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Abstract: The most valuable element of biometric security systems are the personal features of its users. Characteristics
of individuals are unique and must be protected. We focus in this paper on methods of protection of user
identity in systems based on keystroking. Our approach assumes giving minimal information to adversaries
and the best responsiveness of the system regardless of user representation or possible usage. We consider
keystroking not only in the context of keyboard, but also touch screen, pin pad and any other input device
that could be used for typing. We present as results several complete security solutions that are applicable for
software as well as hardware systems.

1 INTRODUCTION

Biometric security systems have been used for many
years. They are based on physical and behavioral
characteristics inherent in the body. Keystroke dy-
namics is a behavioral biometric feature defined by
our way of typing. Among its advantages, it does not
require an additional reader or scanner because every
computer is equipped with some kind of keyboard.
Another advantage is that keystroke dynamics can be
used for continuous authentication of the user; that is,
as long as the user is at the workstation, the system
can continuously verify his identity. In numerous pa-
pers authors consider the effectiveness of authoriza-
tion or identification systems (Monrose and Rubin,
1997), the decreasing ofFalse Acceptance Rateor
False Rejection Rate, more accurate models of users
(Bergadano et al., 2002) and other issues connected
with positive usage of system. In this paper we would
like to focus on protecting the keystroke identity of
individuals. Once stolen, biometric data can be used
indefinitely, thus it is important to secure this infor-
mation.

Structure and Contribution of Paper. In Section 2
we describe briefly how keystroking systems work,
what kind of data we collect and how we measure
these data using toolkits that we developed for in-
tercepting raw data from the keyboard—keyloggers.
We also identify security threats related to the steal-
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ing of user identity and impersonation. Section 3 is
devoted to issues connected with protecting an in-
dividual’s identity. There we present our protection
algorithms with implementation details and consider
many use cases. A hardware approach to the problem
of identity protection is discussed in Section 4. There
we also develop our microprocessor device for USB
keyboards and consider protection of Smart Card ter-
minals/readers. Analysis of the algorithms’ effective-
ness is described in Section 5. The final Section 6
contains our conclusion and recommendation for fu-
ture work.

Related Work. There are many papers and im-
plementations based on keystroke dynamics. Au-
thors consider mostly classification algorithms (Za-
hid et al., 2009) or extraction features from inputted
text (Zhong et al., 2012). Discussion about discrimi-
nation of digraphs and trigraphs for free text can be
found in (Sim and Janakiraman, 2007). An inter-
esting approach to identity verification based on the
analysis of the typing rhythms of individuals on dif-
ferent texts is presented in (Bergadano et al., 2003),
but to our knowledge the first attempt to implement
software protection from a bot attacker is in (Stefan
et al., 2012). Work on the security of user identity has
been carried out in part by (Klonowski et al., 2012)
and (Wodo, 2012).

2 KEYSTROKING SYSTEM

Every keystroking system first collects data from the
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user and checks its compliance during authentication
or identification. The process of gathering data could
be performed once (e.g. the user may type his login
and password a dozen times or a free text sample of
demanded length) as well as every time the individual
uses the system. Such a solution can be used for con-
tinuous authentication to assure that only legitimate
users have access to a certain resource, e.g. worksta-
tion. Inserted data is processed as digraphs (two con-
secutive keys) or longer n-graphs depending on the
approach (considering context or not).

2.1 Data Collection

In the case of keystroking dynamics the user infor-
mation can be derived from timings coming from a
keyboard or other input device, e.g., touch screen or
pin pad. It is essential to gain access to raw data in
real-time, because we operate on time measured in
milliseconds. Any disruption or additional signal pro-
cessing can alter timings. We focused on gathering
the keyboard eventskeyUpandkeyDownconsisting
of the key pressed or released and the timestamp of
each event. This allows us to calculatedwell timeand
flight time timings for each digraph or even each n-
graph.

One way to collect such data is to install a hard-
ware keylogger on USB/PS2 port and communi-
cate with it by simulating keyboard events. An-
other approach—our choice—is to intercept keyboard
events in software before the operating system pro-
cesses them. This solution is highly dependent on the
OS; one can, for example, write a new function for the
keyboard interrupt, install a daemon/service or hook
into the kernel.

We developed software toolkits to facilitate
the process of data collection for Windows XP/7
and the Linux operating systems. The im-
plementation for Windows XP usesWinAPI’s
SetWindowsHookEx() function for connect global
hook, WH_JOURNALRECORD to queue of messages
and the GetSystemTime() function to deal with
timestamps. For Windows 7 we simply used the
GetAsyncKeyState() method to get all keyboard
events. For the Linux operating system we captured
raw keyboard data from the event device node for ex-
ample/dev/input/event1.

2.2 User’s Representation

Generally, our considerations are independent of the
adopted model user’s representation because we work
on raw data that is coming directly from an input de-
vice. However, in the case where we want to imper-

sonate a user, we have to take into account way of
storing and transforming keystroke data (3.4).

For each digraph we construct a histogram of tim-
ings (divided in 1 ms slots for dwell- and flight- time).
We reduce outliers and interpolate the gaps among the
most common values in order to avoid sequences of
the identical timings (it can happen in case of too lit-
tle data). In the end we normalize these histograms
and use them as a probability distribution of particu-
lar timings.

2.3 Security Threat

There are risks associated with the use of keystroke
dynamics in authorization systems. A user’s
keystroke identity is permanent like other biometric
features. It is not an easy task for a person to change
his typing rhythm. Thus, once an adversary captures
a user’s identity he may use it multiple times to gain
access to the system. This is a security threat for
systems based on authorization by keystroke dynam-
ics since such systems provide no additional secu-
rity. Other security measures must be applied to make
those systems secure.

Another security threat concerns the privacy of
users. As shown in (Klonowski et al., 2012) the
keystroke identity may be used to uniquely identify
a user. An adversary may capture the data flowing
to a system and create profiles of its users. Since the
adversary is able to create such profiles he may dis-
tinguish between users and break the anonymity of
systems that are designed to preserve it. Note that
this may be also a privacy threat concerning elec-
tronic IDs. An adversary may capture the pin pad
input while the user is typing his PIN. Thus even if
communication and authorization protocols for eIDs
preserve privacy, such side channel attacks may leak
information about users activities.

3 IDENTITY PROTECTION

In this section we would like to focus on protecting
the biometric data of legitimate users, which could
be intercept during daily tasks. As mentioned in 2.3,
once stolen, biometric data can be used indefinitely
to impersonate a user because it is mutually corre-
lated with the individual. Our aim is to change the
user’s original timings and therefore provide no ad-
ditional information to the attacker about the user’s
typing rhythm or even that any protection system is in
place. We want the adversary to think he is gaining
valuable information, but in fact is collecting useless
data. The longer this situation persists the better for
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the user because if the attacker is unaware of the pres-
ence of security software, he will not try to disable
it.

All presented solutions are based on a buffer and
delay algorithm, and therefore require access to time
indicators. Keyboard events (key downand key up)
are intercepted before reaching the application level
of the operating system and are stored in memory.
A timestamp of each event is recorded, and after
an appropriate delay the event is released, similar to
(Klonowski et al., 2012).

In our research we have considered two types of
timings, i.e.,flight time and dwell time, in order to
provide the best possible security.

3.1 Constant Delay Algorithm

This kind of algorithm seems to be the easiest to
implement. It works by simply gathering keyboard
events in a buffer (queue) and releasing them one by
one afterd-timeperiod passes. Parameterd regulates
the delay and obfuscation threshold. This algorithm
works perfectly for timings under thresholdd gener-
ating uniform sequences of timings for typed data.
Above this threshold it works in immediate mode
(that is, it does not delay timings) to keep the sys-
tem responsive and does not protect the user. Such an
approach provides a very high level of security for at
least moderate-skilled typists. It is unfortunately use-
less for people who cannot maintain a typing rhythm
at the minimum level of the set threshold.

According to both our research and (Song et al.,
2001) the vast majority offlight timesare below 400–
500 ms. The average delay forflight timeis about 200
ms. For that reason we recommend settingd between
200–250 ms. Such a setting allows one to obfuscate
almost every timing. Recall that a delay is generated
after every event, i.e.key downand key up. So in
case of typing digraphth, we would have the follow-
ing sequence of events:keyDown(t), keyUp(t), key-
Down(h), keyUp(h). Events could be generated in
another order because the user can hold a key for a
longer time and press another one, therefore we have
to consider this scenario as well. Practically, this so-
lution gives us about 400–500 ms time for typing an-
other character of input text providing protection of
our identity. If there is a well trained typist or a be-
ginner, parameterd could be align to avoid losing flu-
ency of work for the former and protection of the user
in the latter. We implement these considerations in
Algorithm 1.

Algorithm 1: CONSTANT TIME DELAY.

Input: d: 10-bit integer (delay in [ms])
1 begin
2 Bu f f er: Quene ;
3 while wait for signal Tdo
4 T→ INPUT ;
5 if Bu f f er.Empty() then
6 T→ OUTPUT ;
7 SetTimer(d) ;
8 else
9 Bu f f er.Enqueue(T) ;

10 ;
11 proc TimerTimeout ;
12 begin
13 Bu f f er.Dequeue()→ OUTPUT ;
14 if !Bu f f er.Empty() then
15 SetTimer(d) ;

3.2 Random Noise Algorithm

It is obvious that the solution provided by Algorithm
1 is easily detected by the adversary. In order do en-
hance stealth mode of our protection system we con-
sider some modification of the previously described
algorithm. First of all, we decide for each keyboard
event whether it will be delayed or not (with probabil-
ity 0.5). Next, we generate a set of timing extensions
between 15 and 70 ms. Such an approach allows us
to create an impression of typing by a real user. This
method is applicable only for well-trained typists, be-
cause the random noise algorithm will only slightly
affect a user’s timings, and therefore cannot provide a
long delay. In fact, this is not real random noise ap-
proach because we do not have the option to shorten
timings. This is because we modify delays on the fly,
and so this algorithm is more like the moving thresh-
old method. Algorithm 2 includes the above assump-
tions.

3.3 PUF Method

The physical unclonable function (PUF) is a function
that is easy to evaluate but hard to predict. In addi-
tion, it is easy to create a PUF device but impossible
(in practice) to make a copy of it. We show how to use
those features to create Algorithm 3 which changes
the keystroke identity of a user in a static and unclon-
able way. The idea of this solution is that a user may
create two or more keystroke identities (using PUF
based devices) and switch between them (using, for
example, passwords or private logins) whenever he
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Algorithm 2: RANDOM NOISE DELAY.

1 begin
2 Bu f f er: Quene ;
3 while wait for signal Tdo
4 T← INPUT ;
5 if Bu f f er.Empty() then
6 T→ OUTPUT ;
7 Timer Evoke();
8 else
9 Bu f f er.Enqueue(T) ;

10 ;
11 proc TimerEvoke ;
12 begin
13 if Random(0,1)≥ 0.5 then
14 d← PickAtRandom(15,70);
15 else
16 d← 0;

17 SetTimer(d) ;

18 ;
19 proc TimerTimeout ;
20 begin
21 Bu f f er.Dequeue()→ OUTPUT ;
22 if !Bu f f er.Empty() then
23 Timer Evoke() ;

likes. Even if an adversary has access to the device he
is unable to clone it.

Let φ : {0,1}h+7→ {0,1}h+7 be a PUF function
and letH : {0,1}h→ {0,1}h be a hash function, e.g.
SHA1 with h = 160. Algorithm 3 takes as input a
passwordpassand computes the real time gap be-
tween two consecutive keyboard events (stored in a
buffer) and changes this time using the password and
the PUF function. Due to space reasons we only show
the function used to transform the timing between the
two consecutive keyboard events.

Note that we do not change the three most signifi-
cant bits of the timings. Thus, theTrans_Time proce-
dure computes a value which differs from the original
one by at most 128 ms. However, such small differ-
ences change the keytroke characteristics of a user

Algorithm 3: PUFBASED TRANSFORMATION.

Input: pass: String,time: 10-bit integer
1 begin
2 proc TransTime ;
3 begin
4 passH ← H(pass) ;
5 res← φ(passH ||time9 . . . time0);
6 return time9 time8 time7 res6 . . . res0

and make it difficult for the adversary to determine
whether the user uses protection against attacks. No-
tice further that if the adversary has access to the PUF
based device of a user he may send arbitrary chal-
lenges to theφ function and store the results. How-
ever, because the passwords for each identity are se-
cret, the adversary would have to guess thepassH
value for the user’s identities or challenge all possi-
ble values, which is computationally infeasible for a
largeh. Thus, unless the user’s passwords are known
an adversary is not able to clone the user’s device and
to link the user’s identities.

3.4 Pretending other User Algorithm

This solution cannot be implemented in real time,
because it requires a sequence of characters in
order to calculate new timings. The algorithm
works as follows: first, it buffers keystrokes until
synchronization—signaled by a break in typing (≥
500 ms). Next, new timings are calculated on the
basis of data previously gathered from other users
(according to 2.2). Finally, the algorithm flushes
the buffered keystrokes with the modified delays. In
essence we replace the original timing of a particular
digraph with those taken from the distribution defined
for another user.

We recommend this solution in cases where real-
time communication is not critical and we can afford
to capture text first and later inject it (e.g. login form).
An adversary will have serious problems identifying
this security method because the algorithm pretends
to be another individual. Generally this solution pro-
vides high security and its quality depends only on the
user’s data gathered previously.

3.5 Binary Representation Probability
Algorithm

We use the idea of Algorithm 3, i.e. changing the gap
between two consecutive keyboard events. However,
in Algorithm 4 we use a probabilistic change. The
algorithm takes as input a parameterp ∈ (0,1) and
flips thei-th bit of the gap with probabilitypi+1.

Note that while the significance of the bits raises
the probability of a change falls.

4 HARDWARE DEVICE

In order to provide protection of a user’s biomet-
ric identity we could implement our security algo-
rithms in external hardware devices (similar to hard-
ware keylogger) or include them in internal micro-
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Algorithm 4: BINARY REPRESENTATIONPROBA-
BILITY .

Input: p: double
1 proc TransTime ;
2 begin
3 res← time;
4 for i ∈ 0, . . . ,9 do
5 r ←Rand(0,1);
6 if r < pi+1 then
7 resi ← resi⊕1

8 return res9 . . . res0

processor systems. Such an approach guarantees very
high security, because an adversary must have physi-
cal access to the device in order to disable the protec-
tion or gain raw data. This solution eliminates any
kind of software attack as well, because the appli-
cation layer gets already modified data. Command
communication between the security unit and the user
can be achieved by simulating input device events
(e.g. keyboard keystrokes). This special service mode
could be invoked by inserting a code sequence, com-
pare (Wodo, 2012).

4.1 Keyboard Security Unit

We propose a simple microprocessor device to pro-
tect the keyboard. It works as aman in the mid-
dleunit—plugged in between the workstation and the
keyboard. This solution could be implemented in a
form of USB/PS2 connector, which transforms the
signal and adds appropriate delays.Each of the algo-
rithms presented earlier may be adopted for this kind
of device (depending, of course, on the capabilities of
the selected microprocessor).

In our opinion such a solution provides the highest
level of security because it completely isolates any ad-
versary from any influence on the protection system.
In addition, it is much quicker than software applica-
tion and does not use computer resources. The draw-
back of this method is that it can be applied only to
the externally connected input devices.

4.2 Smart Card Security

We stated earlier that the anonymity of eID users may
be threatened by an adversary that captures the pin
pad input. Note that for protection we must use an off-
card solution since the user types his pin on the ter-
minal/reader side. The adversary may be the terminal
owner or producer so any countermeasures applied in-
side the terminal may also be unsafe. One possible

solution is for users to use their own pin pad like de-
vices which simulate the input of the user on the real
pad. This approach has some disadvantages. For ex-
ample, users would have to carry additional baggage,
and there is also the issue of powering such a device.
Another possibility is to use an additional RFiD based
Smart Card. A user would have to first insert his eID
into the terminal/reader and then use the RFiD card
(with a unique number stored in it) to authorize trans-
action instead of typing his PIN. Note this solution
is much cheaper and less complex that the first one.
However, is some cases it is desirable to demand that
a user types the PIN and that the transaction is not
performed by a computer (which might be the case if
we use the second solution).

5 EFFICENCY ANALYSIS

In this section we present and discuss the results of
our tests. We captured and recorded sample data using
our keylogger-like program (see 2.1) (about 14000
key events). The timings between corresponding key-
board events (i.e.key up, key down) are presented in
Figure 1. Note that the data was truncated to 300 ms
due to the fact that, for our test user, a higher timing
corresponds to a pause in typing.

Figure 1: Unmodified Timings.

Then, we transformed the raw data according to
algorithms presented in Section 3. Note that the best
security level gives the constant time delay algorithm.
It can be seen in Figure 2 that events occur with con-
stant delays. Thus, the adversary receives no informa-
tion about the typing rhythm of the user. However, he
is aware that a protection is used by the individual.

As we can observe from Figure 2, random noise
delay algorithm obfuscates with certain probability
(p) timings by adding random delay at the level of
dozens of milliseconds. An adversary cannot recog-
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nize which timings were delayed, which results in a
high security level. Moreover, thanks to changed tim-
ings distribution, which is similar to those of a real
user, it is much harder to determine that any protec-
tion is used in that case. Admittedly this method af-
fects significantly short timings so it is more appropri-
ate for well-trained typist. Manipulatingp results in
shifting the occurrences of real timings to higher val-
ues and decreasing the cardinality of short timings.

The PUF based algorithm, as can be seen from
Figure 2, changes the occurrence of keyboard events
in a significant but deterministic way. Note that a dif-
ferent passwords would give different results. It is
obvious that such characteristics give the adversary
no substantial information about the user or whether
he is using any protection. However, a context analy-
sis of the data discloses that protection is used. Note
that it may happen that for a given PUF function two
occurrences of a digraph (e.g.ok) differ by about 1–
5 ms in the original message, while after the trans-
formation the difference can be much higher. Thus,
this solution may significantly change the variation of
some digraphs, making it easy for an adversary to de-
tect this kind of protection.

Note that the binary representation probability al-
gorithm flattens the histogram. As can be observed
from Figure 2 (probabilityp= 0.5) with the increase
of the probabilityp the timing distribution becomes
more similar to uniform distribution. Obviously, the
adversary is able to detect that the user is using pro-
tection if we use a higher probabilityp. However, it
should be harder for the adversary to gain any infor-
mation about the identity of the user as the histogram
becomes flatter.

Figure 2: Modified Timings.

6 CONCLUSIONS

In this paper we consider security algorithms work-
ing mostly in real time and what makes them difficult
to implement in real environments (responsiveness of
the system). If we could record the whole stream of
data and replay it with modified timings we would be
able to create any sequences of keyboard events we
want.

The presented solutions provide, in our opinion, a
high security level, but could effect using keystroking
as a method of verifying identity. In that case it is a
tradeoff between usability and security. For instance
the constant-time algorithm destroys the possibility of
distinguishing users, on the other hand the PUF based
algorithm transforms only one user identity into an-
other. We consider protection of identity regardless
of the user’s representation model which means that
the quality of intercepted information depends on as-
sumptions of adversary (e.g. is any protection used,
what kind of algorithm is used).

We highly recommend using a hardware-based so-
lution, if possible, because it has the following advan-
tages: (1) It cannot be disabled remotely; and (2) It
can perform more effective calculations without bur-
dening the CPU of the workstation.
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