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Abstract: Much attention is being given to the incorporation of constraints into data clustering, mainly expressed in
the form of must-link and cannot-link constraints between pairs of domain objects. However, its inclusion
in the important clustering validation process was so far disregarded. In this work, we integrate the use
of constraints in clustering validation. We propose three approaches to accomplish it: produce a weighted
validity score considering a traditional validity index and the constraint satisfaction ratio; learn a new distance
function or feature space representation which better suits the constraints, and use it with a validation index;
and a combination of the previous. Experimental results in 14 synthetic and real data sets have shown that
including the information provided by the constraints increases the performance of the clustering validation
process in selecting the best number of clusters.

1 INTRODUCTION

Data clustering aims at discovering structure in data,
i.e. the natural grouping(s) of a set of domain ob-
jects, such that similar domain objects are assigned
to the same cluster and objects that are dissimilar are
grouped in different clusters (Jain, 2010). Data clus-
tering is used in several important applications, such
as image segmentation, data summarization, grouping
customers for marketing purposes, organizing docu-
ments into a hierarchy of topics and subtopics or to
the study the genome data. Let X = fx1; � � � ;xng be
a set of n domain objects. The goal of a clustering
algorithm is to divide a data set X into K clusters,
producing a data partition P, P = fC1; � � � ;CKg where
Ck represents an individual cluster.

There are situations where domain knowledge ex-
ists for a particular application that may not be char-
acterized as data features. Also, a data analyst may
want to express some preferences or conditions for
the data clustering. Constrained data clustering algo-
rithms (Basu et al., 2008; Wagstaff, 2002; Basu, 2005;
Davidson and Ravi, 2005; Wang and Davidson, 2010)
use a priori knowledge about the data, mapped in the
form of constraints, to produce more useful solutions.

Distinct data partitions for the same data set may
be obtained using different clustering algorithms, pa-
rameters and/or algorithm initializations. This arises
the problem of evaluating the quality of a given data

partition or selecting the best data partition among
a set of possible ones. To address this problem,
many clustering validity techniques have been pro-
posed (Arbelaitz et al., 2013). These can be organized
into two categories: internal validity indices, which
use the information contained in the data set and in a
data partition; and external validity indices, that com-
pare a data partition with another partition believed
to be the correct one. The former should be used in
real applications where the underlying data structure
needs to be discovered while the latter can be used to
assess the performance of clustering algorithms using
benchmark data sets.

So far, the constraints are not being used in clus-
tering validation. This is an important flaw, especially
if the clustering solution was obtained from a con-
strained clustering algorithm. In this paper we intro-
duce the use of constraints in the clustering valida-
tion process. We address the problem in three ways:
using both the constraint satisfaction ratio score and
a validity index score to produce a weighted valid-
ity score; learning a distance function or a feature
space representation that transforms the original fea-
ture space accordingly to the set of constraints and use
it in the clustering validity process; and a combination
of these approaches.

The rest of the paper is organized as follows. In
section 2, constrained data clustering is briefly intro-
duced and the algorithms used in the experiments are
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presented. Section 3 describes how we address the
constrained clustering validity problem. Experimen-
tal results are discussed in section 4, and conclusions
are presented in section 5.

2 DATA CLUSTERING WITH
CONSTRAINTS

Traditional clustering algorithms fail to deal with pe-
culiarities that may exist in certain data clustering
problems: in clustering with obstacles (Tung et al.,
2000) the distance between domain objects may not
follow a straight line (e.g. the walking distance be-
tween houses in opposite margins of a river must con-
sider passing trough a bridge); in other situations one
may want to shape the characteristics of the clusters,
such as the minimum and maximum number of ob-
jects that a cluster must contain (Ge et al., 2007);
sometimes the labels of a subset of the data are known
and using that information would improve the clus-
tering solution (Basu, 2005); also, relations between
pairs of objects, such as must-link and cannot-link
constraints, may be available from an expert or can
be generated for a specific problem (Wagstaff, 2002).

In our work, we will focus in the relations be-
tween pairs of clusters. The reason is that many of
the other types of clustering constraints may be con-
verted into must-link and cannot-link constraints. The
set of must-link constraints, R=, contains all the pairs
of objects (xi;x j) that should belong to the same clus-
ter, while all the pairs of objects that should not be
grouped in the same cluster are added to the cannot-
link set R6=.

2.1 Constrained Data Clustering
Algorithms

In this subsection, we introduce two pairwise-
constrained clustering algorithms that are used in the
experiments presented in section 4.

The first one, the Pairwise-Constrained K-Means
(PCKM) (Basu et al., 2004), is a partitive algorithm
based on the well-know k-means algorithm (Mac-
Queen, 1967), which minimizes the distances be-
tween each cluster mean vector xk and the corre-
sponding domain objects xi 2 Ck. The objective of
PCKM consists of minimizing the k-means objective
and the violation of constraints, simultaneously. The
PCKM associates a weight wi j to each constraint be-
tween a pair of objects xi;x j. These weights are used
as penalization costs every time a constraint is not
satisfied in the current data partition. The PCKM

objective-function is defined as

J =
1
2 å

xi2X
jjxi�xPi jj

2 + å
(xi;x j)2R=

wi jI(Pi 6= Pj) (1)

+ å
(xi;x j)2R6=

wi jI(Pi = Pj);

where Pi corresponds to the label of the cluster at-
tributed to xi, and xPi is the mean vector of the cluster
to which xi belongs. I(�) returns 1 if the argument is
true, and returns 0 otherwise.

The other clustering algorithm is the Constrained
Average-Link (CAL) (Duarte et al., 2012) which is
based on the agglomerative hierarchical clustering al-
gorithm Average-Link (Sokal and Michener, 1958).
The algorithm works as follows. It starts with n clus-
ters, one for each domain object xi. Then, at each
step, the two closest clusters, according to a distance
measure between clusters, are merged. The process
iterates until some stopping criteria is met (e.g. a pre-
defined number of clusters is reached) or all objects
belong to same cluster. The distance between clus-
ters measures the average distance between all pairs
of objects belonging to different clusters plus a penal-
ization for each constraint that is not satisfied. This
distance is defined as

d(Ck;Cl) =

jCk j

å
i=1

jCl j

å
j=1

dist(xi;x j)� I=(xi;x j)+ I 6=(xi;x j)

jCkjjCl j
;

(2)
where Ia(xi;x j) = p if (xi;x j) 2 Ra and 0 otherwise.
p� 0 is a user parameter that influences the “softness”
of the constraints. In our experiments we defined p as
the maximum distance between objects in a data set.

2.2 Acquiring Pairwise Constraints

Pairwise constraints for data clustering may be ob-
tained by several ways. For instance, in image seg-
mentation, pixels may be regarded as domain objects
and must-link constraints may be generated between a
object xi and all its direct neighbors (Wagstaff, 2002).
Must-link constrains may also be generated between
a object xi and all the other objects within a certain
distance, while cannot-link constraints may be cre-
ated if the distance between xi and other objects ex-
ceed a threshold value (Davidson and Ravi, 2005).
In web page categorization, an expert may indicate if
two web pages are similar or dissimilar (Cohn et al.,
2003). In some real world applications, the labels
from a subset of the data are known and can be used
to derive pairwise constraints (Basu, 2005).

In our work we used two different schemes for ac-
quiring must-link and/or cannot-link constraints. The
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first one is the Random Acquisition of Constraints
(RAC) and consists of randomly selecting two ob-
jects (xi;x j) 2 X , iteratively, and ask the user (or
some oracle) if both objects should be assigned to
the same group. If the answer is “Yes”, a must-link
constraint is added to the set of must-link constraints,
R= = R=[f(xi;x j)g. If the answer is “No” a cannot-
link constraint is added to the set of cannot-link con-
straints R6= = R6= [f(xi;x j)g. If the user cannot de-
cide, the pair of objects is marked as already tested.
Questions involving pairs of objects that are already
in a constraint set or marked as already tested cannot
be performed. The process repeats until a predefined
number of constraints is achieved. Another way to
acquire pairwise constraints is the Random Acquisi-
tion of Labels (RAL), which is based on randomly
selecting a subset of the data set objects and ask the
user/oracle for the corresponding cluster labels. Af-
ter having a labeling for the subset of the data, for
each pair (xi;x j) in that subset we add a must-link
constraint to R= if the labels of both objects are the
same. If the labels are different, we add a cannot-
link constraint between xi and x j to R6=. Notice that
the RAL method produces several more constraints
than the RAC for the same number of questions to the
user/oracle.

3 CLUSTERING VALIDATION

In this section we will propose how constraints can be
used to define internal validity criteria.

3.1 Clustering Validation using
Constraints

A clustering algorithm takes as input the representa-
tion of a given data set and produces a data partition
according to its clustering criterion and parameters.
Traditionally, a clustering validity index uses the data
partition and the original data representation to pro-
duce a quantitative indicator, or score, of the quality
of the data partition, as illustrated in figure 1. Two ex-
amples of internal validity indices will be described in
subsection 3.2.

Data set
Clustering
Algorithm

Validity
Index

Original data 
representation

Score

Data
partition

Figure 1: Traditional clustering validation.
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Figure 2: Clustering validation with weighted score.

With the emergence of constrained data clustering
this process is no longer suitable, since the constraints
are not considered in the validation phase and these
contain important information for assessing the qual-
ity of data partitions. To include constraints in the val-
idation process, we present three scenarios: weighting
the scores of a validation index with the ratio of the
constraint satisfaction; learning a distance measure or
data representation that considers both the data fea-
ture attributes and the constraints and outputs it to a
validation index; and the combination of the previous
two.

Figure 2 depicts the simple weighting approach.
A clustering algorithm uses as input both the data set
representation and the constraints. Let us assume the
constraints are in the form of must-link and cannot-
link constraints. As before, a validity index evaluates
the resulting partition using the original data repre-
sentation and produces a score. In addition, a con-
straint satisfaction ratio is computed from the set of
constraints and the data partition. The constraint sat-
isfaction ratio is defined as

CS(P) =

å
(xi;x j)2R=

I(Pi = Pj)+ å
(xi;x j)2R6=

I(Pi 6= Pj)

jR=j+ jR6 = j
(3)

where I(�) returns 1 if the argument is true, and re-
turns 0 otherwise. Then a weighted score is computed
as

WS(P) = (1�a)NormIndex(P)+aCS(P) (4)

where 0 � a � 1, and NormIndex(P) represents the
normalization of the validity index with values in the
[0;1] interval, and assuming that values close to 1 in-
dicate good data partitions while values close to 0 in-
dicate bad data partitions. Thus, the weighted score is
[0;1] bounded in the same way.

Another approach consists of learning a distance
metric or feature space representation that simulta-
neously reflects both the original feature space and
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Figure 3: Clustering validation with distance learning.

the constraints. An example of a distance learning
method will be presented in 3.3 and will be used in
our experiments. When learning a new metric, the
idea is determining a positive semi-definite matrix M
that satisfies the properties of a metric, and then use it
to parameterize the Mahalanobis distance:

distM =
q
(xi�x j)>M(xi�x j): (5)

In this case, existing implementations of validity in-
dices should be modified to take into account the
Mahalanobis distance. When learning a new feature
space, that inconvenience does not exist because af-
ter the new representation is learned it can be sim-
ply fed to the clustering validation index. Figure 3
illustrates this approach. The clustering algorithm
produces a data partition using the original data and
the constraints. Then, a distance learning algorithm
learns a new metric represented by M or a new fea-
ture space representation using as input both the orig-
inal data features and the constraints, and outputs it to
the validity index finally evaluate the data partition.
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Figure 4: Clustering validation with distance learning and
weighted score.

The last approach for constrained clustering vali-
dations is simply the combination of the previous two
approaches, as can be seen in figure 4. The data par-
tition produced by the clustering algorithm is scored
by both the constraint satisfaction ratio and the va-
lidity index. In this case, the validity index (that
should be normalized to the [0;1] interval) will use

the learned feature space or distance function to as-
sess the data partition, just as explained before. Fi-
nally, the weighted score is computed as defined in
equation 4.

3.2 Validity Indices

We used two well-known internal validity indices to
assess the incorporation of constraints into the cluster-
ing validation process. These will be described next.

Let ai denote the average distance between xi 2Cl
and the other objects in the same cluster, and bi the
minimum average distance between xi and all objects
grouped in another cluster:

ai =
1

jCl j�1 å
x j2Cl

j 6=i

dist(xi;x j); (6)

bi = min
k 6=l

1
jCkj å

x j2Ck

dist(xi;x j);xi 2Cl : (7)

dist(xi;x j) may by any distance function between
two objects. The silhouette width is defined for each
object xi

si =
bi�ai

maxfai;big
; (8)

and indicates how well xi is adjusted to its cluster
when compared to other clusters. A value close to
1 means that xi has been assigned to the appropriate
cluster, a value close to 0 suggests xi could also have
been assigned to the nearest cluster, and a value close
to -1 indicates that xi was incorrectly assigned. The
Silhouette index (Rousseeuw, 1987), S(P), is given by
the average silhouette width computed over all objects
in the data set:

S(P) =
1
n

n

å
i=1

si: (9)

The Hubert’s Statistic (Hubert and Arabie, 1985)
measures the correlation between a n � n co-
membership matrix, U, that represents the data par-
tition P, and a n�n distance matrix, D, which stores
the distances between all pairs of objects. The co-
membership U = [Ui j] is built by setting each entry
Ui j to 1 if both xi and x j were assigned to the same
cluster (Pi = Pj), or to 0 otherwise. Each entry of the
distance matrix D = [Di j] consists of the distance be-
tween xi and x j, i.e., Di j = dist(xi;x j), where dist
can be any distance function. The Hubert’s Statistic
is defined as

H(P) =
2

n(n�1)

n�1

å
i=1

n

å
j=i+1

Ui jDi j (10)
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considering the matrices to be symmetric. High H(P)
values indicate good data partitions. However, H(P)
values increases with the number of clusters. A nor-
malized version of Hubert’s Statistic prevents this bias
and is defined as

NH(P) =
2

n(n�1)

n�1

å
i=1

n

å
j=i+1

(Ui j�µU )(Di j�µD)

sU sD
(11)

where µU , µD, sU and sD are the means and standard
deviations of U and D, respectively.

3.3 Distance Learning using Pairwise
Constraints

The Discriminant Component Analysis (DCA) (Hoi
et al., 2006) was used in our work to learn new
distance metrics that simultaneously represent both
the original data and the clustering preferences, ex-
pressed as must-link and cannot-link constraints. The
DCA builds a set of chunklets Q = fQ1; � � � ;Qqg,
i.e. groups of objects connected by must-link con-
straints, and a set of discriminative chunklets S =
fS1; � � � ;Sqg, one for each chunklet Qi. Each element
of the discriminative chunklet Si indicates the chun-
klets that have at least one cannot-link constraint con-
necting a object in Qi. Then DCA learns a data trans-
formation which minimizes the variance between ob-
jects in the same chunklet Qi and maximizes the vari-
ance between discriminative data chunklets Si. The
covariance matrices, Cb and Cw, store the total vari-
ance between objects in each Si 2 S and the total vari-
ance within objects in the same chunklets 8Qi 2 Q .
These matrices are computed as:

Cb =
1

q

å
i=1
jSij

q

å
i=1

å
i2S j

(m j�mi)(m j�mi)
>; (12)

Cw =
1
q

q

å
j=1

1
jQ jj å

xi2Q j

(xi�m j)(xi�m j)
>; (13)

where m j is the mean vector of Q j. The optimal trans-
formation matrix A is obtained by optimizing the fol-
lowing objective-function:

J(A) = argmax
A

jA>CbAj
jA>CwAj

: (14)

The learned Mahalanobis matrix M is computed as
M = A>A. The algorithm we used to optimize equa-
tion 14 is described in (Hoi et al., 2006).

4 EXPERIMENTAL RESULTS

In this section we show how the different validity in-
dices perform in the selection of the number of clus-

ters to partition the data for a given clustering algo-
rithm.

In our experiments, 7 synthetic data sets (shown
in figure 5) and 7 real data sets taken from the UCI
ML repository (Bache and Lichman, 2013) were used
to assess the performance of the validity indices. The
number of domain objects (n), number of dimensions
(d), number of natural clusters (K0) and the distribu-
tion of objects per cluster for each data set are pre-
sented in table 1. A brief description of each real data
set is given next.

Table 1: Overview of the data sets.

Data sets n d K0 Cluster Distribution
Bars 400 2 2 2�200
Cigar 250 2 4 2�100+2�25
Circs 400 2 3 2�100+200
D1 200 2 4 19+17+26+138
D2 200 2 4 116+39+21+24
D3 200 2 5 98+23+23+35+21

Half Rings 400 2 2 2�200
Wine 178 13 3 59+71+48

Yeast Cell 384 17 5 67+135+75+52+55
Optdigits 1000 64 10 10�100

Iris 150 4 3 3�50
House Votes 232 16 2 124+108

Breast Cancer 683 9 2 444+239

The Iris data set consists of 50 objects from each
of three species of Iris flowers (setosa, virginica and
versicolor) characterized by four features. One of the
clusters is well separated from the other two overlap-
ping clusters. The Breast Cancer data set is com-
posed of 683 domain objects characterized by nine
features and divided into two clusters: benign and
malignant. The Yeast Cell data set consists of 384
objects described by 17 attributes, split into five clus-
ters concerning five phases of the cell cycle. There
are two versions of this data set: the first one, called
Log Yeast, uses the logarithm of the expression level;
the other, called Std Yeast, is a “standardized” ver-
sion of the same data set, with mean 0 and variance 1.
The Optdigits is a subset of Handwritten Digits data
set containing only the first 100 objects of each digit,
from a total of 3823 domain objects characterized by
64 attributes. The House Votes data set is composed
of two clusters of votes for each of the U.S. House
of Representatives Congressmen on the 16 key votes
identified by the Congressional Quarterly Almanac.
From a total of 435 (267 democrats and 168 repub-
licans) only the objects without missing values were
considered, resulting in 232 objects (125 democrats
and 107 republicans). The Wine data set consists of
the results of a chemical analysis of wines grown in
the same region in Italy, divided into three clusters
with 59, 71 and 48 objects, described by 13 features.

In order to test the proposed approaches for con-
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(a) Bars (b) Cigar (c) Circs

(d) D1 (e) D2 (f) D3 (g) Half Rings

Figure 5: Synthetic data sets.

strained clustering validation, two constraint sets
were built for each data set: one using the RAL pro-
cess considering the labels of 10% of the objects; and
the other using the RAC process producing 0:5n ran-
dom pairwise constraints, where n is the number of
objects in a data set. We use ground-truth informa-
tion to identify the labels of the objects and to answer
whether or not two objects belong to the same cluster.
Therefore, an “Yes”/“No” answer is always obtained
in RAC process. Then, for each constraint set, the
PCKM and CAL algorithms produced 14 data parti-
tion each, one for each number of clusters k in the
set f2; � � � ;15g. Finally, we applied the original Sil-
houette index and the Normalized Hubert’s statistic,
and our constrained validation approaches using these
validation indices to all the data partitions. Both the
Silhouette index and the Normalized Hubert’s statistic
return a score in the [�1;1] range. To normalize the
score range to the [0;1] for the weighting approaches,
we simply compute it as NormScore = 1

2 (Score+1).
The a parameter for the constraint satisfaction ratio
was defined as 1

2 . We used the Consistency index
(CI) (Fred, 2001), an external validity index, to eval-
uate the quality of the data partitions. Thereby, we
can assess the performance of the internal validity in-
dices by comparing its scores with the ones obtained
by CI. The Consistency index measures the fraction
of shared objects in matching clusters of a given parti-
tion (P) and the real data partition (P0) obtained from
ground-truth information. The Consistency index is

computed as

CI(P;P0) =
1
n

minfK;K0g

å
k=1

jCk \C0
k j (15)

where K is the number of clusters of the partition that
is being evaluated, K0 is the true number of clusters,
and it is assumed the clusters of P and P0 have been
permuted in a way that the cluster Ck matches with
the real cluster C0

k .
Tables 2 to 5 present the consistency index val-

ues for the data partitions selected (corresponding to
the selection of K) by each clustering validation index
using CAL and PCKM clustering algorithms with the
constraint sets built by the RAL and RAC processes.
The first column of each table indicates the bench-
mark data set, the second and third columns show
the CI values for the partitions selected by the tradi-
tional Silhouette (S) and Normalized Hubert’s statis-
tic (NH), and the forth and fifth columns show the
CI values for the partitions selected by our weighted
score approach using also the Silhouette and Normal-
ized Hubert’s statistic indices (S+CS and NH+CS)
with the original metric/feature space. Columns 6 to
9 present the analogous results for the proposed dis-
tance learning approach with and without weighting
the constraint satisfaction ratio. The last column indi-
cates the consistency index for the best partition pro-
duced for each data set, according to the ground-truth
information. The last line shows the number of times
that each validity measure selected the best data par-
tition (best K).
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Table 2 shows the results for the CAL cluster-
ing algorithm using the RAL process. By compar-
ing all the results that use the Silhouette index, it can
be seen that the traditional Silhouette index selected
the best data partition in 7 out of the 14 data sets,
the same number obtained the corresponding weight-
ing approach despite the selected partitions are not
the same. The results obtained by learning a dis-
tance function were slightly better. With and with-
out weighting scores, the indices picked the best par-
titions 8 times. By doing the same analysis for the
Normalized Hubert’s statistic results, we noticed that
the traditional approach only identifies the best parti-
tion in 5 out of the 14 data sets. The weighted score
approach with the original distance metric choose the
best partition 6 times. By using a learned distance
metric the best partition is selected 8 times and by
combining it with the constraint satisfaction the best
partitions are picked in 9 out 14 data sets.

The results for the PCKM clustering algorithm
using the RAL process are shown in Table 3. The
worst results were again achieved by the traditional
validity approach, having the best partitions been se-
lected only 4 times by both the Silhouette index and
the Normalized Hubert’s statistic. The results for the
weighted score approach are somewhat better. Both
indices selected 6 times the best partition. By learn-
ing a new distance metric the results are considerable
better. The Silhouette index selects the best partition 8
and 6 times with and without using the score weight-
ing, respectively. The Normalized Hubert’s statistic
identifies the best data partitions 9 out of the 14 data
sets both with and without the score weighting.

Table 4 shows the results for the CAL clustering
algorithm using the RAC process. The traditional Sil-
houette index picked the best partitions 8 times and
with the score weighting 10 times, both with the orig-
inal and learned metrics. For the simple distance
learning approach, the best partitions were selected
in 8 out of 14 data sets. The Normalized Hubert’s
statistic results were not so good by selecting only
3, 4, 8 and 6 times the best partition for the tra-
ditional, score weighting, distance learning and dis-
tance learning plus score weighting approaches, re-
spectively. Nonetheless, the results obtained using
constraints are better, especially when the distance
metric was learned.

The results for the PCKM algorithm using the
RAC process are presented in table 5. The traditional
Silhouette index determined the best data partitions 8
times and the corresponding weighted score approach
identified the same best partitions plus another one.
The simple distance learning approach selected the
best partition in 9 out of the 14 data sets and com-

bining it with the weighted score approach decreases
the number of identified best partitions by one. The
traditional Normalized Hubert’s statistic only selects
the best partition 5 times and the score weighting ap-
proach in 8 times. The simple metric learning ap-
proaches picks the best partition also 8 times and,
again, the weighted score with distance learning ap-
proach diminishes the number of identified best par-
titions by one. We may conclude from the previous
results that the incorporation of constraints clearly in-
creases the performance of the clustering validation
process. By simple weighting a validity index score
with the constraint satisfaction ratio the results were
better. Also, it seems that learning a new metric based
on the pairwise constraints leads to even better results.

Table 6 indicates the number of times that each va-
lidity measure (by line) achieved better/worse/equal
results than the other validity measures (by column).
The Silhouette with the score weighting approach ob-
tained 14 times better results than the traditional Sil-
houette and 9 times worse. The Silhouette with dis-
tance learning achieved 10 times better partitions and
only 6 times worse. The metric learning combined
with the score weighting achieved 16 better results
and 10 worse. By performing the same analysis for
the Normalized Hubert’s statistic, the weighted score
approach was better than the traditional one 15 times
and 9 worse. The distance learning approach obtained
better results 21 times and 7 worse. The combination
of metric learning and score weighting obtained 22
improvements and only 12 results worst. These re-
sults evidence again that constrained clustering vali-
dation outperforms the traditional validation approach
especially when using distance learning.

Figure 6 shows the plots of the consistency index
values and the constraint satisfaction ratio obtained
for all partitions produced in our experiments versus
each internal validation index, distinguished by clus-
tering algorithm and constraint acquisition method,
and table 7 presents the correlation between the in-
ternal validation indices and the consistency index. It
can be seen that very different consistency values may
be achieved for partitions with all constraints satisfied
(figure 6c). This indicates that the constraint satisfac-
tion ratio alone is not a good indicator of the qual-
ity of the partitions which is corroborated by the low
correlation with the consistency index. We can also
conclude that the validation approaches that use dis-
tance learning have higher correlation with the con-
sistency index, which is another indication that these
are a good option for clustering validation.
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Table 2: Consistency index values for the data partitions selected by each clustering validation index using the CAL algorithm
and the constraint sets generated by the RAL process.

Data sets Original Distance Learned Distance Best
S NH S + CS NH + CS S NH S + CS NH + CS Partition

Bars 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Cigar 0.500 0.504 0.688 0.896 0.872 0.896 0.872 0.896 0.896
Circs 0.583 0.583 0.430 0.430 0.583 0.545 0.430 0.430 0.583

D1 0.820 0.875 0.410 0.875 0.820 0.915 0.915 0.915 0.915
D2 0.475 0.475 0.395 0.600 0.535 0.535 0.535 0.495 0.600
D3 0.640 0.795 0.655 0.655 0.795 0.795 0.655 0.655 0.795

Half Rings 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930 0.930
Wine 0.685 0.584 0.663 0.663 0.685 0.584 0.663 0.663 0.685

Std Yeast 0.659 0.680 0.698 0.680 0.659 0.656 0.698 0.698 0.698
Optical 0.862 0.837 0.862 0.837 0.862 0.862 0.862 0.862 0.862

Log Yeast 0.349 0.315 0.315 0.315 0.349 0.315 0.349 0.315 0.378
Iris 0.667 0.667 0.920 0.920 0.667 0.667 0.920 0.920 0.920

House Votes 0.888 0.888 0.888 0.888 0.888 0.888 0.888 0.888 0.888
Breast Cancer 0.950 0.753 0.950 0.753 0.950 0.950 0.950 0.950 0.950

#Best Partitions 7 5 7 6 8 8 8 9

Table 3: Consistency index values for the data partitions selected by each clustering validation index using the PCKM algo-
rithm and the constraint sets generated by the RAL process.

Data sets Original Distance Learned Distance Best
S NH S + CS NH + CS S NH S + CS NH + CS Partition

Bars 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995
Cigar 0.468 0.468 0.552 0.876 0.876 0.876 0.876 0.876 0.876
Circs 0.465 0.468 0.465 0.468 0.465 0.468 0.465 0.468 0.543

D1 0.595 0.595 0.595 0.595 0.535 0.595 0.535 0.595 0.595
D2 0.495 0.495 0.495 0.495 0.485 0.485 0.485 0.485 0.620
D3 0.630 0.665 0.630 0.630 0.665 0.665 0.665 0.630 0.665

Half Rings 0.665 0.665 0.665 0.665 0.665 0.665 0.665 0.665 0.718
Wine 0.669 0.669 0.691 0.691 0.669 0.669 0.691 0.691 0.691

Std Yeast 0.589 0.763 0.763 0.763 0.651 0.773 0.773 0.773 0.773
Optical 0.833 0.877 0.833 0.877 0.885 0.885 0.885 0.885 0.885

Log Yeast 0.320 0.266 0.323 0.326 0.320 0.367 0.326 0.359 0.367
Iris 0.667 0.667 0.913 0.913 0.667 0.667 0.667 0.913 0.913

House Votes 0.901 0.901 0.901 0.901 0.901 0.901 0.901 0.901 0.901
Breast Cancer 0.963 0.766 0.963 0.766 0.963 0.963 0.963 0.963 0.963

#Best Partitions 4 4 6 6 6 9 8 9

Table 4: Consistency index values for the data partitions selected by each clustering validation index using the CAL algorithm
and the constraint sets generated by the RAC process.

Data sets Original Distance Learned Distance Best
S NH S + CS NH + CS S NH S + CS NH + CS Partition

Bars 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993
Cigar 0.880 0.880 0.880 0.880 0.880 0.880 0.880 0.880 0.880
Circs 0.495 0.460 0.460 0.460 0.523 0.460 0.460 0.460 0.523

D1 0.580 0.580 0.580 0.580 0.580 0.580 0.580 0.580 0.580
D2 0.510 0.510 0.510 0.405 0.500 0.405 0.500 0.405 0.610
D3 0.570 0.570 0.570 0.570 0.620 0.615 0.570 0.550 0.620

Half Rings 0.840 0.675 0.840 0.675 0.840 0.675 0.840 0.675 0.840
Wine 0.663 0.663 0.663 0.713 0.663 0.713 0.663 0.713 0.713

Std Yeast 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667
Optical 0.755 0.711 0.750 0.750 0.755 0.782 0.755 0.750 0.782

Log Yeast 0.297 0.328 0.336 0.336 0.297 0.315 0.234 0.315 0.336
Iris 0.927 0.927 0.927 0.927 0.633 0.927 0.927 0.927 0.927

House Votes 0.940 0.780 0.940 0.940 0.940 0.940 0.940 0.940 0.940
Breast Cancer 0.963 0.851 0.963 0.851 0.963 0.851 0.963 0.851 0.963

#Best Partitions 8 3 10 4 8 8 10 6
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Table 5: Consistency index values for the data partitions selected by each clustering validation index using the PCKM algo-
rithm and the constraint sets generated by the RAC process.

Data sets Original Distance Learned Distance Best
S NH S + CS NH + CS S NH S + CS NH + CS Partition

Bars 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993
Cigar 0.880 0.880 0.880 0.880 0.880 0.880 0.880 0.880 0.880
Circs 0.495 0.460 0.460 0.460 0.523 0.460 0.460 0.460 0.523

D1 0.580 0.580 0.580 0.580 0.580 0.580 0.580 0.580 0.580
D2 0.510 0.510 0.510 0.405 0.500 0.405 0.500 0.405 0.610
D3 0.570 0.570 0.570 0.570 0.620 0.615 0.570 0.550 0.620

Half Rings 0.840 0.675 0.840 0.675 0.840 0.675 0.840 0.675 0.840
Wine 0.663 0.663 0.663 0.713 0.663 0.713 0.663 0.713 0.713

Std Yeast 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667
Optical 0.755 0.711 0.750 0.750 0.755 0.782 0.755 0.750 0.782

Log Yeast 0.297 0.328 0.336 0.336 0.297 0.315 0.234 0.315 0.336
Iris 0.927 0.927 0.927 0.927 0.633 0.927 0.927 0.927 0.927

House Votes 0.940 0.780 0.940 0.940 0.940 0.940 0.940 0.940 0.940
Breast Cancer 0.963 0.851 0.963 0.851 0.963 0.851 0.963 0.851 0.963

#Best Partitions 8 5 9 8 9 8 8 7

Table 6: Number of times that each validity measure achieved better/worse/equal results than the other validity measures.

Validity Original Distance Learned Distance
Index S NH S + CS NH + CS S NH S + CS NH + CS

O
ri

gi
na

l
D

is
ta

nc
e S - 18/11/27 9/14/33 20/19/17 6/10/40 12/18/26 10/16/30 17/19/20

NH 11/18/27 - 8/25/23 9/15/32 13/24/19 7/21/28 9/28/19 12/22/22
S+CS 14/9/33 25/8/23 - 16/8/32 16/14/26 15/16/25 6/10/40 13/9/34

NH+CS 19/20/17 15/9/32 8/16/32 - 20/22/14 11/18/27 9/21/26 4/10/42

L
ea

rn
ed

D
is

ta
nc

e S 10/6/40 24/13/19 14/16/26 22/20/14 - 10/13/33 7/11/38 17/18/21
NH 18/12/26 21/7/28 16/15/25 18/11/27 13/10/33 - 12/12/32 11/8/37

S+CS 16/10/30 28/9/19 10/6/40 21/9/26 11/7/38 12/12/32 - 14/8/34
NH+CS 19/17/20 22/12/22 9/13/34 10/4/42 18/17/21 8/11/37 8/14/34 -

Table 7: Correlation between the internal validation indices and the consistency index.

Validity RAL 0.1 RAC 0.5 ALLIndex PCKM CAL PCKM CAL
CS 0.127 0.302 0.238 0.540 0.164

O
ri

gi
na

l

D
is

ta
nc

e S 0.536 0.346 0.773 0.455 0.568
NH 0.800 0.726 0.840 0.642 0.780

S+CS 0.497 0.407 0.786 0.665 0.472
NH+CS 0.684 0.547 0.786 0.661 0.542

L
ea

rn
ed

D
is

ta
nc

e S 0.788 0.614 0.711 0.486 0.647
NH 0.828 0.818 0.701 0.728 0.797

S+CS 0.816 0.671 0.753 0.747 0.613
NH+CS 0.742 0.634 0.694 0.717 0.576

5 CONCLUSIONS AND FUTURE
WORK

We proposed the incorporation of constraints to the
clustering validation in three ways: using both the
scores of a validity index and the constraint satisfac-
tion ratio to produce a weighted validity score; learn-
ing a distance function or feature space representation
which considers the original feature space and the set

of constraints, and use it in the clustering validity pro-
cess; and combining the previous approaches.

Experimental results have shown that including
constraints increases the performance of the cluster-
ing validation, especially if a new distance metric is
learned. In the future, we want to extend our study to
include other distance learning algorithms and valid-
ity indices, as well as evaluating data partitions pro-
duced by other algorithms.
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Figure 6: Consistency index versus each internal validation index.
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