
Secure Computation of Hidden Markov Models

Mehrdad Aliasgari and Marina Blanton
Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, U.S.A.

Keywords: Secure Computation, Floating Point, Hidden Markov Models, Gaussian Mixture Models.

Abstract: Hidden Markov Model (HMM) is a popular statistical tool with a large number of applications in pattern
recognition. In some of such applications, including speaker recognition in particular, the computation in-
volves personal data that can identify individuals and must be protected. For that reason, we develop privacy-
preserving techniques for HMM and Gaussian mixture model (GMM) computation suitable for use in speaker
recognition and other applications. Unlike prior work, our solution uses floating point arithmetic, which al-
lows us to simultaneously achieve high accuracy, provable security guarantees, and reasonable performance.
We develop techniques for both two-party HMM and GMM computation based on threshold homomorphic
encryption and multi-party computation based on threshold linear secret sharing, which are suitable for secure
collaborative computation as well as secure outsourcing.

1 INTRODUCTION

Hidden Markov Models (HMMs) have been an in-
valuable and widely used tool in the area of pattern
recognition. They have applications in bioinformat-
ics, credit card fraud detection, intrusion detection,
communication networks, machine translation, crypt-
analysis, robotics, and many other areas. An HMM
is a powerful statistical tool for modeling sequences
that can be characterized by an underlying Markov
process with unobserved (or hidden) states, but visi-
ble outcomes. One important application of HMMs
is voice recognition, which includes both speech and
speaker recognition. For both, HMMs are the most
common and accurate approach, and we use this ap-
plication as a running example that guides the com-
putation and security model for this work.

When an HMM is used for the purpose of speaker
recognition, usually one party supplies a voice sample
and the other party holds a description of an HMM
that represents how a particular individual speaks
and processes the voice sample using its model and
the corresponding HMM algorithms. Security issues
arise in this context because one’s voice sample and
HMMs are valuable personal information that must
be protected. In particular, a server that stores hid-
den Markov models for users is in possession of sen-
sitive biometric data, which once leaked to insiders or
outsiders can be used to impersonate the users. For
that reason, it is desirable to minimize exposure of
voice samples and HMMs corresponding to an indi-

vidual when such data are being used for authenti-
cation or other purposes. To this end, in this work
we design solutions for securely performing compu-
tation on HMMs in such a way that no information
about private data is revealed as a result of execution
other than the agreed upon output. This will immedi-
ately imply privacy-preserving techniques for speaker
recognition as well as other applications of HMMs.

There are three different types of problems and
corresponding algorithms for HMM computation: the
Forward algorithm, the Viterbi algorithm, and the Ex-
pectation Maximization (EM) algorithm. Because the
Viterbi algorithm is most commonly used in voice
recognition, we develop a privacy-preserving solu-
tion for that algorithm, but our techniques can be
used to securely execute other HMM algorithms as
well. Furthermore, to ensure that Gaussian mixture
models (GMMs), which are commonly used in HMM
computation, can be part of secure computation as
well, we integrate GMM computation in our privacy-
preserving solution.

One significant difference between our and prior
work is that, unlike other publications, we develop
techniques for computation on floating point num-
bers which provide adequate precision and are most
appropriate for HMM computation. We also do not
compromise on security, and all of the techniques we
develop are provably secure under standard and rigor-
ous security models, while at the same time providing
reasonable performance.

To cover as wide of a range of application sce-

242 Aliasgari M. and Blanton M..
Secure Computation of Hidden Markov Models.
DOI: 10.5220/0004533502420253
In Proceedings of the 10th International Conference on Security and Cryptography (SECRYPT-2013), pages 242-253
ISBN: 978-989-8565-73-0
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

narios as possible, we consider multiple settings for
HMM computation: (i) the two-party setting in which
a client interacts with a server and (ii) the multi-party
setting in which the HMM computation is carried out
by n> 2 parties, which is suitable for joint computa-
tion by several participants as well as secure outsourc-
ing of HMM computation to multiple servers by one
or more computationally limited clients.

To summarize, our contributions consist of devel-
oping provably secure HMM and GMM computation
techniques based on Viterbi algorithm using floating
point arithmetic. Our techniques are suitable for two-
party and multi-party computation in a variety of set-
tings and are designed with their efficiency in mind.

2 RELATED WORK

To the best of our knowledge, privacy-preserving
HMM computation was first considered
in (Smaragdis and Shashanka, 2007) which provides
a secure two-party solution for speech recognition
using a homomorphic encryption scheme on integer
domain. Unfortunately, integer representation is
not sufficient for HMM computation, and this work
failed to address non-integer values. In particular,
HMM computation involves various operations on
probability values which occupy a large range of real
numbers and demand high precision.

Nevertheless, the techniques provided
in (Smaragdis and Shashanka, 2007) were later used
as-is in (Shashanka, 2010) for Gaussian mixture mod-
els. The same idea was used in (Pathak et al., 2011;
Pathak et al., 2012) to develop privacy-preserving
speaker verification for joint two-party computation,
where the HMM parameters were stored in an
encrypted domain. Similar to (Shashanka, 2010),
the goal of (Pathak and Raj, 2011) was to provide
secure two-party GMM computation using the same
high-level idea but with implementation differences,
yet their solution has security weaknesses. In
particular, the proposed Logsum protocol reveals a
non-trivial amount of information about the private
inputs, which, in combination with other computation
or outside knowledge, may allow for full recovery
of the inputs. We provide more detail regarding
this security weakness in Appendix 7. All the
above work addresses integer-based solutions in the
two-party setting. In addition, some of the above
techniques were used in privacy-preserving network
analysis and anomaly detection in a joint two-party
(or multi-party) computation (Nguyen and Roughan,
2012b; Nguyen and Roughan, 2012a). Clearly, there
is need to develop secure computation techniques for

HMMs on standard real number representations with
provable security. In particular, integer or fixed point
representations have at least two disadvantages: They
demand substantially larger bit length representation
than could be used otherwise and the representation
error can accumulate and introduce fatal inaccuracies.
Subsequently, integer or fixed-point representations
become impractical for applications that require
high precisions such as HMM computations. To
address this, Franz et al. (Franz et al., 2012) proposed
solutions for secure HMM forward algorithm com-
putation in the two-party setting using logarithmic
representation of real numbers. The logarithmic
representation, although better than fixed point or
integer representation, still fails to cope with the vast
range of real numbers used in HMMs. The look-up
tables in (Franz et al., 2012) grow exponentially in
the bitlength of the operands. In fact, in practice
HMMs are run on floating point numbers to avoid the
difficulties mentioned above. Therefore, in this work
we propose the first provably secure floating point
computation for HMM algorithms with reasonable
performance.

3 HIDDEN MARKOV MODELS
AND GAUSSIAN MIXTURE
MODELS

A Hidden Markov Model (HMM) in a statistical
model that follows the Markov property (where the
transition at each step depends only on the previ-
ous transition) with hidden states, but visible out-
comes. The inputs are a sequence of observations, and
for each sequence of observations (or outcomes), the
computation consists of determining a path of state
transitions which is the likeliest among all paths that
could produce the given observations. More formally,
an HMM consists of:

• N statesS1, · · · ,SN;

• M possible outcomesm1, · · · ,mM;

• a vectorπ = 〈π1, . . .,πN〉 that contains the initial
state probability distribution, i.e.,πi =Pr[q1 =Si],
whereq is a random variable over the set of states
indexed by the transition number;

• a matrixA of sizeN×N that contains state transi-
tion probabilities, i.e., a cellai j of A at row i and
column j contains the probability of the transition
from stateSi to stateSj ai j = Pr[qk+1 = Sj | qk =
Si];

• a matrix B of size N×M that contains output
probabilities, i.e., a cellbi j of B at row i and

Secure�Computation�of�Hidden�Markov�Models

243

Figure 1: An example of a hidden Markov model withsi ’s
representing states andmi ’s representing outcomes.

column j contains the probability of stateSi out-
putting outcomemj bi j = Pr[qk = Si | Xk = mj].

In the above, observationsX1, . . .,XT form HMM’s in-
put, to which we collectively refer asX. The above
parameters define an HMM. In our running applica-
tion of speaker recognition, an HMM is a model that
represents how a particular person speaks and an input
corresponds to the captured voice sample of a client.
Figure 1 shows an example of an HMM.

In most cases, matrixB should be computed based
on observations. Usually this is done by evalua-
tion of the observed value on probability distributions
of states’ outcomes. One very common distribution
model is a Gaussian Mixture Model (GMM) which is
used to compute the elements of matrixB. GMMs are
mixtures of Gaussian distributions that represent the
overall distribution of observations. Namely, an ob-
servation is evaluated on a number of Gaussian distri-
butions with different parameters and the evaluations
are combined together to produce the final probabil-
ity of a random variable acquiring that particular ob-
servation. In the case of HMMs, we use a GMM to
compute the output probability of stateSj producing
an observation at timek as follows:

b jk =
α

∑
i=1

wie
− 1

2 (Xk−µi)
T Σ−1

i (Xk−µi) (1)

In the above,Xk is a vector of sizef that represents the
random variable corresponding to the observation at
time k. In voice applications,Xk usually contains the
Mel-frequency cepstral coefficients (MFCCs). The
parameterα is the total number of mixture compo-
nents (here, Gaussian distributions). Theith compo-
nent has a mean vectorµi of size f and a covariance
matrix Σi of size f × f . The components are added
together, each weighted by a mixture weightwi , to
produce the probability distribution of stateSj when
the observed random variable isXk. We use notation
µ, Σ, andw to refer to the sequence ofµi , Σi , andwi ,
respectively, fori = 1, . . .,α.

There are three different types of problems and re-
spective dynamic-programming algorithms for HMM

computation: the Forward Algorithm, the Viterbi Al-
gorithm, and the EM (Expectation Maximization) Al-
gorithm (Rabiner, 1989). In the Forward Algorithm,
the goal is to compute the probability of each state
for each transition given a particular sequence of ob-
servations. Namely, in this algorithm, we compute
Pr[qk = Si | X1 · · ·XT]. In the Viterbi algorithm, after
observing the outcomes, the goal is to construct the
path of states which is the most likely among all pos-
sible paths that can produce the observations, as well
as the probability of the most likely path. In other
words, for any given sequence of observations, each
path has a certain probability of producing that se-
quence of observations. The output of Viterbi algo-
rithm is the path with the highest probability and the
value of the probability. The computation performed
in Viterbi algorithm uses Forward algorithm. In the
EM algorithm, the goal is to learn the HMM. Namely,
given a sequence of observations, this algorithm com-
putes the parameters of the most likely HMM that
could have produced this sequence of observations.
All of these three algorithms use dynamic program-
ming techniques and have complexity ofO(TN2).

Because in this work we use speaker recognition
to demonstrate secure techniques for HMM compu-
tation, we focus on the Viterbi algorithm used in
speaker recognition. The techniques developed in this
work, however, can also be used to construct secure
solutions for the other two algorithm. In what follows,
we provide a brief description of the Viterbi algorithm
and refer the reader to online materials for the For-
ward and EM algorithms. In the algorithm below,P∗

is the probability of the most likely path for a given se-
quence of observations andq∗ = 〈q∗1, . . .,q

∗
T〉 denotes

the most likely path itself. The computation uses dy-
namic programming to store intermediate probabili-
ties inδ, after which the path of the maximum likeli-
hood is computed and placed inq∗.

〈P∗,q∗〉 ← Viterbi(λ = 〈N,T,π,A,B〉)

1. Initialization Step: for i = 1 toN do

(a) δ1(i) = πibi1

(b) ψ1(i) = 0

2. Recursion Step: for k= 2 to T and j = 1 toN do

(a) δk(j) =

(

max
1≤i≤N

[δk−1(i)ai j]

)

b jk

(b) ψk(i) = argmax
1≤i≤N

[δk−1(i)ai j]

3. Termination Step:

(a) P∗ = max
1≤i≤N

[δT(i)]

(b) q∗T = argmax
1≤i≤N

δT(i)

(c) for k= T−1 to 1 doq∗k = ψk+1(q∗k+1)

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

244

4. Return〈P∗,q∗〉

In speaker recognition, we apply the Viterbi algo-
rithm to extracted voice features and an HMM that
was created using a GMM and training voice fea-
tures. The overall computation then consists of form-
ing an HMM using GMM computation and executing
the Viterbi algorithm, as given next.

〈P∗,q∗〉 ← HMM(N,T,π,A,α,w,µ,Σ,X)

1. For j = 1 to N andk = 1 to T, computeb jk as in
equation 1 usingα, wi ’s, µi ’s, Σi ’s, andXk.

2. Setλ = 〈N,T,π,A,B〉.
3. Execute〈P∗,q∗〉= Viterbi(λ).
4. Return〈P∗,q∗〉.

4 FRAMEWORK

In this section, we introduce two categories of secure
computation that we consider in this work, precisely
define the computation to be carried out, and the se-
curity model for each respective type of secure com-
putation.

The first category of secure computation that we
consider is securetwo-party computation. Without
loss of generality, we will refer to the participants
as the client and the server. Using speaker recogni-
tion as the example application, the client possesses
a voice sample, the server stores a model that rep-
resents how a registered user speaks, and user au-
thentication is performed by conducting HMM com-
putation on the client’s and server’s inputs. There-
fore, for the purposes of this work, we assume that
the client owns the observations to an HMM, i.e.,
X1, . . .,XT , and the server holds the parameters of the
HMM and GMM, i.e.,N, vectorπ, matrixA, α, mix-
ture weightsw, vectorsµ, and matricesΣ. Because
even the parameters of HMM might reveal informa-
tion about the possible input observations, to build a
fully privacy-preserving solution in which the server
does not learn information about user biometrics, the
server should not have access to the HMM parame-
ters in the clear. For that reason, we assume that the
server holds the parametersπ, A, B, w, µ, andΣ in an
encrypted form. Then to permit the computation to
take place on encrypted data, we resort to an encryp-
tion scheme with special properties, namely, semanti-
cally secure additively homomorphic public-key en-
cryption scheme (defined below). Furthermore, to
ensure that neither the server can decrypt the data it

stores, nor the (untrusted) client can decrypt the data
(or a function thereof) without the server’s consent,
we utilize a (2, 2)-threshold encryption scheme. In-
formally, it means that the decryption key is parti-
tioned between the client and the server, and each de-
cryption requires that both of them participate. This
means that the client and the server can jointly carry
out the HMM computation, and make the result avail-
able to either or both of them. For concreteness of our
description, we will assume that the server learns the
outcome.

A public-key encryption scheme is defined by
three algorithmsGen, Enc, Dec, whereGen is a key
generation algorithm that on input a security parame-
ter κ produces a public-private key pair(pk,sk); Enc
is an encryption algorithm that on input a public key
pkand messagemproduces ciphertextc; andDec is a
decryption algorithm that on input private keyskand
ciphertextc produces decrypted messagem or spe-
cial character⊥ that indicates failure. For concise-
ness, we use notationEncpk(m) andDecsk(c) in place
of Enc(pk,m) andDec(sk,c), respectively. An en-
cryption scheme is said to be additively homomorphic
if applying an operation to two ciphertexts results in
the addition of the messages that they encrypt, i.e.,
Encpk(m1) · Encpk(m2) = Enc(m1 +m2). This prop-
erty also implies thatEncpk(m)k = Encpk(k ·m) for a
knownk. In a public-key(n, t)-threshold encryption
scheme, the decryption keysk is partitioned amongn
parties, andt ≤ n of them are required to participate
in order to decrypt a ciphertext. Lastly, a semantically
secure encryption scheme guarantees that no informa-
tion about the encrypted message can be learned from
its ciphertext with more than a negligible (inκ) prob-
ability. Semantically secure additively homomorphic
threshold public-key encryption schemes are known,
one example of which is Pailler encryption (Paillier,
1999).

We obtain that in the two-party setting, the client
and the server share the decryption key to a semanti-
cally secure additively homomorphic (2, 2)-threshold
public-key encryption scheme. The client has pri-
vate inputX1, . . .,XT and its share of the decryption
key sk; the server has inputEncpk(πi) for i ∈ [1,N],
Encpk(ai j) for i ∈ [1,N] and j ∈ [1,N], Encpk(wi) for
i ∈ [1,α], encryption of each element ofµi andΣi for
i ∈ [1,α], and its share ofsk. The computation con-
sists of executing the Viterbi algorithm on their in-
puts, at the end of which the server learnsP∗ andq∗i
for i = 1, . . .,T. The size of the problem, i.e., parame-
tersN, T, α, and f , are assumed to be known to both
parties.

The second category of secure computation that
we consider is securemulti-party computation on

Secure�Computation�of�Hidden�Markov�Models

245

HMMs. In this setting, either a number of parties
hold inputs to a multi-observer HMM or one or more
clients wish to outsource HMM computations to a
collection of servers. More generally, we divide all
participants into three groups: (i) the input parties
who collectively possess the private inputs, (ii) the
computational parties who carry out the computation,
and (iii) the output parties who receive the result(s)
of the computation. These groups can be arbitrarily
overlapping, which gives great flexibility in the setup
and covers all possible cases of joint multi-party com-
putation (where the input owners carry out the com-
putation themselves, select a subset of them, or seek
help of external computational parties) and outsourc-
ing scenarios (by either a single party or multiple in-
put owners).

To conduct computation on protected values in
this setting, we utilize an information-theoretically
secure threshold linear secret sharing scheme (such as
Shamir secret sharing scheme (Shamir, 1979)). In a
(n, t)-threshold secret sharing scheme, a secret value
s is partitioned amongn participants in such a way
that the knowledge oft or fewer shares information-
theoretically reveals no information abouts, while
t +1 or more shares allow for efficient reconstruction
of s. Such schemes avoid the use of computationally
expensive public-key encryption techniques and in-
stead operate on small integers (in a fieldFp, normally
with primep) of sufficient size to represent all values.
In a linear secret sharing scheme, any linear combi-
nation of secret sharing values (which in particular
includes addition and multiplication by a known con-
stant) is performed by each participant locally, while
multiplication requires interaction of all parties. It is
usually required thatt < n/2 and therefore the num-
ber of computational partiesn> 2.

We then obtain that in this setting the input parties
share their private inputs amongn> 2 computational
parties, the computational parties execute the Viterbi
algorithm on secret-shared values, and communicate
shares of the result to the output parties, who recon-
struct the result from their shares. As before, the size
of the problem, namely, the parametersN, T, α, and
f , is known to all parties.

We next formally define security using the stan-
dard definition in secure multi-party computation for
semi-honest (also known as honest-but-curious or
passive) adversaries, i.e., those that follow the com-
putation as prescribed, but might attempt to learn ad-
ditional information about the data from the interme-
diate results. We show our techniques secure in the
semi-honest model. Standard techniques for making
the computation robust to malicious behavior, where
the participants can arbitrarily deviate from the pre-

scribed computation, apply to our protocols as well.

Definition 1. Let parties P1, . . .,Pn engage in a
protocol Π that computes function f(in1, . . ., inn) =
(out1, . . .,outn), whereini and outi denote the input
and output of party Pi, respectively. LetVIEWΠ(Pi)
denote the view of participant Pi during the execution
of protocolΠ. More precisely, Pi ’s view is formed by
its input and internal random coin tosses ri , as well as
messages m1, . . .,mk passed between the parties dur-
ing protocol execution

VIEWΠ(Pi) = (ini , r i ,m1, . . .,mk).

Let I = {Pi1,Pi2, . . .,Pit} denote a subset of the partic-
ipants for t< n andVIEWΠ(I) denote the combined
view of participants in I during the execution of pro-
tocolΠ (i.e., the union of the views of the participants
in I). We say that protocolΠ is t-private in presence
of semi-honest adversaries if for each coalition of size
at most t there exists a probabilistic polynomial time
simulator SI such that

{SI(inI , f (in1, . . ., inn)} ≡ {VIEWΠ(I),outI},

where inI =
⋃

Pi∈I{ini}, outI =
⋃

Pi∈I{outi}, and≡
denotes computational or statistical indistinguisha-
bility.

In the two-party setting, we have thatn= 2, t = 1,
and the participants’ inputsin1, in2 and outputsout1,
out2 are set as described above. In the multi-party
setting,n> 2, t < n/2, and the computational parties
are assumed to contribute no input and receive no out-
put to ensure that they can be disjoint from the input
and output parties. Then the input parties secret-share
their inputs among the computational parties prior the
protocol execution takes place and the output parties
receive shares of the output and reconstruct the re-
sult after the protocol termination. This in particular
means that, in order to comply with the above security
definition, the computation used in protocolΠ must
be data-oblivious, which means that the sequence of
operations and memory accesses used inΠ must be
independent of the input.

Performance of secure computation techniques is
of grand significance, as protecting secrecy of data
throughout the computation often incurs substantial
computational costs. For that reason, besides security,
efficient performance of the developed techniques is
one of our primary goals. In both of our settings,
computation of a linear combination of protected val-
ues can be performed locally by each participant (i.e.,
on encrypted values in the two-party setting and on
secret-shared values in the multi-party setting), while
multiplication is interactive. Because normally the
overhead of interactive operations dominates the run-
time of a secure multi-party computation algorithm,

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

246

its performance is measured in the number of inter-
active operations (such as multiplications, as well as
other instances which include distributing shares of
a private value or opening a secret-shared value in
the multi-party setting). Furthermore, the round com-
plexity, i.e., the number of sequential interactions,
can have a substantial impact on the overall execu-
tion time, and serves as the second major performance
metric. Lastly, in the two-party setting, public-key
operations (and modulo exponentiations in particular)
impose a significant computational overhead, and are
used as an additional performance metric.

In this work, we use notation[x] to denote that the
value ofx is protected, either through encryption or
secret sharing.

5 BUILDING BLOCKS

Before presenting our solution, we give a brief de-
scription of the building blocks from the literature
used in our solution. While the computation proceeds
on floating point numbers, we first present building
blocks that operate on integers followed by floating
point operations.

5.1 Integer Building Blocks

First note that having secure implementations of addi-
tion and multiplication operations alone can be used
to securely evaluate any functionality on protected
values represented as an arithmetic circuit. Prior lit-
erature, however, concentrated on developing secure
protocols for commonly used operations which are
more efficient than general techniques. In particular,
prior literature contains a large number of publica-
tions for secure computation on integers such as com-
parisons, bit decomposition, and other operations.
From all of the available techniques, we have chosen
the building blocks that yield the best performance for
our construction, and are listed below.

Note that we use the following complexity for el-
ementary arithmetic operations: addition and subtrac-
tion of two protected values in either two-party or
multi-party setting involves no communication. Mul-
tiplication in the multi-party setting requires a com-
putational party to send values to all other parties and
wait for values from them, where all parties commu-
nicate their values simultaneously. This is treated as
an elementary interactive operation in a single round.
In the two-party setting, multiplication of two en-
crypted valuesEncpk(a) andEncpk(b) is computed
interactively, during which one party chooses a ran-
dom valuer, formsEncpk(a− r) using homomorphic

properties of the encryption scheme, helps the second
party to decrypta− r, after which the parties locally
computeEncpk(br) andEncpk(b(a− r)), respectively,
and exchange the ciphertexts to obtainEncpk(ba).
This involves two sequential messages, which we
count as 2 rounds, and a small constant number of
modulo exponentiations. This two-party implementa-
tion of the multiplication operation is used in comput-
ing the complexity of the building blocks that follow.

• [c]←XOR([a], [b]) computes exclusive OR of bits
a andb as[a]+ [b]−2[a][b] using one multiplica-
tion.

• [c]←OR([a], [b]) computes OR of bitsa andb as
[a]+ [b]− [a][b].

• [r]← RandInt(ℓ) allows the parties to generate a
randomℓ-bit value[r] without any interaction. In
the two-party setting, the participants produce an
encryption ofr, and in the multi-party setting, the
parties use what can be viewed as a distributed
pseudo-random function to produce shares ofr
(see, e.g., (Catrina and Saxena, 2010)).

• [r] ← RandBit() allows the parties to produce
shares of a random bit[r] using one interactive
operation in the multi-party setting and using one
multiplication (more precisely, by executing the
XOR of two bits) in the two-party setting.

• [b]← Inv([a]) computesb= a−1 (in the respective
group or field). For a non-zeroa this operation can
be implemented by creating a random[r], comput-
ing and openingc= ra, and setting[b] = c−1[r].

• ([y1], . . ., [yℓ]) ← PreMul([x1], . . ., [xℓ]) computes
prefix-multiplication, where on input a sequence
of integersx1, . . .,xℓ, the output consists of val-
uesy1, . . .,yℓ, where eachyi = ∏i

j=1x j . The most
efficient implementation of this operation in our
framework that we are aware of is from (Catrina
and de Hoogh, 2010) that works only on non-zero
elements, which is sufficient for our purposes.

• ([y1], . . ., [yℓ]) ← PreOR([x1], . . ., [xℓ]) computes
prefix-OR of n input bits x1, . . .,xℓ and outputs
y1, . . .,yℓ such that eachyi =

∨i
j=1x j , which we

assume is implemented as in (Catrina and de
Hoogh, 2010).

• [b]← EQ([x], [y], ℓ) is an equality protocol that on
two ℓ-bit inputs x and y outputs a bitb which
is set to 1 iff x = y. We use a secure imple-
mentation of this operation from (Catrina and de
Hoogh, 2010), which is built using another pro-
tocol [b]← EQZ([x′], ℓ) that outputs bitb = 1 iff
x′ = 0 by callingEQZ([x]− [y], ℓ). EQ andEQZ
thus have the same complexity for the sameℓ.

Secure�Computation�of�Hidden�Markov�Models

247

• [b]← LT([x], [y], ℓ) is a comparison protocol that
on input two secret-sharedℓ-bit valuesxandyout-
puts a bitb which is set to 1 iffx < y. For the
multi-party setting, we use the protocol from (Cat-
rina and de Hoogh, 2010) and for the two-party
setting, we use the protocol from (Kerschbaum
et al., 2009).

• [r] ← TruncPR([x], ℓ,k) computes
⌊

[x]/2k
⌋

,
where ℓ is the bitlength ofx, with an additive
error c≤ 1. When such an error is permissible,
the protocol is significantly faster than precise
truncation. In the two-party setting, (Dahl et al.,
2012) proposes a constant-work protocol, while
(Catrina and de Hoogh, 2010) provides the
most efficient implementation in the multi-party
setting.

• [y] ← Trunc([x], ℓ,k) computes⌊[x]/2k⌋ for an
ℓ-bit x. This operation can be efficiently im-
plemented using, for example, the techniques
of (Catrina and de Hoogh, 2010) in the multi-party
setting. In the two-party setting, the most efficient
way of implementing the functionality is by ex-
ecuting[y]← TruncPR([x], ℓ,k), then correcting
the error (if any) by comparingx andy·2k by call-
ing [c]← LT([x],2k[y]), and setting the result to
[y]− [c].

• [xk−1], . . ., [x0]←BitDec([x], ℓ,k) performs bit de-
composition ofk least significant bits ofx, whereℓ
is the size ofx. An efficient implementation of this
functionality in both settings can be found in (Cat-
rina and Saxena, 2010), the complexity of which
is independent of the bitlength ofx ℓ.

• [2x] ← Pow2([x], ℓ) raises 2 in the (unknown)
powerx supplied as the first argument, where the
second argumentℓ specifies the bitlength of the
representation. To ensure that 2x can be repre-
sented usingℓ bits, the value ofx is expected to
be in the range[0, ℓ). We use an efficient imple-
mentation of this protocol from (Aliasgari et al.,
2013).

Many of these protocols are used as building
blocks in floating point protocols as opposed to be-
ing used directly in our solution. The complexities of
these protocols in the two-party and multi-party set-
tings are provided in Tables 1 and 2, respectively. In
Table 1, notationC denotes the ciphertext length in
bits, and notationD denotes the length of the aux-
iliary decryption information, which when sent by
one of the parties allows the other party to decrypts
a ciphertext. Communication is measured in bits,
and computation is measured in modulo exponenti-
ations. We list computational overhead incurred by
each party separately, with the smaller amount of

work first (which can be carried out by a client) fol-
lowed by the larger amount of work (which can be
carried out by a server).

5.2 Floating Point Building Blocks

For floating point operation we adopt the same float-
ing point representation that was used in (Aliasgari
et al., 2013). Namely, a real numberx is represented
as 4-tuple〈v, p,s,z〉, wherev is an ℓ-bit normalized
significand (i.e., the most significant bit ofv is 1), p is
a k-bit exponent,z is a bit that indicates whether the
value is zero, ands is a bit set only when the value is
negative. We obtain thatx= (1−2s)(1− z)v ·2p. As
in (Aliasgari et al., 2013), whenx = 0, we maintain
thatz= 1, v= 0, andp= 0.

The work (Aliasgari et al., 2013) provides a num-
ber of secure floating point protocols, some of which
we use in our solution as floating point building
blocks. While the techniques of (Aliasgari et al.,
2013) also provide the capability to detect and re-
port errors (e.g., in case of division by 0, overflow
or underflow, etc.), for simplicity of presentation, we
omit error handling in this work. The building blocks
from (Aliasgari et al., 2013) that we use here are:

• 〈[v], [p], [z], [s]〉 ← FLMul(〈[v1], [p1], [z1], [s1]〉,
〈[v2], [p2], [z2], [s2]〉) performs floating point
multiplication of its two real valued arguments.

• 〈[v], [p], [z], [s]〉 ← FLDiv(〈[v1], [p1], [z1], [s1]〉,
〈[v2], [p2], [z2], [s2]〉) allows the parties to perform
floating point division using〈[v1], [p1], [z1], [s1]〉
as the dividend and〈[v2], [p2], [z2], [s2]〉 as the
divisor.

• 〈[v], [p], [z], [s]〉 ← FLAdd(〈[v1], [p1], [z1], [s1]〉,
〈[v2], [p2], [z2], [s2]〉) performs the computation
of addition (or subtraction) of two floating point
arguments.

• [b]←FLLT(〈[v1], [p1], [z1], [s1]〉,〈[v2], [p2], [z2], [s2]〉)
produces a bit, which is set to 1 iff the first floating
point argument is less than the second argument.

• 〈[v], [p], [z], [s]〉 ← FLExp2(〈[v1], [p1], [z1], [s1]〉)
computes the floating point represen-
tation of exponentiation [2x], where
[x] = (1−2[s1])(1− [z1])[v1]2[p1].

These protocols were given in (Aliasgari et al., 2013)
only for the multi-party setting, but we also evaluate
their performance in the two-party setting using the
previously listed integer building blocks. The com-
plexities of these floating point protocols in both set-
tings are reported in Tables 1 and 2.

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

248

Table 1: Complexity of building blocks in the two-party setting.

Protocol Rounds Communication size
Computation complexity

Client Server
Mul 2 3C+D 2 3
Inv 1 2C+2D 4 4

TruncPR 2 3C+D 1 3
PreMul 5 6ℓD+11ℓC 13ℓ−4 16ℓ−5
PreOR 6 6ℓD+13ℓC 16ℓ−7 19ℓ−8
LT 2 D+6C 4 5
EQZ 6 (6logℓ+1)D+13logℓC ℓ+14logℓ+3 ℓ+17logℓ+2
Trunc 4 2D+9C 5 8
BitDec logk+2 (k logk+1)D+(3k logk+2k+1)C 2k logk+k+2 3k logk+k+2

Pow2 log logℓ+7 (6logℓ + (loglogℓ) logℓ + 1)D +
(3logℓ log logℓ+13logℓ+1)C

2logℓ log logℓ +
14logℓ−2

3logℓ log logℓ +
17logℓ−3

FLMul 13 10D+39C 17 25
FLDiv 2logℓ+8 4logℓ(D+3C)+4D+18C 6logℓ+12 12logℓ+16

FLAdd
logℓ+45+
log logℓ

(ℓ logℓ + 14logℓ + logℓ(log logℓ) + 6logk +
54)D + (15ℓ + 3ℓ logℓ + 19logℓ + 13logk +
3(logℓ) log logℓ+155)C

18ℓ + k + 2ℓ logℓ +
32logℓ + 14logk +
2logℓ log logℓ+125

21ℓ + k + 3ℓ logℓ +
40logℓ + 17logk +
3logℓ log logℓ+144

FLLT 10 (6logℓ+20)D+(13logℓ+63)C k+14logk+41 k+17logk+57

FLExp2
15logℓ+
38

(10ℓ+ℓ logℓ+12logℓ+ logℓ log logℓ+35)D+
(34ℓ + 3ℓ logℓ + 26logℓ + 3(logℓ) log logℓ +
107)C

40ℓ+2ℓ logℓ+28logℓ+
2logℓ log logℓ+44

53ℓ + 3ℓ logℓ +
3logℓ log logℓ +
34logℓ+59

Table 2: Complexity of building blocks in the multi-party setting.

Protocol Rounds Interactive operations
Mul 1 1

TruncPR 2 k+1
PreMul 2 3n−1
PreOR 3 5n−1
LT 4 4ℓ−2
EQZ 4 ℓ+4logℓ
Trunc 4 4k+1
BitDec logk k logk
Pow2 log logℓ+1 logℓ(log logℓ)+3logℓ−1
Trunc log logℓ+9 12ℓ+(logℓ) log logℓ+3logℓ
FLMul 11 8ℓ+10
FLDiv 2logℓ+7 2logℓ(ℓ+2)+3ℓ+8
FLAdd logℓ+ log logℓ+27 14ℓ+9k+(logℓ) log logℓ+ (ℓ+9) logℓ+4logk+37
FLLT 6 4ℓ+5k+4logk+13
FLExp2 12logℓ+ log logℓ+24 8ℓ2+11ℓ+ ℓ logℓ+(logℓ) log logℓ+7logℓ+16k+5

NewFLExp2 6logℓ+ log logℓ+31 4ℓ2+23ℓ+3ℓ logℓ+(logℓ) log logℓ+6logℓ+16k+1

5.3 Improved Exponentiation

Floating point exponentiation is the most expensive
operation used in the computation of our target HMM
functionality. Furthermore, because each element of
the HMM’s output probability matrix is derived using
GMM formula that involves exponentiation, the ex-
ponentiation protocol must be executed a large num-
ber of times. This means that any improvement in the
performance of this operation results in a faster exe-
cution of the overall computation. For that reason, in
this section, we describe a modified solution for the
exponentiation operation that improves performance
of the solution in (Aliasgari et al., 2013).

As mentioned in (Aliasgari et al., 2013), the ma-
jor overhead ofFLExp2 is caused by a sub-protocol
FLProd, which computes the product ofℓ floating
point values.FLProd accounts for 90% ofFLExp2’s
overall time and we therefore focus on improving per-
formance of this functionality. The original imple-
mentation ofFLProd in (Aliasgari et al., 2013) exe-
cutesℓ−1 floating pointFLMul in a tree like fashion
using a logarithmic number of rounds. In each round,
FLProd callsFLMul on all pairs of available values in
parallel and passes the result to the next round.FLMul

is given below. The comparison and the second trun-
cation are to ensure that the output’s significand is a
normalizedℓ-bit value, whereℓ is the bitlength of the

Secure�Computation�of�Hidden�Markov�Models

249

significand’s representation and the number of inputs
to FLProd.

〈[v], [p], [z], [s]〉 ← FLMul(〈[v1], [p1], [z1], [s1]〉, 〈[v2], [p2],
[z2], [s2]〉)

1. [v]← [v1][v2];
2. [v]← Trunc([v],2ℓ,ℓ−1);
3. [b]← LT([v],2ℓ, ℓ+1);
4. [v]← Trunc(2[b][v]+ (1− [b])[v], ℓ+1,1);
5. [z]← OR([z1], [z2]);
6. [s]← XOR([s1], [s2]);
7. [p]← ([p1]+ [p2]+ ℓ− [b])(1− [z]);
8. return〈[v], [p], [z], [s]〉;

Our main idea consists of changingFLProd by letting
the intermediate values slightly grow in each round
and removing the extra bits only after the final round
of multiplication. This allows us to remove the com-
parison and the second truncation fromFLMul. Note
that the performance improvement of this modifica-
tion is pronounced only in the multi-party setting be-
cause comparisons are very efficient in the two-party
setting. We call this modified multiplication protocol
as simplified floating point multiplication,SFLMul.
SFLMul performs a simple multiplication of two sig-
nificands and truncates the result byℓ− 1 bits. This
means the output significand is of length eitherγ+1
or γ bits when the input significands were of size
γ. In the first round ofFLProd, γ is equal toℓ. In
round i, for 1≤ i ≤ ⌈logℓ⌉, the maximum bitlength
is γ = ℓ+2i−1. To be able to multiply significands
in this round, we want to be able to represent values
larger than 2ℓ+ 2i − 2 bits and the solution to work
correctly on this larger length representation. Whenℓ
is a power of 2, which we assume for the simplicity
of exposition, 2ℓ+2⌈logℓ⌉−2= 3ℓ−2, which dictates
our choice of parameters inSFLMul protocol below.

[v]← SFLMul([v1], [v2])

1. [v]← [v1][v2];
2. [v]← Trunc([v],3ℓ−2, ℓ−1);
3. return[v];

After the last, (logℓ)th, round of multiplication in
FLProd, the resulting significand will have at most
2ℓ−1 bits, and the extra bits should be removed. This
can be done by a normalization method similar to the
one used in (Aliasgari et al., 2013), where we first
bit-decompose the value, compute the most signifi-
cant non-zero bit, and truncate the result to retainℓ
bits starting from the most significant non-zero bit.
We also need to adjust the resulting exponent by the
number of truncated bits. Our newFLProd protocol is
given next. Because it is used for exponentiation with
positive non-zero values, we disregard (constant) zero

and sign bits, and operate on significands[vi] and ex-
ponents[pi].

〈[v], [p]〉 ← FLProd(〈[v1], [p1]〉, . . .,〈[vℓ], [pℓ]〉)

1. for i = 1 to logℓ do
2. for j = 1 to ℓ/2i do in parallel
3. [v j]← SFLMul([v2 j−1], [v2 j]);
4. [u2ℓ−2], . . . , [u0]← BitDec([v1],2ℓ−1,2ℓ−1);
5. [h0], . . . , [h2ℓ−2]← PreOR([u2ℓ−2], . . . , [u0]);
6. [p0]← 2ℓ−1−∑2ℓ−2

i=0 [hi];
7. [2p0]← 1+∑2ℓ−2

i=0 2i(1− [hi]);
8. [v]← Trunc([2p0][v],2ℓ−1, ℓ−1);
9. [p]← Σℓ

i=1[pi]− [p0]+ ℓ(ℓ−1);
10. return〈[v], [p]〉;

The increase in the size of the intermediate values
from the original 2ℓ+1 to 3ℓ−2 requires that the rep-
resentation of the values is large enough to preserve
correctness of the computation. In the two-party set-
ting, this does not require any additional provisions
as the group size over which the computation takes
place is significantly larger than 23ℓ for any practi-
cal value ofℓ. In the multi-party setting, however,
the field size should be chosen appropriately to ac-
commodate the need to represent larger values. This
means that we need to increase the bitlength|p| from
> 2ℓ+ 1+σ to > 3ℓ− 2+ σ, whereσ is the secu-
rity parameter for achieving information-theoretical
statistical security. A larger field size yields slower
execution and thus decreased performance. To avoid
this issue, we utilize the idea of field and the cor-
responding share conversion proposed in (Damgård
and Thorbek, 2008; Cramer et al., 2005). All com-
putation prior and afterFLProd is performed with
the field size originally suggested in (Aliasgari et al.,
2013), while theFLProd protocol is executed using
a larger field. Fortunately, the share-conversion from
one field to another can in our case be performed non-
interactively with no communication cost.

6 SECURE VITERBI AND GMM
COMPUTATION

Now we are ready to put everything together and de-
scribe our privacy-preserving solution for HMM and
GMM computation based on Viterbi algorithm using
floating point numbers.

To execute theHMM algorithm given in section 3,
we first need to perform GMM computation to de-
rive the output probabilitiesb jk using equation 1. It
was suggested in (Smaragdis and Shashanka, 2007)
that theith components of a GMM,gi(x) = − 1

2(x−

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

250

µi)
TΣ−1

i (x− µi), is represented asxTYix+ yT
i x+ yi0,

whereYi =−
1
2Σ−1

i , yi =Σ−1
i µi , andyi0 =−

1
2µT

i Σ−1
i µi .

The suggested representation increases the number of
additions and multiplications than the original for-
mula and therefore would result in a slower perfor-
mance. In particular, becauseFLAdd is a relatively
expensive protocol, we would like to minimize the
use of this function. Thus we suggest that the par-
ties first subtractµi from the observed vectorx and
engage in matrix multiplication to computegi. Note
that the parties can run the above computation in par-
allel for all values ofi, j, andk in equation 1. After
its completion, the parties proceed with performing
the secure version of theViterbi algorithm.

The Viterbi algorithm requires (floating point)
multiplication, max, and argmax. The multiplica-
tion is implemented usingFLMul, while the max and
argmax operations can be implemented usingFLLT

in a tree like fashion (i.e., we first compare every two
adjacent elements, then every two maximum elements
from the first round of comparisons, etc.). To perform
argmax of two floating point numbers at indicesi and
j, let [b] be the outcome of theFLLT operation applied
to the numbers at these indices. Then we set argmax
to be equal to[b] j +(1− [b])i. Therefore, argmax of
a number of floating point values can be computed in
a tree like fashion using the above method for each
comparison.

After completing the recursion step of the Viterbi
algorithm, we need to retrieve the sequence of states
in the HMM that resulted in the most likely path
(lines b andc of the termination step in theViterbi
algorithm). If the sequence of these states can
be made publicly available, then the parties open
the values corresponding toq∗i for 1 ≤ i ≤ T to
learn the sequence. However, in a more likely
event that this sequence needs to stay protected from
one or more parties, we make use of the proto-
col Pow2 from (Aliasgari et al., 2013). To com-
pute [q∗t] = ψt+1([q∗t+1]) given [q∗t+1], we execute
BitDec(Pow2([q∗t+1]− 1,N),N,N) that will produce
N bits, all of which are 0 except the bit at position
q∗t+1. We then multiply each bit of the result by the
respective element of the vectorψt+1 and add the re-
sulting values to obtain[q∗t].

In the two-party setting, however, one of the par-
ties (e.g., the server) will learn the sequence as its out-
put and a more efficient approach is possible. The
idea is to take advantage of the fact that all encrypted
values of the matrixψ are held by both parties. In
this case, the party receiving the output retrieves
Encpk(ψt+1(q∗t+1)) using its knowledge ofq∗t+1 which
became available to that party in the previous step,
randomizes the ciphertext by multiplying it with a

fresh encryption of 0, and sends the result to the other
party. Note that this randomization does not change
the value of the underlying plaintext, but makes it
such that the party receiving it cannot link the ran-
domized ciphertext to one of the encryptions it pos-
sesses. This party then applies decryption to the re-
ceived ciphertext and sends it back to the receiving
party, who finishes the decryption, learnsq∗t , and con-
tinues to the next iteration of the computation.

The security of the proposed solution can be stated
as follows:

Theorem 1. The Viterbi solution above is secure both
in the two-partyandmulti-partysettings in the semi-
honest security model.

Proof Sketch.The security of our solution in the
semi-honest model with respect to Definition 1 is
based on the fact that we only combine previously
known secure building blocks. Such building blocks
take protected inputs and produce protected outputs,
which means that their composition does not reveal
information about private values. In particular, we
can apply Cannetti’s composition theorem (Canetti,
2000), which states that a composition of secure sub-
protocols leads to security of the overall solution, to
arrive at security of the overall solution. More for-
mally, in both two-party and multi-party settings, we
can build a simulatorS of the overall solution ac-
cording to Definition 1, which without access to pri-
vate data produces a view that cannot be distinguished
from the participants’ views in the real protocol exe-
cution. Our simulator calls the corresponding simu-
lators for the underlying building blocks. Then be-
cause each underlying simulator produces a view that
is either computationally or statistically indistinguish-
able (depending on the setting) from the view of a
particular party and no information is revealed while
combining the building blocks, the simulation of each
participant’s view in the overall protocol also cannot
be distinguished from a real protocol execution. We
thus obtain security of the solution in the semi-honest
model.

The security of our solution in the multi-party set-
ting can also be extended to the malicious security
model. In that case, to show security in presence
of malicious adversaries, we need to ensure that (i)
all participants prove that each step of their compu-
tation was performed correctly and that (ii) if some
dishonest participants quit, others will be able to re-
construct their shares and proceed with the rest of the
computation. The above is normally achieved using
a verifiable secret sharing scheme (VSS), and a large
number of results have been developed over the years
(e.g., (Gennaro et al., 1998; Hirt and Maurer, 2001;

Secure�Computation�of�Hidden�Markov�Models

251

Beerliova-Trubiniova and Hirt, 2008; Damgård et al.,
2008; Damgård et al., 2010) and others). In particu-
lar, because any linear combination of shares is com-
puted locally, each participant is required to prove
that it performed each multiplication correctly on its
shares. Such results normally work fort < n

3 in the
information theoretic or computational setting with
different communication overhead and under a vari-
ety of assumptions about the communication chan-
nels. Additional proofs associated with this setting
include proofs that shares of a private value were dis-
tributed correctly among the participants (when the
dealer is dishonest) and proofs of proper reconstruc-
tion of a value from its shares (when not already im-
plied by other techniques). In addition, if at any point
of the computation the participants are required to in-
put values of a specific form, they would have to prove
that the values they supplied are well formed. Such
proofs are needed by the implementations of some of
the building blocks (e.g.,RandInt).

Thus, security of our protocols in the malicious
model in the multi-party setting can be achieved by
using standard VSS techniques, e.g., (Gennaro et al.,
1998; Cramer et al., 2000), where a range proof, e.g.,
(Peng and Bao, 2010) will be additionally needed for
the building blocks. These VSS techniques would
also work with malicious input parties (who distribute
inputs among the computational parties), who would
need to prove that they generate legitimate shares of
their data.

To show security of our solution in presence of
malicious adversaries in the two-party setting, we
likewise need to show that the participants perform all
operations correctly. Because Paillier encryption is an
additively homomorphic encryption that can be used
as a threshold encryption scheme, we can employ ex-
isting zero-knowledge proofs of knowledge for Pail-
lier ciphertexts. Example existing proofs for Paillier
encryption include a proof of knowledge of plain-
text (Damgård and Jurik, 2001; Baudron et al., 2001),
a proof that two plaintexts are equal (Baudron et al.,
2001), a proof that a ciphertext encrypts one value
from a given set (Damgård and Jurik, 2001; Baudron
et al., 2001), a proof that a ciphertext encrypts a prod-
uct of two other given encrypted values (Cramer et al.,
2001), and a range proof for the exponenta of plain-
text ba (Lipmaa et al., 2002). We leave the investiga-
tion of how these and possibly newly designed zero-
knowledge proofs can be used to achieve security of
our solution in the malicious model in the two-party
setting to the full version of this work.

Lastly, we defer experimental results that empiri-
cally evaluate performance of the developed solution
to the full version of this work.

7 CONCLUSIONS

In this work, we treat the problem of privacy-
preserving Hidden Markov models computation
which is commonly used for many applications in-
cluding speaker recognition. We develop the first
provably secure techniques for HMM’s Viterbi and
GMM computation using floating point arithmetic.
Our solutions are designed for both two-party com-
putation that utilizes homomorphic encryption and
multi-party computation based on secret sharing,
which cover a wide variety of real-life settings, and
are designed to minimize their overhead.

ACKNOWLEDGEMENTS

This work was supported in part by grants CNS-
1223699 from the National Science Foundation and
FA9550-13-1-0066 from the Air Force Office of Sci-
entific Research. Any opinions, findings, and conclu-
sions or recommendations expressed in this publica-
tion are those of the authors and do not necessarily
reflect the views of the funding agencies.

REFERENCES

Aliasgari, M., Blanton, M., Zhang, Y., and Steele, A.
(2013). Secure computation on floating point num-
bers. In Network and Distributed System Security
Symposuim (NDSS).

Baudron, O., Fouque, P.-A., Pointcheval, D., Stern, J., and
Poupard, G. (2001). Practical multi-candidate election
scheme. InACM Symposium on Principles of Dis-
tributed Computing (PODC), pages 274–283.

Beerliova-Trubiniova, Z. and Hirt, M. (2008). Perfectly-
secure MPC with linear communication complexity.
In Theory of Cryptography Conference (TCC), pages
213–230.

Canetti, R. (2000). Security and composition of multi-
party cryptographic protocols.Journal of Cryptology,
13(1):143–202.

Catrina, O. and de Hoogh, S. (2010). Improved primitives
for secure multiparty integer computation. InSecurity
and Cryptography for Networks (SCN), pages 182–
199.

Catrina, O. and Saxena, A. (2010). Secure computation with
fixed-point numbers. InFinancial Cryptography and
Data Security (FC), pages 35–50.

Cramer, R., Damgård, I., and Ishai, Y. (2005). Share conver-
sion, pseudorandom secret-sharing and applications to
secure computation. InTheory of Cryptography Con-
ference (TCC), pages 342–362.

Cramer, R., Damgård, I., and Maurer, U. (2000). Gen-
eral secure multi-party computation from any linear

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

252

secret-sharing scheme. InAdvances in Cryptology –
EUROCRYPT, pages 316–334.

Cramer, R., Damgård, I., and Nielsen, J. (2001). Multi-
party computation from threshold homomorphic en-
cryption. InAdvances in Cryptology – EUROCRYPT,
pages 280–289.

Dahl, M., Ning, C., and Toft, T. (2012). On secure two-
party integer division. InFinancial Cryptography and
Data Security (FC), pages 164–178.

Damgård, I., Ishai, Y., and Krøigaard, M. (2010). Perfectly
secure multiparty computation and the computational
overhead of cryptography. InAdvances in Cryptology
– EUROCRYPT, pages 445–465.

Damgård, I., Ishai, Y., Krøigaard, M., Nielsen, J., and
Smith, A. (2008). Scalable multiparty computation
with nearly optimal work and resilience. InAdvances
in Cryptology – CRYPTO, pages 241–261.

Damgård, I. and Jurik, M. (2001). A generalisation, a sim-
plification and some applications of Paillier’s proba-
bilistic public-key system. InInternational Workshop
on Practice and Theory in Public Key Cryptography
(PKC), pages 119–136.

Damgård, I. and Thorbek, R. (2008). Efficient conversion
of secret-shared values between different fields. ePrint
Archive Report 2008/221.

Franz, M., Deiseroth, B., Hamacher, K., Jha, S., Katzen-
beisser, S., and Schröder, H. (2012). Towards secure
bioinformatics services (short paper). InFinancial
Cryptography and Data Security (FC), pages 276–
283. Springer.

Gennaro, R., Rabin, M., and Rabin, T. (1998). Sim-
plified VSS and fast-track multiparty computations
with applications to threshold cryptography. InACM
Symposium on Principles of Distributed Computing
(PODC), pages 101–111.

Hirt, M. and Maurer, U. (2001). Robustness for free in un-
conditional multi-party computation. InAdvances in
Cryptology – CRYPTO, pages 101–118.

Kerschbaum, F., Biswas, D., and de Hoogh, S. (2009). Per-
formance comparison of secure comparison protocols.
In International Workshop on Database and Expert
Systems Application (DEXA), pages 133–136.

Lipmaa, H., Asokan, N., and Niemi, V. (2002). Secure
Vickrey auctions without threshold trust. InFinancial
Cryptography (FC), pages 87–101.

Nguyen, H. and Roughan, M. (2012a). Multi-observer
privacy-preserving hidden markov models. In
Network Operations and Management Symposium
(NOMS), pages 514–517.

Nguyen, H. and Roughan, M. (2012b). On the identifiabil-
ity of multi-observer hidden markov models. InInter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1873–1876.

Paillier, P. (1999). Public-key cryptosystems based on com-
posite degree residuosity classes. InAdvances in
Cryptology – EUROCRYPT, pages 223–238.

Pathak, M., Portelo, J., Raj, B., and Trancoso, I. (2012).
Privacy-preserving speaker authentication.Informa-
tion Security Conference (ISC), pages 1–22.

Pathak, M. and Raj, B. (2011). Privacy preserving speaker

verification using adapted gmms. InInterspeech,
pages 2405–2408.

Pathak, M., Rane, S., Sun, W., and Raj, B. (2011). Pri-
vacy preserving probabilistic inference with hidden
Markov models. InInternational Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 5868–5871.

Peng, K. and Bao, F. (2010). An efficient range proof
scheme. InIEEE International Conference on Infor-
mation Privacy, Security, Risk and Trust (PASSAT),
pages 826–833.

Rabiner, L. (1989). A tutorial on hidden Markov-models
and selected applications in speech recognition.Pro-
ceedings of the IEEE, 77(2):257–286.

Shamir, A. (1979). How to share a secret.Communications
of the ACM, 22(11):612–613.

Shashanka, M. (2010). A privacy preserving framework for
gaussian mixture models. InIEEE International Con-
ference on Data Mining Workshops (ICDMW), pages
499–506. IEEE.

Smaragdis, P. and Shashanka, M. (2007). A framework for
secure speech recognition.IEEE Transactions on Au-
dio, Speech, and Language Processing, 15(4):1404–
1413.

APPENDIX

Security Weakness of (Pathak and Raj,
2011)

Here we show that the logsum protocol used
in (Pathak and Raj, 2011) for HMM computation has
a security flaw, which demonstrates the importance of
rigorous analysis of protocols with respect to the level
of security they can offer.

The input to the two-party logsum protocol
in (Pathak and Raj, 2011) consists ofN encrypted log-
arithms of private valuesxi . During the protocol, one
party, Alice, learns productserxi for all inputs and sin-
gle randomr. Alice thus knows the ratios of the pri-
vate values. These ratios reveal a substantial amount
of information about the secret values, and in partic-
ular the relative magnitude of the inputs, no informa-
tion about which should be revealed. This informa-
tion leakage can lead to more significant or even full
data recovery if these private values are used in other
operations and a function of them is known or if an
outside information about at least one of thexi ’s is
available (e.g., if one of them comes from Alice). For
example, if Alice knows only onexi , she will be able
to recover all remaining private values. This clearly
undermines the security of the designed system and is
unacceptable for a security solution.

Secure�Computation�of�Hidden�Markov�Models

253

