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Abstract: We consider the following problem: Given a set of data and one or more examples of clusters, find a clustering
of the whole data set that is consistent with the given clusters. This is essentially a semi-supervised clustering
problem, but different from those that have been studied until now. We argue that it occurs frequently in
practice, but despite this, none of the existing methods can handle it well. We present a new method that
specifically targets this type of problem. We show that the method works better than standard methods and
identify opportunities for further improvement.

1 INTRODUCTION

We consider the task of (non-hierarchical) clustering:
given a dataset D, partition D into clusters such that
instances within the same cluster tend to be similar,
and instances in different clusters dissimilar.

This task is usually considered unsupervised. Re-
cently, however, some research has focused on semi-
supervised clustering. Here, some information is
given about which elements belong to the same clus-
ter, usually in the form of pairwise constraints: two
particular instances should be in the same cluster
(must-link constraint), or should not be (cannot-link
constraint). Such background information helps the
system find a clustering that meets the user’s criteria.

There are multiple reasons why a user might want
to provide partial supervision. They all boil down
to the fact that clustering is essentially undercon-
strained: there may be many “good” clusterings in a
data set. For instance, hierarchical clustering methods
yield clusterings at many different levels of granular-
ity, and it is up to the user to select the desired level.
Also, in high-dimensional spaces, a different cluster
structure may occur in different subspaces, and the
clustering system cannot know which subspace is the
most relevant one for the user (Agrawal et al., 2005).

In this paper, we introduce a new type of semi-
supervised clustering. Supervision here consists of
providing one or more example clusters. This type
of supervision is often quite natural. Consider entity
resolution in a database of authors: the task is to clus-
ter occurrences of author names on papers such that

occurrences are in the same cluster if they refer to the
same actual person.1 If one person indicates all the
papers she authored, that set of papers is an example
cluster. Knowing one, or a few, such clusters may
help the system determine what kinds of clusters are
good, so it can better cluster the other instances.

Example clusters can be translated to pairwise
constraints, but that induces many of those, dis-
tributed unevenly over the instance space. Most ex-
isting systems expect the pairwise constraints to be
distributed more evenly, and have been evaluated un-
der this condition. It is therefore not obvious that they
will work well in the new setting.

This paper is a first study of this new type of semi-
supervised clustering task. We first briefly survey the
work on semi-supervised clustering (Section 2). We
next discuss the new setting, relate it to existing set-
tings, and argue that none of the existing methods are
very suitable for this task (Section 3). We propose
a novel method that focuses specifically on this task
(Section 4), and experimentally evaluate it in Sec-
tion 5. We conclude in Section 6.

2 SEMI-SUPERVISED
CLUSTERING

Most research on semi-supervised clustering has fo-
1This task is not trivial because different persons may

have the same name, and the same person may be referred
to in different ways, e.g., “John Smith”, “J.L. Smith”.
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cused on providing pairwise constraints to the clus-
tering algorithm. Wagstaff et al. (2000, 2001) define
must-link and cannot-link constraints, respectively,
for specifying that two instances should, or should
not, be in the same cluster.

One way of dealing with these pairwise con-
straints is adapting existing clustering algorithms to
take them into account. Wagstaff et al. (2001) adapt
K-Means to this effect, treating must-link and cannot-
link as hard constraints.

Alternatively, one can use a standard algorithm,
but adapt the distance metric. Xing et al. (2002) pro-
pose to learn a Mahalanobis matrix M (Mahalanobis,
1936), which defines a corresponding Mahalanobis
distance

dM(x;y) =
q
(x� y)T M(x� y) (1)

They find the M that minimizes the sum of squared
distances between instances that must link, under the
constraint that dM(x;y) � 1 for all x and y that can-
not link. M can be restricted to be a diagonal matrix,
or can be full. The idea of learning such a distance
function is generally referred to as metric-based or
similarity-adapting methods (Grira et al., 2004).

Combining algorithm and similarity adaptation,
Bilenko et al. (2004) introduced the MPCK-Means
algorithm. A first difference with Wagstaff et al. is
that constraints are now handled in a soft-constrained
manner by defining costs for unsatisfied constraints.
Furthermore, the k means are initialised using a seed-
ing procedure proposed by Basu et al. (2002). For the
metric-based part of MPCK-Means, a separate Maha-
lanobis metric can be learned for each tentative cluster
in every iteration of the algorithm, allowing clusters
of different shapes in the final partition.

Alternatively to pairwise constraints, Bar Hillel et
al. (2005) use chunklets, groups of instances that are
known to belong to the same cluster. Their Relevant
Component Analysis (RCA) algorithm takes chun-
klets as input and learns a Mahalanobis matrix. This
approach is shown to work better than Xing et al.’s in
high dimensional data. A downside is that only must-
link information is taken into account. There is no
information about which instances cannot link: dif-
ferent chunklets may belong to the same cluster, or
they may not. RCA minimizes the same function as
Xing et al.’s method, but under different constraints
(Bar-Hillel et al., 2005).

Yeung and Chang (2006) have extended RCA to
include cannot-link information. They treat each pair-
wise constraint as a chunklet, and compute a sepa-
rate matrix for the must-link constraints, AML, and
for the cannot-link constraints, ACL. The data are
then transformed by A1=2

CL �A
�1=2
ML . This “pushes apart”

cannot-link instances in the same way that must-link
instances are drawn together.

3 CLUSTERS AS EXAMPLES

3.1 Task Definition

We define the task of semi-supervised clustering with
example clusters as follows (where P (� � �) denotes the
power set):
Given: An instance space X , a set of instances D�X ,
a set of disjoint example clusters E � P (D), and a
quality measure Q : P (D)�P (D)! R.
Find: A partition C = fC1;C2; :::;Ckg over D that
maximizes Q(C;E).

Q typically measures to what extent C is consis-
tent with E (ideally, E �C), but may also take general
clustering quality into account. Note that the number
of clusters to be found, or the distance metric to be
used, are not part of the input. Also, the requirement
that E � C is not strict; this allows for noise in the
data.

The task just defined has many applications. We
mentioned, earlier on, entity resolution. A simi-
lar task is face recognition, in a context where all
(or most) occurrences of the face of a few persons
have been labeled. This application is typically high-
dimensional. Clustering in high-dimensional spaces
is difficult because multiple natural clusterings may
occur in different subspaces (Agrawal et al., 2005).
For instance, one might want to cluster faces accord-
ing to identity, poses, emotions shown, etc. An ex-
ample cluster can help the system determine the most
relevant subspace.

3.2 Translation to Pairwise Constraints

Example clusters can easily be translated into pair-
wise constraints. Let ML(x;y) denote a must-link
constraint between x and y, and CL(x;y) a cannot-
link constraint. Providing an example cluster C corre-
sponds to stating ML(x;y) for all x;y2C and CL(x;y)
for all x 2C;y 62C. If C has n elements (call them x1,
. . . , xn), and the complete dataset has N elements (x1
to xN), this generates n(n�1)=2 must-link constraints
and n(N � n) cannot-link constraints2. Clearly, this
set of constraints can be large (O(nN)), potentially

2By applying two inference rules: 8x;y;z : ML(x;y)^
ML(y;z) ) ML(x;z) and 8x;y;z : CL(x;y) ^ML(y;z) )
CL(x;z), it suffices to list a minimal set of n� 1 must-
link constraints and N � n cannot-link constraints. How-
ever, the existing metric learning methods that use pairwise
constraints do not automatically apply these rules.
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making existing methods slow, and the constraints
are distributed unevenly, making these methods un-
informed about large parts of the instance space.

Cluster examples can also be seen as “complete”
chunklets. RCA could therefore be applied without
any translation, but then the information about the
maximality of the chunklets is lost; RCA allows sep-
arate chunklets to end up in the same cluster, which
is not wanted when chunklets are known to be com-
plete. Yeung and Chang’s extension allows for nega-
tive information, which solves this problem; but this
negative information is again expressed by means of
pairwise constraints. Thus, although the chunklet
based methods provide a concise representation for
the must-link constraints, they do not provide one for
cannot-link constraints, so they, too, suffer from the
problem of generating many constraints.

4 CLUSTERING USING
EXAMPLES: CLUE

We now present CLUE (Clustering Using Example
clusters). Given some example clusters, CLUE tries
to find a good overall clustering consistent with them.
The proposed solution does not require the number of
clusters as input.

Algorithm 1: The CLUE algorithm.
Input:
D: a data set
E: a set of example clusters fEigk

i=1 with Ei � D
Output: a partition P of D
Algorithm:
1. Rescale all attributes linearly to [0,1]
2. Learn a Mahalanobis distance dM that is maximally
consistent with the constraints
3. Construct a dendrogram D by applying a bottom-
up hierarchical clustering procedure with dM
4. Find the range of partitions in D for which the ex-
amples clusters are reconstructed optimally
5. Within that range, find the best partition P

The high-level algorithm is shown as Algorithm 1.
We next explain all steps in detail.

Step 1: Rescaling. Attributes are rescaled to [0;1] to
avoid the effects of incomparable ranges.

Step 2: Metric Learning. This step computes a dis-
tance metric over the instance space that best corre-
sponds to the example clusters given. Our approach
is based on Yeung and Chang (2006). We compute

two matrices, AML and ACL, as follows:

AML =
1

Na
å

Ei2E
å

x2Ei

(x� Ēi)(x� Ēi)
T (2)

ACL =
1

Nb
å

Ei2E
å

x=2Ei

(x� Ēi)(x� Ēi)
T (3)

with Na = åEi2E jEij and Nb = jDj � jEj�åEi2E jEij.
Thus, while Yeung and Chang use as chunklets

the pairwise constraints, we use as “positive” chun-
klets the example clusters, and as negative chunklets,
pairs (x; Ēi) with x 62 Ei and Ēi the mean of the cluster.
This makes the computation of AML O(n) (with n the
number of instances in all example clusters together),
and that of ACL O(kN), with N the total number of in-
stances and k the number of example clusters. A�1=2

ML
transforms the space so that examples in a cluster are
drawn closer to its center (in other words, intra-cluster
variance is reduced) and A1=2

CL transforms it such that
examples outside a cluster are pushed farther from its
center (inter-cluster variance is increased). The Ma-
halanobis matrix corresponding to this transformation
is M = A�1=2

ML �ACL �A
�1=2
ML .

Step 3: Hierarchical Clustering. A standard
bottom-up hierarchical clustering method is used, us-
ing dM as distance metric, and using single or com-
plete linkage. This gives a dendrogram that represents
N partitional clusterings, from N singletons at the bot-
tom to a single cluster at the top.

Step 4: Filtering the Partitions. After the bottom-
up clustering procedure, we investigate all resulting
partitions Pi and select those where the example clus-
ters have been reconstructed optimally. For this, we
propose the COnstraint based Rand Index (CORI). It
is based on the Rand index measure (Rand, 1971),
which is used to compare a predicted clustering to a
target clustering.

Let SML and SCL respectively denote the set of
all must-link and cannot-link constraints induced by
the example clusters. The CORI for a clustering
C = fC1; :::;Ckg is defined as follows:

CORI(C) =

 
jScorrect

ML j
jSMLj

+

��Scorrect
CL

��
jSCLj

!
=2 (4)

Scorrect
ML = fML(x;y) 2 SML j 9i : x 2Ci^ y 2Cig

Scorrect
CL =

�
CL(x;y) 2 SCL j 9i; j 6= i : x 2Ci^ y 2C j

	
The CORI equals 0.5 at the start and the end of

the agglomerative clustering procedure. Initially, all
cannot-link constraints and none of the must-link con-
straints are fulfilled, as the instances each belong to a
singleton cluster. As the clustering process advances,
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the cannot-link component in the CORI definition de-
creases, and the must-link component increases. Fi-
nally, all must-link constraints and none of the cannot-
link constraints are fulfilled when only a single clus-
ter remains. Note that the must-link and cannot-link
components of the CORI are weighted independently,
in contrast to the Rand index. This is because usually
jSCLj � jSMLj.

The result of this step is a range of clusterings with
maximal CORI.

Step 5: Final Partition. In the previous step, clus-
terings were evaluated based on the reconstruction
of the example clusters, resulting in a range of op-
timal clusterings. We now select from that range the
clustering that yields the best overall cluster quality.
Category utility (Fisher, 1987) is an evaluation met-
ric that judges cluster quality in terms of intra- and
inter-cluster dissimilarity. Witten et al. (2011) pro-
vide a definition for numeric data, by assuming nor-
mally distributed data:

CU(C) =
1
k å

Cl2C
Pr(Cl)

1
2
p

p

d

å
i=1

�
1

sil
� 1

si

�
; (5)

where k is the number of clusters, d is the number
of attributes, si denotes the standard deviation of at-
tribute i, and sil the standard deviation of attribute i
for instances in cluster l.

Category utility gives an equal importance to all
attributes. However, as the clusters were constructed
using supervised information, we want to return the
best clustering according to the learned distance mea-
sure. By defining a weighted variant of the category
utility, we can interpret the dissimilarities using the
Mahalanobis matrix M:

WCU(C) =
1
k å

Cl2C
Pr(Cl)

1
2
p

p

d

å
i=1

M1=2
i S(l) (6)

S(l) =
��

1
s1l
� 1

s1

�
: : :

�
1

sdl
� 1

sd

��T

where M1=2
i denotes the i-th row of M1=2.

5 EVALUATION

In this section, we empirically evaluate our approach
towards learning from example clusters on synthetic
and real world datasets. We compare our method -
both with a single (SL) and complete linkage (CL) for
the agglomerative clustering step - with K-MEANS
and MPCK-MEANS (Bilenko et al., 2004) (see Sec-
tion 2). Since MPCK-MEANS can learn either one
global or multiple local distance metrics, we tested

both cases. K-MEANS and MPCK-MEANS are pro-
vided with the exact number of clusters as input.

5.1 Datasets

5.1.1 Synthetic Data

A synthetic dataset was created with 200 instances
and 6 numeric dimensions with different domain
sizes, see Figure 1. Three dimensions were randomly
generated, one dimension contains five bar-shaped
clusters, and two dimensions together form 16 circle-
shaped clusters. These are the two target clusterings
that we try to discover using an example cluster.
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Figure 1: The 6 dimensions of the synthetic dataset.

5.1.2 Real-world Data

We used three UCI datasets (Frank and Asuncion,
2010). CMU Face Images contains 640 pictures of
20 different persons3, each shown with 4 poses, 4
emotions, and with or without sunglasses. This is a
nice example of a dataset that can naturally be clus-
tered in several ways. We used the “identity” and
“pose” as target clusterings. Principal Component
Analysis was applied to the original data to repre-
sent the images as linear combinations of eigenfaces
(Turk and Pentland, 1991). Only the first 100 eigen-
faces were kept; this allowed us to represent the data
in a more compact way, while presevering 97% of the
original variance in the data. Libras Movement con-
tains 15 classes of 24 instances each. Each class ref-
erences to a hand movement type in Brazilian signal
language. Seeds contains measurements of seven ge-
ometrical properties of kernels belonging to three dif-
ferent varieties of wheat. It has 210 instances.

5.2 Evaluation Measures

In our evaluation, we wish to compare the returned
clustering to a target clustering. We now discuss
the measures we will use for this. In the following,
Cp = fCp1;Cp2; :::;Cpkg denotes the predicted cluster-
ing, and Ct = fCt1;Ct2; :::;Ctlg the target clustering.
The function p : X ! f1; :::;kg returns the predicted

3Due to a corrupted image file, the identity “karyadi”
was left out, resulting in 19 identities.
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cluster for an instance, and similarly, t : X!f1; :::; lg
returns the target cluster. The notations p(x) = i and
t(x) = j are abbreviated as pi(x) and t j(x).

Rand Index. The Rand Index (RI) is a popular
measure for comparing clusterings. It expresses the
proportion of instance pairs for which both cluster-
ings agree on whether they are in the same clus-
ter or not. When there are many clusters, RI can
be dominated by instances correctly predicted not
to be in the same cluster. For instance, if Cp =
ffa;bg; fc;dg; fe; fg;fg;hg;fi; jgg and Ct = ff j;ag;
fb;cg;fd;eg;f f ;gg;fh; igg, we obtain RI = 0+35

45 =
7
9 , a high score for a very bad predicted clustering.

Normalized Mutual Information. Normalized Nor-
malized mutual information (NMI) (Manning et al.,
2008) measures the amount of information that is
shared by two clusterings, and penalizes large clus-
terings. It is defined as follows:

NMI(Cp;Ct) =
MI(Cp;Ct)

(H(Cp)+H(Ct))=2
(7)

MI(Cp;Ct) =

k

å
i=1

l

å
j=1

Pr(pi(x); t j(x))�log
�

Pr(pi(x); t j(x))
Pr(pi(x)) �Pr(t j(x))

�

H(Cp) =�
k

å
i=1

Pr(pi(x)) � log(Pr(pi(x)))

However, this measure can give unexpected results if
the individual cluster cardinalities differ substantially.
For instance, consider Ct = ffag;fbg;fcg;fd;e; fgg
and Cp = ffa;b;cg;fd;e; fgg. If we add more and
more instances to the last cluster in both Ct and Cp,
then H(Cp) and H(Ct) will get closer to zero, making
Cp a better clustering, although it still only correctly
finds one of the four clusters.

Complemented Entropy. To deal with the above
shortcomings, we propose a new clustering evalua-
tion measure, called complemented entropy (CE). It
scores the entropy of the target labels in the predicted
clusters (Ht ), as well as the entropy of the predicted
labels in the target clusters (Hp). These entropies are
in a sense complementary: predicting too few clusters
will increase Ht , while predicting too many clusters
will increase Hp. A formal definition is given below:

Ht =�
k

å
i=1

l

å
j=1

Pr(t j(x) j pi(x)) � log(Pr(t j(x) j pi(x)))

Hp =�
l

å
j=1

k

å
i=1

Pr(pi(x) j t j(x)) � log(Pr(pi(x) j t j(x)))

CE = 1�
�

Ht

maxHt
+

Hp

maxHp

�
=2 (8)

In this definition, maxHt denotes the maximally pos-
sible value for Ht and is reached when all pre-
dicted clusters contain an equal number of tar-
get labels, and analogously for maxHp. Consider
again the previous example. If we increase the
number of instances in the last clusters, leading
to C0t = ffag;fbg;fcg;fd;e; f ;g;h; i; jgg and C0p =
ffa;b;cg;fd;e; f ;g;h; i; jgg, then the CE score re-
mains unchanged (while NMI went up). The CE can
only become one when the predicted clustering per-
fectly matches the target clustering.

NMI vs. CE. NMI and CE evaluate different aspects
of the predicted clustering. Roughly, NMI gives more
weight to clusters with high cardinality, while CE
treats all clusters equally. Figure 2 illustrates the dif-
ference for two clusterings over the same dataset.

(a) NMI=0.89, CE=0.84 (b) NMI=0.66, CE=0.91
Figure 2: NMI prefers the clustering where more instance
pairs are labeled consistently (left), CE prefers the one
where more target clusters are reconstructed (right).

5.3 Experimental Results

The experiments are set up as follows. In each run, we
use one target cluster as an example cluster, run the
clustering method, and compute the RI, NMI and CE
for the part of the clustering that excludes the example
cluster. For each dataset, we repeat this procedure for
each target cluster and report the average and standard
deviation of the results. For MPCK-MEANS, the ex-
ample cluster is translated into a set of must-link and
cannot-link constraints. K-means consistently ignores
the constraints.

Table 1 presents the results for NMI, CE, and RI.
We observe that 18 out of 22 highlighted results are
in CLUE rows (9 for CLUE-CL, 9 for CLUE-SL);
MPCK-MEANS(global) scores 4, the others 0.

Surprisingly, MPCK-MEANS scores worse than
(unsupervised) K-MEANS in about half of the cases,
which suggests that using non-evenly spread con-
straints may actually hurt its performance. CLUE has
a similar issue on one dataset (Seeds).

We also observed (not shown here) that CLUE re-
turns too many clusters. (The other systems use the
number of clusters as an input, so they cannot go
wrong there.) This turns out to be a result of over-
fitting: the learned Mahalanobis distance compresses

Semi-supervised�Clustering�with�Example�Clusters

49



Table 1: Results.

Synthetic (Bars) Synthetic (Circles)
Method NMI CE RI NMI CE RI
K-MEANS 0.039 (0.005) 0.051 (0.005) 0.651 (0.003) 0.501 (0.006) 0.529 (0.008) 0.896 (0.001)
MPCK-MEANS glob 0.757 (0.247) 0.757 (0.246) 0.878 (0.125) 0.281 (0.033) 0.336 (0.031) 0.866 (0.005)
MPCK-MEANS loc 0.391 (0.206) 0.513 (0.121) 0.670 (0.206) 0.252 (0.050) 0.419 (0.086) 0.806 (0.129)
CLUE, SL 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.883 (0.115) 0.932 (0.079) 0.937 (0.061)
CLUE, CL 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.952 (0.084) 0.965 (0.062) 0.984 (0.022)

Faces (Identity) Faces (Pose)
Method NMI CE RI NMI CE RI
K-MEANS 0.717 (0.013) 0.768 (0.008) 0.930 (0.004) 0.039 (0.012) 0.133 (0.016) 0.561 (0.007)
MPCK-MEANS glob 0.797 (0.024) 0.829 (0.020) 0.944 (0.007) 0.035 (0.027) 0.074 (0.042) 0.555 (0.012)
MPCK-MEANS loc 0.673 (0.014) 0.711 (0.013) 0.924 (0.003) 0.026 (0.012) 0.054 (0.024) 0.554 (0.004)
CLUE, SL 0.725 (0.199) 0.892 (0.046) 0.845 (0.208) 0.357 (0.021) 0.637 (0.019) 0.681 (0.012)
CLUE, CL 0.706 (0.126) 0.780 (0.086) 0.911 (0.097) 0.357 (0.013) 0.619 (0.011) 0.675 (0.003)

Libras Seeds
Method NMI CE RI NMI CE RI
K-MEANS 0.559 (0.011) 0.615 (0.008) 0.899 (0.003) 0.641 (0.143) 0.704 (0.032) 0.853 (0.063)
MPCK-MEANS glob 0.535 (0.021) 0.558 (0.026) 0.888 (0.004) 0.750 (0.218) 0.760 (0.209) 0.899 (0.089)
MPCK-MEANS loc 0.433 (0.015) 0.534 (0.017) 0.857 (0.004) 0.748 (0.218) 0.764 (0.205) 0.891 (0.096)
CLUE, SL 0.641 (0.006) 0.746 (0.017) 0.931 (0.005) 0.380 (0.254) 0.768 (0.081) 0.659 (0.156)
CLUE, CL 0.645 (0.009) 0.744 (0.008) 0.933 (0.002) 0.453 (0.237) 0.631 (0.177) 0.679 (0.134)

the example cluster very well, but the other clusters
much less. As a result, the example cluster is recon-
structed well before other clusters are. This overfit-
ting seems inherent to the rescaling approach that also
earlier methods use, and may explain why the existing
methods can perform worse than unsupervised clus-
tering. We are still investigating this issue.

6 CONCLUSIONS

We introduced a novel type of supervision for semi-
supervised clustering. The supervision consists of one
or more complete example clusters. Whereas exist-
ing semi-supervised clustering methods assume lim-
ited knowledge over the complete instance space, this
setting assumes complete knowledge over a limited
part of the instance space.

We have proposed a novel method designed
specifically for this task. It learns a Mahalanobis dis-
tance that is maximally consistent with the given ex-
ample clusters. Then it performs agglomerative clus-
tering using this distance. Finally, it returns the parti-
tion for which the example clusters are reconstructed
optimally. Evaluating this method on six clustering
tasks, we have found that the novel method performs
better than existing methods in this setting. The eval-
uation also points to a problem of “overfitting the ex-
ample cluster” which is as yet unresolved.
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