
 
REFERENCES 
Ahmadi, O., Hankerson, D., & Menezes, A. (2007). 
Software implementation of arithmetic in. Arithmetic 
of Finite Fields, 85-102. 
Barreto, P., Kim, H., Lynn, B., & Scott, M. (2002). 
Efficient algorithms for pairing-based cryptosystems. 
Advances in Cryptology—CRYPTO 2002, 354-369. 
Bernstein, D., & Lange, T. (2007). Faster addition and 
doubling on elliptic curves. Advances in Cryptology, 
13, 29-50. Retrieved from http://cr.yp.to/newelliptic/ -
20070906.pdf 
Blake, I., Seroussi, G., & Smart, N. (1999). Elliptic curves 
in cryptography. (1st ed.). London: Cambridge 
University Press. 
Boneh, D., & Franklin, M. (2001). Identity-based 
encryption from the Weil pairing. In Advances   in 
Cryptology—CRYPTO 2001 (pp. 213-229). Springer 
Berlin/Heidelberg. 
Das, A., & Madhavan, C. E. V. (2009). Public-key 
cryptography: theory and practice. (1st ed.). New 
Delhi: Dorling Kindersley. 
Galbraith, S. (2001). Supersingular curves in 
cryptography. Advances in Cryptology—ASIACRYPT 
2001, 495-513. 
Hankerson, D., Menezes, A., & Vanstone, S. (2004). 
Guide to elliptic curve cryptography. (1st ed.). 
Springer. 
Harrison, K., Page, D., & Smart, N. P. (2002). Software 
implementation of finite fields of  characteristic  three, 
for use in pairing-based   cryptosystems.LMS 
Journal of Computation   and   Mathematics, 5(1), 
181-193. 
Iyengar, V. S. (2012). Novel elliptic curve scalar 
multiplication algorithms for faster and safer public-
key cryptosystems. International Journal on 
Cryptography and Information Security, 2(3), 57-66. 
doi: 10.5121/ijcis.2012.2305 
Koblitz, N. (1994). A course in number theory and 
cryptography. (2 ed.). New York, NY: Springer 
Koblitz, N. (1987). Elliptic curve 
cryptosystems. Mathematics of Computation, 48(177). 
203–209. Retrieved from http://www.ams.org/ 
journals/mcom/1987-48-177/S0025-5718-1987-
0866109-5/S0025-5718-1987-0866109-5.pdf 
Lawson, N. (2009). Side-channel attacks. IEEE, 7(6), 65-
68. Retrieved from http://rootlabs.com/articles/ 
IEEE_SideChannelAttacks.pdf 
Lidl, R. and Niederreiter, H. Introduction to Finite Fields 
and Their Applications, rev.  ed. Cambridge,  England: 
Cambridge University Press, 1994. 
Lidl, R. and Niederreiter, H. (Eds.). Finite Fields, 2nd ed. 
Cambridge, England: Cambridge   University  Press, 
1997. 
O’Connor, S.E. (2013) Primpoly (Version 11.0) 
[Computer Software]   Available from: http://www. 
seanerikoconnor.freeservers.com/Mathematics/Abstrac
tAlgebra/PrimitivePolynomials/overview.html 
Partow, A. (2006) Galois Field Arithmetic Library 
(Version 5.0) [Computer Software]   Available 
from: 
http://www.partow.net/projects/galois/#GFALLice nse 
Silverman, J. H. (2006). A friendly introduction to number 
theory.
 (3rd ed., Vol. 3). Pearson Prentice Hall.  
What is diffie-hellman (n.d.). RSA Labs: PKCS, 7, 
Retrieved from http://www.rsa.com/rsalabs/ 
node.asp?id=2248 
(2012). Edwards Curve. Wikipedia, the free encyclopedia, 
Retrieved from http://en.wikipedia.org/wiki/ 
File:Edward-curves.svg 
SECRYPT2013-InternationalConferenceonSecurityandCryptography
536