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Abstract: Collaborative data mining has become very useful today with the immense increase in the amount of data 
collected and the increase in competition. This in turn increases the need to preserve the participants’ 
privacy. There have been a number of approaches proposed that use Secret Sharing for privacy preservation 
for Secure Multiparty Computation (SMC) in different setups and applications. The different multiparty 
scenarios may have parties that are semi-honest, rational or malicious. A number of approaches have been 
proposed for semi honest parties in this setup. The problem however is that in reality we have to deal with 
parties that act in their self-interest and are rational. These rational parties may try and attain maximum gain 
without disrupting the protocol. Also these parties if cautioned would correct themselves to have maximum 
individual gain in the future. Thus we propose a new practical game theoretic approach with three novel 
punishment policies with the primary advantage that it avoids the use of expensive techniques like 
homomorphic encryption. Our proposed approach is applicable to the secret sharing scheme among rational 
parties in distributed data mining. We have analysed theoretically the proposed novel punishment policies 
for this approach. We have also empirically evaluated and implemented our scheme using Java. We 
compare the punishment policies proposed in terms of the number of rounds required to attain the Nash 
equilibrium with eventually no bad rational nodes with different percentage of initial bad nodes. 

1 INTRODUCTION 

The utility and sharing of huge amounts of data has 
become possible today with the development of 
network, data collection and storage technologies. 
The huge amount of extracted knowledge among 
different parties does have the issue of loss of 
privacy of the participants. Hence a number of 
algorithms have been proposed to resolve the issue 
of privacy in distributed data mining. These 
algorithms  are actually based on the concept of 
coopetation(Pedersen et al., 2007) among the parties.  

[m,m] Secret Sharing for the PPDARM semi 
honest model in a mesh topology which is our focus 
of study has been proposed recently by (Nanavati 
and Jinwala, 2012); (Ge et al., 2010). However in a 
realistic formulation of PPDARM these parties 
would be rational. According to (Abraham et al., 
2006); (Maleka et al., 2008); (Miyaji and Rahman, 
2011) these rational agents will have an inclination 
to not send their shares as each of them would first 
prefer getting the secret and secondly prefer that 
fewer of the other agents that get it, the better. 

Hence we propose an extension to the [m,m] Secret 
Sharing scheme for Privacy preservation in 
Distributed Data Mining (PPDDM) for such rational 
agents. 

(Kargupta et al., 2007) does explain multiparty 
PPDDM as a game but it does not cater to Secret 
sharing and only explains the Secure sum protocol in 
a ring topology unlike the mesh topology used by us. 
(Maleka et al., 2008) introduces the concept of 
Repeated Rational [m,n] Secret Sharing but cannot 
be used for SMC. It is a model with mediators unlike 
our model which is without mediators. (Miyaji and 
Rahman, 2011) is a recent work that explains the 
application of game theory but only to the set 
intersection protocol in PPDDM. (Abraham et al., 
2006) has a novel version of Rational Secret Sharing 
that explains collusion and cheap talk but does not 
consider secret sharing as a repeated game and does 
not give details of the punishment strategy or the 
application to PPDDM.  

Hence we introduce a novel algorithm to the best 
of our knowledge which models Secret Sharing 
(Shamir and Adi, 1979) in PPDARM as a Repeated 
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Rational Secret Sharing scheme using cheap talk. It 
is modeled for rational parties without mediators. 
This model is applicable to all the recent work done 
in PPDARM and distributed clustering using [m,m] 
secret sharing(Nanavati and Jinwala, 2012); (Ge et 
al., 2010)(Patel, Garasia and Jinwala, 2012) without 
mediators to compute the secure sum in a mesh 
topology unlike most other [m,n] – threshold secret 
sharing algorithms that aim to share a secret and not 
perform secure sum computation. 

The proposed model is advantageous as it avoids 
the use of techniques like homomorphic encryption 
and zero knowledge proofs that incur a high cost. 
Our punishment policies do not aim at removing the 
players but aim at getting the maximum possible 
participation in the game. 

2 PROBLEM FORMULATION 

Our problem setup involves a co-opetative setup of 
vertically or horizontally partitioned databases 
where PPDARM is required (depending on the 
application (Nanavati and Jinwala, 2012); (Ge et al., 
2010); (Nanavati and Jinwala, 2013) with ‘p’ 
rational parties collaborating to find the secure 
global sum in their data privately. This problem 
extends the [m,m] threshold scheme proposed for 
rational agents.  

We model secret sharing as a game among 
rational agents represented by Γ(m,m). We also 
consider it as a repeated game (Maleka et al., 2008) 
where the same set of players come to play the same 
game repeatedly. Our model is a model without 
mediators unlike(Maleka et al., 2008). The players 
are connected together in a mesh topology.We 
assume that the players are normally concerned 
about their future utilities. Among the three main 
attacks possible in [m,m] secret sharing(Nanavati 
and Jinwala, 2013), we try to resolve the two attacks 
by a rational adversary who is not disrupting the 
protocol by sending wrong shares but is trying to 
selfishly get his own gain by witholding his shares 
or sending them only to the collusion. Our 
punishment policies resolve these attacks and 
motivate the player to abide by the protocol. The 
attack where wrong shares are send by malicious 
parties can be resolved using the Verifiable Secret 
Sharing Scheme.  

3 GAME THEORY AND NASH 
EQUILIBRIUM 

Game Theory has today developed into an umbrella 
term encompassing various scenarios in the real 
world where the individuals want maximum benefit 
after taking into account the actions of the other 
parties involved in the setup. ‘Cheap talk’ in a game 
theoretic framework refers to the direct and costless 
communication among players  

In game theory, the Nash equilibrium is 
a solution concept of a game that comprises of two 
or more players, and none of them has anything to 
gain by changing only his own strategy alone. If 
each player has chosen a strategy and no player can 
benefit by changing his or her strategy while the 
other players keep theirs unchanged, then the current 
set of strategy choices and the corresponding payoffs 
constitute a Nash equilibrium.  

4 PROPOSED ALGORITHM 

The main aim of PPDDM is to be able to compute 
the global function on all the parties and hence they 
want to have maximum participation. For the [m,m] 
Repeated Secret Sharing game proposed by us; we 
assume that all rational parties broadcast their shares 
and then their sum of shares simultaneously to know 
the value of the global sum ∑ S୮

୧ୀଵ ij  of the secret 
values at each party Pi. It is an extension of the 
algorithm based on Shamir’s secret sharing 
technique(Shamir and Adi, 1979); (Ge et al., 2010). 

We improve on the punishment strategies of 
(Kargupta et al., 2007); (Maleka et al., 2008) as 
mentioned in  (Nanavati and Jinwala, 2013) using 
[m,m] Secret Sharing so that all parties will have the 
maximum utility and will attain the Nash 
equilibrium state.  

Considering the p rational partitions (where 0 < i 
≤ p) and each transaction has a subset of ‘N’ items. 
Consider D is the no. of defaulters; yi is the number 
of rounds for which the defaulter ‘i’ is ousted in 
Policy 1 and incri is the increment added to yi. 
Consider ci is the maximum number of chances 
given to the defaulter to enter the setup,  ni is the no. 
of rounds that the party i has defaulted, ratingi is the 
current rating of the ith player in policy 3 and lifei is 
the number of lives left with the  ith player. The 
algorithm proposed by us is given below in Figure 1. 

The proper administration of the punishment 
policies listed in section 4.1 will be monitored by a 
moderator who is not a part of the protocol. The 
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moderator will just ensure that the parties are ousted 
properly and are given their due punishment. 

 

Input: p, N, ni, policy used, yi, incri, c, ratingi  
Output: Secure Sum using Repeated Rational 
Secret Sharing for [m,m] scheme 
1:for each transaction j = 1 to N do 
2: for each party Pi, (i = 1 to p)do 
3: each party computes the share of   
other party Pi, where share(Sij,Pi)= 
qi(x)(random polynomial) 
4:   for t = 1 to p do 
5:   send share(Sij, Pi) to party Pt 
6:   receive the shares share(Sij, Pt)  
7:   end for 
8:compute Sum(xi)=q1(xi)+ 
q2(xi)..+qn(xi) 
9:  for t = 1 to p do 
10:  send Sum(xi) to party Pt 
11:  If a party does not send a sum of 
shares; initiate cheap talk. 
12:  If policy 1 is chosen by the 
setup 
13:  If (ni = 0) 
14: defaulter(d) is removed from the 
setup for ‘yi’ rounds; ni++; 
15:  Goto Step 3 for ‘p – D’ parties 
16:  Else  
17: defaulter(d) is removed from the 
setup for ‘gi’ rounds where gi = yi + 
incri; yi=gi; ni++; 
18: if ni =c; the party Pi is 
permanently ousted 
19:   Goto Step 3 for ‘p – D’ parties 
20:  If policy 2 is chosen by the 
setup 
21:  If (ni = 0 ) 
22: defaulter is removed for 1 round 
until a limit of ‘c’ rounds; ni++; 
23: if ni =c; the party i is 
permanently ousted 
24: Goto Step 3 for ‘p – D’ parties   
25: If policy 3 is chosen by the setup 
26:  Lifei = c; 
27:  Party with lowest rating sends 
share first 
28:  If (party sends share) 
29:  Increment the ratingi by 1 Else  
30:  {Decrement ratingi and Lifei by 1 
and no shares are sent to that party 
in that round. 
31:  If Lifei = 0  
32:  Party ‘i’ is permanently ousted  
33:  Goto Step 3 for ‘p – D’ parties} 

Figure 1: Proposed Repeated Secret Sharing Algorithm 
applicable to our scenario of rational parties. 

35: solve the set of equations to find 
the sum of . ∑ ܵ

ୀଵ ij secret values. 
36: end for 
37: Each party gets the value of 
∑ ܵ
ୀଵ ij 

38: If policy 1 or 2 is followed 
39: After yi or 1 round respectively 
if party initiates cheap talk to enter  
40:  Allow it and goto 3 
41: If policy 3 is followed 
42: After each round there is a 
ratings agreement which if satisfied; 
the party with lowest rating is made 
to send the shares first  
43:If pi does not send its shares 
first  
44: Decrement ratingi and Lifei by 1 
and no shares are sent to that party 
in that round.  
45:end for end for

 Figure 1: Proposed Repeated Secret Sharing Algorithm 
applicable to our scenario of rational parties (cont.). 

4.1 Punishment Policies 

Policy 1: Incremental Punishment Strategy 
for repeated Rounds upto c Times: If a party 
defaults; remove him from the game for ‘y’ rounds. 
He is again given a chance to enter the setup after 
‘y’ rounds and if he defaults again; he is removed 
for an incremental ‘g’ rounds. This defaulting 
behavior is allowed for only upto ‘c’ attempts. 

Policy 2: Punishment Strategy allowing ‘c’ 
Attempts: Remove the party for 1 round ; if he 
again defaults remove him again and give him ‘c’ 
chances where ‘c’ is the no. of chances you want to 
give a defaulter and is decided by the coalition.  

Policy 3: Ratings based Punishment Strategy 
simulating a Real Game: The rating of the party 
that follows the protocol is incremented by one and 
the party that does not follow the protocol gets its 
rating decremented by 1. These ratings are 
maintained at all parties since we do not have a 
mediator in our protocol. There is a round of ‘rating 
agreement’ which is more of a cheap talk that needs 
to take place before each round of secret sharing 
which ensures that the bad rational parties do not 
change the ratings. Now based on the ratings; the 
party with the lowest rating is supposed to send the 
shares first so as to ensure corrective behaviour. If 
the party with lowest ratings fails to send its shares 
first; its lives and ratings are decremented by 1 and it 
does not receive the shares for that round.  Also like 
a real game; there are ‘c’ lives or chances which 
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means that only ‘c’ decrements in rating are allowed 
after which the party is ousted from the game. 

If a new party wants to enter the setup; that party 
is granted the minimum rating of the setup and is 
made to send its shares first as the setup does not 
trust this new party entirely.  

To summarize if there is no penalty for cheating, 
rational participants tend to behave dishonestly. 
Hence this new scheme does help control the bad 
behaviour of dishonest parties without a heavy cost.  

5 THEORETICAL ANALYSIS 

In a distributed setup where Secret sharing is 
undertaken for PPDARM; the parties have different 
roles like carrying out computations at their end, 
sending the messages and receiving the messages. 
For the [m,m] secret sharing scheme we do not 
discuss the attack where the parties send wrong 
information as the aim of rational parties is not to 
sabotage the protocol. Instead they may default by 
withholding their sum of shares and/or sending them 
just to the coalition. uS(Si,t), uR(Ri,t)  are the utilities 
or payoff where the ith (0 < i ≤ p) party sends and 
receives corresponding tth sum of shares. wi,s and wi,R 
are the weights of these utilities respectively. ui(ሼσ i, 
σ –i}) denotes the utility of the party’s strategy which 
is interdependent on the other parties. Hence the 
formulation of multiparty PPDDM as a strategic 
game (Kargupta et al., 2007) for our approach is 
proposed as: 
 

ui(ሼσ i, σ –i}) = wi,s* us(Si,t) + wi,R* uR(Ri,t) (1)
 

Our game is based on the goal of getting maximum 
shares and thus maximum participation and not on 
the communication cost. Also if there is no penalty; 
the gain would be maximum when no sum of shares 
is sent by that bad rational party.  

Hence the punishment policies we propose will 
increase the utility of all the parties and the Nash 
equilibrium is attained when the parties cooperate 
honestly making it the optimum strategy. 

5.1 Collusion Analysis 

This algorithm can also effectively prevent collusive 
behavior if the number of collusive parties C < p.  

If the no. of collusive parties = p then the 
protocol has no meaning. Now we consider D as the 
no. of defaulters and C as the no. of colluding nodes 
who send the sum of shares only in the colluding 
group. For the collusion analysis; if C < D; then the 
defaulting parties will not get the result back and so 

that scenario has no meaning and is not a rational 
behaviour. However if C = D = 1, then the party can 
get the sum of values of the other parties. On the 
other hand if C = p-1 or the general case where C=D 
then the colluding parties can definitely get the value 
of the sum polynomial Sum(xi) and hence can 
predict the value of the non-collusive party. They 
can have a high utility as they are not sending any 
shares outside the collusion.  

This can be avoided if we follow our punishment 
strategy so that fewer parties will collude so as to 
attain the maximum gain in future rounds. The 
punishment policies are applied to the entire 
collusion by assuming that if more than 1 party is 
defaulting; there is possibility of a collusion. 

6 RESULTS AND IMPLICATIONS 

This section gives a brief summary of our 
implementation. The platform for the prototype is 
Java 7 SE on a 2.5 GHz i5 processor with 64 bit 
Operating system and 6 GB RAM.  

As a case study we show a comparison between 
the no. of rounds of secret sharing and the 
percentage of bad nodes for all our policies. We 
have evaluated our results with a total of 10 nodes. 
We assume that about at least 50% of the bad nodes 
after being penalized prefer to join the game in the 
coming round of which about at least 50% would 
behave honestly. 

 

Figure 2: Nash Equilibrium attained with the proposed 
repeated RSS scheme for Punishment Policy 1. 

The comparison shown above is based on 
Equation (1). Also we consider the us(Si,t) and 
uR(Ri,t) as the number of shares sent and received 
where the us(Si,t) is negative as none of the rational 
parties want to send their shares willingly and the 
wi,R is twice that of sending wi,S. according to the 
preference of the rational agents. It validates the fact 
that the parties after being ousted try and attain 
better utilities. Also it compares the percentage of 
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bad nodes with the rounds of secret sharing.  
 

Percentage of bad nodes = No. of nodes not 
sending shares/ Total participating nodes 
(does not include the permanently ousted 
nodes) 

(2)

 

The comparison shown in Figure 3 and Figure 4 
below is based on punishment policy 2 and policy 3. 
 

 

Figure 3: Nash Equilibrium attained with the proposed 
repeated RSS scheme for Policy 2. 

 

Figure 4: Nash Equilibrium attained with the proposed 
repeated RSS scheme for Policy 3. 

Our experiments indicate that  irrespective of the 
initial percentage of bad nodes; with the proposed 
policies all the non cooperating nodes converge and 
we get a Nash equilibrium where all the nodes are 
honest. If the bad nodes do not change their 
behavior; they are permanently ousted. This graph 
would vary if the nodes behaved in a different 
manner than the assumptions would still converge to 
zero bad nodes after certain rounds. 
 

 

Figure 5: Utility of output for Policy 1, 2 and 3 for initial 
40% bad rational nodes. 

Finally we have another metric which evaluates 
the “utility of the output” with respect to the number 
of rounds in Figure 5. This metric varies inversely 
with respect to the percentage of bad nodes. The 
utility of output is the maximum when we have the 
maximum participation from the parties. We observe 
that the utility of output attains the maximum value 
earlier for Policy 3 than Policy 1 and 2. 

 

Utility of output = No. of good nodes/Total 
No. of participants(does not include the 
permanently ousted nodes) 

(3)

 

Further we are considering an example where we are 
considering four participants in the game theoretic 
setup for our policies so that we can validate the 
attainment of the Nash equilibrium with our policies. 
We use the same assumptions as in the 10 node 
scenario. Hence based on this, our payoff matrix for 
repeated secret sharing is in Table 1 below where the 
Nash equilibrium state is denoted by (NE) and the 
good and the bad rational nodes are denoted by (G) 
and (B) respectively. 

It is clear from the Table 1 that if a party defaults 
in the first round then; it only gets a good payoff if it 
undertakes corrective behaviour. We also observe 
from the Figure. 2-5 and Table 1 that Policy 1 needs 
more rounds to attain the Nash equilibrium but the 
advantage is that it is a harsher incremental policy. 
Hence it might inspire more nodes to correct 
themselves initially itself rather than not getting 
shares for a large no. of rounds. Policy 2 is less 
harsh as it ousts the party temporarily only for 1 
round and helps attain the Nash equilibrium faster. 
Finally Policy 3 replicates an actual game scenario 
and instead of ousting temporarily; it decreases the 
ratings of that player. Hence the punishment is not 
harsh and the Nash equilibrium is attained faster.  

7 CONCLUSIONS 

In this paper we propose a novel scheme for 
repeated rational secret sharing using the game 
theoretic approach and cheap talk for various 
approaches in PPDARM(Nanavati and Jinwala, 
2012);(Ge et al., 2010). Our scheme can also be 
applied to other privacy preserving approaches that 
use Secret Sharing to undertake SMC among 
rational agents without mediators. 

We have proposed three novel and effective 
punishment strategies for our game theoretic 
approach. We also give the theoretical analysis and 
empirical evaluation of our proposed scheme. We 
compare the different policies proposed in terms of  
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Table 1: Payoff Matrix for 4 party scenario showing Nash Equilibrium state as well. 

Policy Used A,B,C,D R1 R2 R3 R4 R5 R6 R7 

1,2,3 G,G,G,G 
3,3,3,3 
(NE) 

3,3,3,3 3,3,3,3 3,3,3,3 3,3,3,3 3,3,3,3 3,3,3,3 

1,2 G,G,G,B 1,1,1,6 2,2,2,0 
3,3,3,3
(NE) 

3,3,3,3 3,3,3,3 3,3,3,3 3,3,3,3 

3 G,G,G,B 1,1,1,6 
3,3,3,3
(NE) 

3,3,3,3 3,3,3,3 3,3,3,3 3,3,3,3 3,3,3,3 

1 G,G,B,B -1,-1,5,5 1,1,0,0 2,2,2,0 1,1,1,6 2,2,2,0 2,2,2,0 
3,3,3,3 
(NE) 

2 G,G,B,B -1,-1,5,5 1,1,0,0 2,2,2,0 1,1,1,6 2,2,2,0 
3,3,3,3 
(NE) 

3,3,3,3 

3 G,G,B,B -1,-1,5,5 2,2,2,0 
3,3,3,3
(NE) 

3,3,3,3 3,3,3,3 3,3,3,3 3,3,3,3 

 
the no. of rounds taken to attain the Nash 
equilibrium. For all these policies we have 
considered different percentage of initial bad 
rational nodes that refrain from sending their shares. 
Among these policies our results show that the Nash 
equilibrium is attained in the least no. of rounds for 
Policy 3 which simulates an actual game setting. 

Finally we conclude that our protocol works in 
the favour of all the rational parties to attain a state 
where all parties are honest ultimately and has the 
maximum utility considering that they take their 
future utilities in account. 

However there are a few open research 
challenges which include extending our scheme 
using game theory to verifiable secret sharing as 
well as to prevent the malicious adversaries. Another 
extension would be to analyse the application of our 
punishment policies to other privacy preserving 
schemes in distributed data mining. 
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