-related 
disturbances to provide a depiction of the SEMs 
signatures in different pathologies. 

ACKNOWLEDGEMENTS 

This work has been supported by a National project 
funded by the Italian Ministry for the Environment, 
Land and Sea “Excessive daytime drowsiness and 
road accidents: Specific risks in the transportation 
of waste and toxic harmful substances of significant 
ecological impact.” 

REFERENCES 

Aserinsky, E. and Kleitman, N. (1955). Two types of 
ocular motility occurring in sleep. Journal of Applied 
Physiology, 8(1), pp.1–10. 

Fabbri, M., Pizza, F., Magosso, E., Ursino, M., Contardi, 
S., Cirignotta, F., Provini, F. and Montagna, P. (2010). 
Automatic slow eye movement (SEM) detection of 
sleep onset in patients with obstructive sleep apnea 
syndrome (OSAS): comparison between multiple 
sleep latency test (MSLT) and maintenance of 
wakefulness test (MWT). Sleep Medicine, 11(3), 
pp.253–257. 

Fabbri, M., Provini, F., Magosso, E., Zaniboni, A., Bisulli, 
A., Plazzi, G., Ursino, M. and Montagna, P. (2009). 
Detection of sleep onset by analysis of slow eye 
movements: a preliminary study of MSLT recordings. 
Sleep Medicine, 10(6), pp.637–640. 

De Gennaro, L., Ferrara, M., Ferlazzo, F. and Bertini, M. 
(2000). Slow eye movements and EEG power spectra 
during wake-sleep transition. Clinical 
Neurophysiology, 111(12), pp.2107–2115. 

Hiroshige, Y. (1999). Linear automatic detection of eye 
movements during the transition between wake and 
sleep. Psychiatry and Clinical Neurosciences, 53(2), 
pp.179–181. 

Magosso, E., Provini, F., Montagna, P. and Ursino, M. 
(2006). A wavelet based method for automatic 
detection of slow eye movements: a pilot study. 
Medical Engineering & Physics, 28(9), pp.860–875. 

Magosso, E., Ursino, M., Zaniboni, A. and Gardella, E. 
(2009). A wavelet-based energetic approach for the 
analysis of biomedical signals: Application to the 
electroencephalogram and electro-oculogram. Applied 
Mathematics and Computation, 207(1), pp.42–62. 

Magosso, E., Ursino, M., Zaniboni, A., Provini, F. and 

Montagna, P. (2007). Visual and computer-based 
detection of slow eye movements in overnight and 24-
h EOG recordings. Clinical Neurophysiology, 118(5), 
pp.1122–1133. 

Marzano, C., Fratello, F., Moroni, F., Pellicciari, M., 
Curcio, G., Ferrara, M., Ferlazzo, F. and De Gennaro, 
L. (2007). Slow eye movements and subjective 
estimates of sleepiness predict EEG power changes 
during sleep deprivation. Sleep, 30(5), pp.610–616. 

Ogilvie, R.D., McDonagh, D.M., Stone, S.N. and 
Wilkinson, R.T. (1988). Eye movements and the 
detection of sleep onset. Psychophysiology, 25(1), 
pp.81–91. 

Pizza, F., Fabbri, M., Magosso, E., Ursino, M., Provini, F., 
Ferri, R. and Montagna, P. (2011). Slow eye 
movements distribution during nocturnal sleep. 
Clinical Neurophysiology, 122(8), pp.1556–1561. 

Rechtschaffen, A. and Kales, A. (1968). A manual of 
standardized terminology, techniques and scoring 
system of sleep stages in human subjects. Los Angeles, 
UCLA. 

Santamaria, J. and Chiappa, K.H. (1987). The EEG of 
drowsiness in normal adults. Journal of Clinical 
Neurophysiology, 4(4), pp.327–382. 

Shin, D., Sakai, H. and Uchiyama, Y. (2011). Slow eye 
movement detection can prevent sleep-related 
accidents effectively in a simulated driving task. 
Journal of Sleep Research, 20(3), pp.416–424. 

Suzuki, H., Matsuura, M., Moriguchi, K., Kojima, T., 
Hiroshige, Y., Matsuda, T. and Noda, Y. (2001). Two 
auto-detection methods for eye movements during 
eyes closed. Psychiatry and Clinical Neurosciences, 
55(3), pp.197–198. 

Torsvall, L. and Akerstedt, T. (1988). Extreme sleepiness: 
quantification of EOG and spectral EEG parameters. 
The International Journal of Neuroscience, 38(3-4), 
pp.435–441. 

Torsvall, L. and Akerstedt, T. (1987). Sleepiness on the 
job: continuously measured EEG changes in train 
drivers. Electroencephalography and Clinical 
Neurophysiology, 66(6), pp.502–511. 

Värri, A., Hirvonen, K., Häkkinen, V., Hasan, J. and 
Loula, P. (1996). Nonlinear eye movement detection 
method for drowsiness studies. International Journal 
of Bio-Medical Computing, 43(3), pp.227–242. 

Värri, A., Kemp, B., Rosa, A.C., Nielsen, K.D., Gade, J., 
Penzel, T., Hasan, J., Hirvonen, K., Häkkinen, V., 
Kamphuisen, H.A.C. and Mourtazaev, M.S. (1995). 
Multi-centre comparison of five eye movement 
detection algorithms. Journal of Sleep Research, 4(2), 
pp.119–130. 

Virkkala, J., Hasan, J., Värri, A., Himanen, S. and Härmä, 
M. (2007). The use of two-channel electro-
oculography in automatic detection of unintentional 
sleep onset. Journal of Neuroscience Methods, 163(1), 
pp.137–144. 

Automatic�Detection�of�Single�Slow�Eye�Movements�and�Analysis�of�their�Changes�at�Sleep�Onset

481


