
EvoGUITest – A Graphical User Interface Testing Framework
based on Evolutionary Algorithms

Gentiana Ioana Laţiu, Octavian Creţ and Lucia Văcariu
Technical University of Cluj-Napoca, Computer Science Department, 26-28 Bariţiu Street, Cluj-Napoca, Romania

Keywords: Graphical User Interface Testing, Evolutionary Algorithms, Testing Framework.

Abstract: Software testing has become an important phase in software applications’ lifecycle. Graphical User
Interface (GUI) components can be found in a large number of desktops and web applications and also in a
wide variety of systems like mobile phones. In the last years GUIs have become more and more complex
and interactive. The GUI testing process requires interaction with the GUI components, mainly by
generating mouse and keyboard events. Given their increased importance, GUIs verification for correctness
can contribute to the establishment of the correct functionality of the corresponding software application.
Most of the current GUI testing methodologies are ad hoc and manual, therefore they are resource
consuming. This paper presents EvoGUITest, a novel GUI testing framework based on evolutionary
algorithms which tests the GUI independently from the application code itself. EvoGUITest framework is
designed for testing GUIs of web applications.

1 INTRODUCTION

GUI is a specification for the look and feel of the
software application (Bernard, 1998). GUI consists
of graphical elements such as windows, icons,
menus, buttons, testboxes. A well designed GUI is
very intuitive and easy to be used by the users. The
GUI components can be a crucial point in the users’
decisions to either use or not use that specific
software application (Pimenta, 2006).

While GUIs have become ubiquitous and
increasingly complex, their testing remains largely
ad-hoc. Due to his complexity, the testing process is
problematic and time-consuming (Ganov et al.,
2008).

During manual GUI testing procss, each test case
needs a long time to execute (tens of seconds, for a
medium complexity GUI). The manual checking
process of the result needs another time spent by the
human tester, which is also of a few tens of seconds.
If for instance there is a suite of 10,000 test cases to
be applied, then the total testing time becomes
enormous (hundreds of hours) (Yang, 2011).

If the test cases are executed automatically, it
takes around 3 seconds for each test case to be
executed, and another 1 second for checking the
output results. 10,000 test cases need around 10

hours to be executed, which shows an acceleration
of one order of magnitude compared to the manual
testing process (Yang, 2011) – that is why the
research mainly focuses on automated GUI testing.

Some years ago, test cases were generated
randomly during the automatic GUI testing process.
Because the coverage of random input testing was
very weak, the scientific community started studying
the usage of the Evolutionary Algortihms (EA) for
automating the GUI testing process.

In the last years the Evolutionary Art started to
be used in a lot of applications, with interactive
evolutionary algorithms in which user assigns scores
to images based on their suitability (Bergen and
Ross, 2011). EvoSpace framework is used for
development of interactive algorithms for artistic
design (Valdez et al., 2013).

The rest of this paper is organized as follows:
Section 2 describes the automatic process for GUI
testing, Section 3 describes in details the EA
process, Section 4 describes our novel proposed GUI
testing framework (EvoGUITest). Inside this Section
the framework architecture and the experimental
results are also presented. Section 5 concludes the
paper, sumarizing the future work planned.

75Ioana Latiu G., Creţ O. and Vǎcariu L..
EvoGUITest – A Graphical User Interface Testing Framework based on Evolutionary Algorithms.
DOI: 10.5220/0004518200750082
In Proceedings of the 5th International Joint Conference on Computational Intelligence (ECTA-2013), pages 75-82
ISBN: 978-989-8565-77-8
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

2 AUTOMATIC GUI TESTING

The GUI testing is a process which aims at testing
the software application’s user interface and
detecting if the GUI is functionally correct. GUI
testing includes checking how the software
application handles mouse and keyboard events
(Prabhu and Malmurugan, 2011).

The automatic GUI testing process includes
automatic manual testing tasks performed by human
testers. By the automatic testing process, a software
program executes the testing tasks and analyzes if
the GUI under test is functionally correct.

Automatic GUI testing can be executed using
different techniques.

2.1 Capture/Replay Tools

These tools have two modes of functioning: capture
and replay. In capture (record) mode, the tool is able
to record testers’ actions while they are interacting
with the GUI. The set of actions are recorded inside
test scripts. These tools provide a scripting language
which can be used by engineers for maintaining the
test scripts.

In replay mode, the recorded test scripts are
executed. During execution of each test script, some
mouse or keyboard events are executed on the GUI.
The test scripts’ execution process is automatic and
can be repeated several times.

The most important disadvantage of these GUI
testing tools is the lack of structure of the test
scripts, which makes the maintenance process
difficult. These tools don’t provide any support to
design and evaluate test cases based on coverage
criteria.

Three examples for these tools are: Selenium
(http://seleniumhq.org), WinRunner (http://mercury.
com) and Rational Robot (http://www-
01.ibm.com/software/awdtools/ tester/robot/)

2.2 Random Input Testing

This testing technique is also referred in the
literature as stochastic testing or monkeys testing
(Nyman, 2006). Random input testing refers to the
idea that somebody seats in front of a software
application and interacts randomly with it, by
sending keyboard and mouse events.

The goal of monkeys testing is to crash the GUI
of the software application under test. They generate
tests cases randomly without knowing anything
about the software application. The biggest problem
of this testing technique is that monkeys cannot

recognize software errors. There is a smarter
category of monkeys called “smart monkeys” which
have some knowledge about the software application
under test. These monkeys can find more bugs, but
they are more expensive to be developed (Pimenta,
2006).

Even if random input testing tools have a weak
coverage, one of the biggest software companies has
reported that 10-20% of the bugs in their software
applications were found by using random input
testing method (Nyman, 2006).

2.3 Unit Testing Frameworks

Unit testing technique for GUI testing requires
programming the test cases. Unit testing frameworks
like NUnit (http://nunit.org) can be used for
executing GUI test cases.

These tools are helpful in case many bugs can
only be discovered through a particular sequence of
actions. With these tools the tester has to write code
to simulate user interaction with the GUI under test.
After executing the test cases the tester should check
if the result obtained is the one expected.

In order to be effective, the GUI testing process
using unit testing frameworks needs a lot of
programming effort. There are some GUI libraries
such as Abbot (http://abbot.sourceforge.net) which
provide methods to simulate user interaction.

2.4 Model-based Testing

Model-based testing requires that GUI states and
events are described with a certain type of model.
Having these models in place, the test cases can be
generated automatically, either randomly or
according to some particular coverage criteria.

The model-based testing process is presented in
Figure 1.

GUI

GUI model

Test case generation

Test case execution

Results checking

Figure 1: Model based testing.

IJCCI�2013�-�International�Joint�Conference�on�Computational�Intelligence

76

The model based testing process starts with the
construction of the GUI model. The model is used to
generate test cases which are then executed over the
GUI. In the last step, the obtained results are
compared to the expected results described in the
model.

The most important existing testing models used
for model based testing are the following ones
(Yang, 2011):
 Event Sequence Graph (ESG) – a directed graph

which contains a finite set of nodes and a finite set
of edges. Each node represents a GUI event and
the sequence of nodes represents the sequence of
GUI events. This model was proposed by Belli et
al. (Belli, 2001).

 Event Flow Graph (EFG) and Event interaction
graph (EIG) – inside EFG, each node represents a
GUI event and all events which can be executed
immediately after one event are directly linked
with directed edges from this event. A path inside
the EFG represents a sequence of GUI events and
can be considered a test case. EIG is the later
version of EFG. The structure of EIG is composed
by all GUI events which represent the GUI nodes
and all relations between events which represent
the graph edges.

The model-based testing technique is usually
used to test the structural representation of a GUI
(Qureshi and Nadeem, 2013).

EvoGUITest framework uses in the beginning of
testing process a random input testing method for
generating the first set of test cases. Then the test
cases evolve using the EA process. The aim of
EvoGUITest framework is to find out the longest
sequence of events which tests as much as possible
GUI controls.

3 EVOLUTIONARY
ALGORITHMS

EAs are software programs that attempt to solve
complex problems by mimicking the processes of
Darwinian evolution (Jones, 1990). They operate on
a population of possible solutions by applying the
principle of survival of the fittest to produce better
approximations to a solution (Pohlheim, 2006).

During the EA process a big number of artificial
individuals search the solution over the space of the
problem.

The artificial individuals are usually represented
by vectors of binary values. Each individual encodes
a possible solution for the problem which needs to
be solved.

The most widely known EA is the Genetic
Algorithm (GA). In the following, the GA and the
Simulated Annealing (SA) algorithms will be
presented. These two algorithms were used for
generating test cases inside the EvoGUITest
application.

3.1 Genetic Algorithms

GA originated from the work of John Holland. They
are the most obvious mapping of natural
evolutionary process into a software application
(Streichert, 2007).

The GA process begins with a set of candidate
solutions which is called population. A population is
composed of individuals who are constituted from
one or more genes. A population’s individuals are
used to form a new population by using crossover
and mutation operators. During the GA process there
is an expectation that the newly generated
individuals are better than their parents.

GAs are well known and widely used in
scientific and technical research because of their
parallel nature, of their design space exploration and
also due to their ability to solve non-linear problems
(Rauf, 2010).

A GA has four important phases:
 Evaluation – during this phase each individual is

evaluated by the evaluation method. The fitness
function is used for evaluation. It calculates how
good the individual is to satisfy the test criteria.

 Selection – during this phase individuals are
chosen randomly from the current population for
creating new individuals in the next generation.
The main idea of the selection methods is that
fittest individual has the biggest probability of
survival; therefore he has a greater probability to
be picked for reproduction.

 Crossover – during this phase, recombination
reproduces the chosen individuals and pair wise
information will be exchanged and will result in a
new population (Rauf, 2010). The crossover
process joins two selected individuals at a
crossover point, thus producing two new
offsprings. During crossover, the first parent’s
right half genes are exchanged with the subsequent
right half of the second parent. After crossover is
performed, each parent pair will result in two
offsprings. Crossover is the operator which is
responsible for improving the individuals.

 Mutation – during this phase a randomly chosen
bit is changed from ‘0’ to ‘1’ or from ‘1’ to ‘0’.
Each bit inside an individual has the same
probability to mutate. Mutation is the operator

EvoGUITest�-�A�Graphical�User�Interface�Testing�Framework�based�on�Evolutionary�Algorithms

77

which is responsible for introducing variety inside
the population.

3.2 Simulated Annealing

SA is a probabilistic method for finding the global
minimum of a cost function that may possess several
local minima (Bertsimas and Tsitsiklis, 1993). This
algorithm emulates the physical process whereby a
solid is slowly cooled until its structure becomes
frozen. This happens at a minimum energy
configuration.

The SA algorithm has four basic elements
(Rutenbar, 1989):
 Configurations – these represent the possible

problem solutions over which the process will
search for the problem solution.

 Move Set – this set represents the computations
performed to move from one configuration to
another, as annealing proceeds.

 Cost Function – measures how “good” a particular
configuration is?

 Cooling Schedule – anneal the problem from a
randomly generated possible solution to a good
solution. Usually the schedule needs a starting hot
temperature and different rules for establishing
when the current temperature should be decreased,
by which amount temperature should be lowered
and when the process should take end.

The most important feature of the SA algorithm
is that it is a probabilistic method where during the
search process the moves that increase the cost
function are accepted in addition to moves which
decrease the cost function (Nascimento et al., 1999).
This feature is the central point of the algorithm
which enables the search process to locate the global
minimum among all the other local minima.

The most important challenge in improving the
performance of the SA algorithm is to decrease the
temperature and in the same time to ensure that the
process does not stop in a local minimum.

The goal of the SA algorithm is to find the
quickest annealing schedule that achieves a value for
finding the global minimum equal to unity
(Nascimento et al., 1999).

The SA algorithm is suitable for solving large
scale optimization problems inside which the global
minimum is located among many local minima
values.

4 EvoGUITest

EvoGUITest is a GUI automated testing framework

based on evolutionary algorithms. It automatically
generates test cases which are used afterwards for
testing the GUI. The test cases suite is generated
automatically by an EA-based process.
EvoGUITest’s objective is to find the sequence of
events which produces the biggest number of
changes inside the GUI in a minimum amount of
time.

4.1 The EvoGUITest Framework
Architecture

The EvoGUITest application is a GUI testing
framework which uses EAs for generating GUI test
cases. It is developed in JavaScript and it runs on
client side. Being developed in JavaScript it is very
easy to be extended without any need of extra tools
to write JavaScript. EvoGUITest is able to generate
test cases for Web applications which have a GUI
component already developed.

The testing process with this GUI testing
framework consists of the following main steps:
 Analysis – the GUI state together with each GUI

controls’ states are analyzed. The result of this step
is the list of HTML properties and events which
correspond with each control located inside GUI.

 Test cases generation – generate test cases by
using the specific EAs methods.

 Test cases execution – executes test cases.
 Results verification – verifies the results after the

execution of the test cases.

Figure 2 presents the main components of the
EvoGUITest framework.

Analysis module

Test cases generation module

Test cases execution module

Results verification module

Figure 2: The EvoGUITest architecture.

The most important part of the framework is the
module which generates test cases using EAs. Each
test case is represented by an individual. The first
population of individuals is randomly generated
(Figure 3).

Each individual consists of an array of genes,
each corresponding to a GUI control. In Figure 3 the
array of genes for each individual corresponds to an
array of ids which correspond to each GUI control.
Each GUI control which appears inside an individual

IJCCI�2013�-�International�Joint�Conference�on�Computational�Intelligence

78

Figure 3: Randomly generated individuals for testing GUI
of Calculator application.

is linked with a user action on the GUI. After the
first population of individuals is generated, the
individuals are evolved by means of the EA process.
After each generation, the new individuals are
displayed together with their objective, age and
fitness function. Figure 4 shows the individuals from
the first generation. The population of individuals is
generated for testing the GUI of a complex
application.

Figure 4: First generation of individuals for testing
complex GUI component.

The individuals are classified so that the first one is
the best individual from the current generation. As it
can be easily observed, the first individual is the one
which contains more button controls; therefore it is
the one which produces the biggest number of
changes inside the GUI. Each individual has the age
equal with 1, because they are individuals from the
first generation. The age represents the current
generation number. The objective column contains

the objective value for each individual, and the
fitness column contains the fitness value assigned to
each individual. The objective attribute represents
the performance of the individuals, while the fitness
value represents rang of individuals inside the
hierarchy.

For example, if we have the following objective
values:

Individual 1: 2
Individual 2: 1000
Individual 3: 65536
if the roulette wheel selection will be applied on

the above population of individuals the last
individual won’t have any chance to be selected for
reproduction. If we assign a fitness function for each
individual, who have the following values:

Individual 1: 2 Fitness: 0.5
Individual 2: 1000 Fitness: 0.3
Individual 3: 65536 Fitness: 0.2
than the last individual has a small chance to be

selected for crossover.
The objective function which evaluates each

individual is presented in formula (1.1):

Objective = (1 / no_of_changes) +

1/(100 no_of_similar_states) +

1/(100 no_of_useless_states)

(1.1)

Each individual should produce the greatest number
of changes and the smallest number of similar states
and useless actions. A useless action is an action
which doesn’t produce any change inside the GUI. A
similar state is a state which has already appeared
earlier inside the set of states produced by the same
individual.

The EvoGUITest framework contains a separate
section where the user can set values for the most
important parameters used by the GA and SA
algorithms. For each one of these two algorithms,
the user can select the values for the parameters
presented in Table 1. The variables that affect the
outcome of the SA algorithm are: the initial
temperature, the rate at which the temperature
decreases (alpha) and the stopping condition of the
algorithm (epsilon).

The number of individuals indicates how many
individuals are there in each population and the
number of generations represents the generations for
which the GA algorithm will be performed. The
number of genes represents the minimum and the
maximum length of each individual from the first
population. The number of selected pairs for
crossover represents how many individuals will be
selected for reproduction. The mutation probability
represents the percentage value of applying the

EvoGUITest�-�A�Graphical�User�Interface�Testing�Framework�based�on�Evolutionary�Algorithms

79

Table 1: Parameters list for GA and SA algorithms.

GA Values SA Values
Number of
individuals

40 Initial
temperature

100

Number of genes
(min, max)

Min: 10
Max: 25

Epsilon 0.001

Number of selected
pairs for crossover

20 Alpha 0.999

Mutation probability 0.2 -
Mutation addition

probability
0.5 -

Mutation removal
probability

0.5 -

Number of
generations

50 -

mutation operator. Mutation can be applied in two
ways: either by removing a gene from an individual
or by adding a new gene.

Figure 5 displays the section which consists of
the GA parameters list for the EvoGUITest
application.

Figure 5: GA parameters settings area.

4.2 Experimental Results

All the experiments were performed on a computer
having the following configuration: Intel I3
processor, 2.2 GHz, Windows 7 Operating System.
Three GUIs were tested: the first one is a simple
GUI which consists of two buttons and two
textboxes, the second one is the GUI of the classic
Calculator application from Windows and the last
one is a complex GUI which consists of more than
twenty user controls.

For test cases generation we used both the GA
and the SA algorithms. The selection method used
for GA algorithm was the roulette wheel method.
For each specific parameter, for each algorithm, the
values presented in Table 1 were used in order to

generate the test cases. These values were chosen to
be used for running EAs based on our empirical
studies done before. All the EAs’ specific
parameters’ values were setup after we have tried
hundred of runs with different values for these
parameters. The values for which we have obtained
the best results were chosen.

Figure 6: Test case generation for the simple GUI.

Figure 7: Test case generation for the Calculator GUI.

Figure 8: Test case generation for the complex GUI.

Figure 9: Number of defects discovered by different
testing frameworks.

0

0,02

0,04

0,06

1 11 21 31 41 51

Fi
tn
e
ss

Iterations

GA

SA

0

0,05

0,1

1 11 21 31 41 51

Fi
tn
e
ss

Iterations

GA

SA

0

0,05

0,1

1 11 21 31 41 51

Fi
tn
e
ss

Iterations

GA

SA

0
2
4
6
8

D
ef
ec
ts
 N
u
m
b
er EvoGUITest

Selenium

Win Runner

IJCCI�2013�-�International�Joint�Conference�on�Computational�Intelligence

80

Figures 6, 7 and 8 present the test results obtained
for each of the three GUIs using the GA and the SA
algorithms for evolving the test cases suite. In Figure
9 there is presented a comparison between four test
suites which are composed of ten test cases. The test
suites were generated with EvoGUITest, Selenium,
WinRunner and Rational Robot. They were used in
regression testing phase for detecting errors inside
Web application.

The performance of the best for both GA and SA
is presented in Table 2.

Table 2: Best individuals’ performance for the GA and SA
algorithms.

GUI
GA

Perfor-
mance

No. of
GUI

Changes

SA
Perfor-
mance

No. of
GUI

changes
Best individual for
simple GUI testing

0.001

14 0.0029 11

Best individual for
calculator GUI
testing

0.0012 19
0.0019

15

Best individual for
complex GUI testing

0.0015 27 0.0034 23

From Figures 6, 7, 8 and Table 2 one can notice that
the GA is able to find better test data in comparison
with the SA algorithm. GA manages to find out the
sequence of events which produces more changes
inside GUI in comparison with SA. The individual
which produces the biggest number of changes
inside the GUI is the one which has the smallest
value for fitness function, because the testing
problem is transformed into a minimization problem.
It shows that individuals have evolved from the first
generation to the last one. The best individual from
the last generation produces the biggest number of
changes inside the GUI; therefore, it has the smallest
value of the fitness function.

The mean value of convergence time (in
seconds) obtained from ten runs of each algorithm is
presented in Table 3.

Table 3: Convergence time(s) for the GA and SA
algorithms.

GUI type
GA

Convergence (s)
SA

Convergence (s)

Simple GUI testing 30 46

Calculator GUI testing 40 57

Complex GUI testing 60 78

The convergence time for GA algorithm is smaller
than the convergence time obtained for SA
algorithm.

From Figure 9 can be noticed that the test suite
generated using EvoGUITest is able to find more

defects in comparison with the other test suites even
if they have the same amount of test. This illustrates
the fact that the test suite generated with
EvoGUITest is better than the others test suites.

5 CONCLUSIONS AND FUTURE
WORK

This paper presents EvoGUITest, an original
framework for automatically testing graphical user
interfaces of Web applications based on EAs
techniques. The main features of the EvoGUITest
framework are the following:
 It tests the GUI separately from the application

source code itself.
 It automatically generates and executes the test

suite.
 It is able to find the sequence of events which

produces the biggest number of changes inside the
GUI, so it verifies a biggest number of controls
inside the GUI.

The EvoGUITest framework is original because
it runs on client side, being developed in Javascript
and it tests the GUI of the application separately
from the software application itself. It is the first
GUI testing application developed only using
JavaScript. The advantage of using JavaScript is that
it is platform-independent and it can test GUI
components developed in any programming
language. The extension of the framework is very
easy because there is no need of any extra tools to
write JavaScript code. This can be done using any
plain text or HTML editor.

EvoGUITest has the objective to find out the
most important sequence of events which produces
the biggest number of changes inside the GUI. By
producing the biggest number of changes, the
sequence is able to verify as many components as
possible inside the GUI.

EvoGUITest is able to find out the most
important sequence of GUI events in about 50
iterations.

Future work will involve using EvoGUITest
framework for testing larger projects. We will also
focus on using EvoGUITest for regression testing.
The test cases suite will be used to check if the GUI
still functions correct after each development change
is performed. The framework will be extended with
other evolutionary algorithms: Particle Swarm
Optimization (PSO) and Ant Colony Optimization
(ACO) algorithms.

A complete automated testing framework based

EvoGUITest�-�A�Graphical�User�Interface�Testing�Framework�based�on�Evolutionary�Algorithms

81

on EAs could be designed and implemented, for
completely automating the GUI testing process.

ACKNOWLEDGEMENTS

This work was supported by a grant of the Romanian
National Authority for Scientific Research, CNDI-
UEFISCDI, project number 47/2012.

REFERENCES

Belli F., 2001. Finite-State Testing and Analysis of
Graphical User Interfaces, International Symposium
on Software Reliability Engineering, China.

Bergen S., Ross J., 2011, Evolutionary art using summed
multi-objective ranks, Genetic Programming Theory
and Practice VIII, Springer Science.

Bernard J., 1998. The Graphical User Interface: An
Introduction, Seminal works in computer human
interaction, 30(3), 24-28.

Bertsimas D., Tsitsiklis J., 1993. Simulated Annealing,
Statistical Science, vol. 8, no.1, 10-15.

Ganov S., Killmar C., Khurshid S., Perry D., 2008, Test
Generation for Graphical User Interfaces Based on
Symbolic Execution, AST.

Jones G., 1990. Genetic and Evolutionary Algorithms,
University of Sheffield, CGA04.

Nascimento V., Carvalho V., Castilho C., Soares E.,
Bittencourt C., Woodruff D., 1999. The Simulated
Annealing Global Search Algorithm Applied to the
Crystallography of Surfaces by Leed, Surface Review
and Letters, vol. 6, no. 5, 651-661.Nyman N., 2000.
Using Monkey Test Tools, Software Testing and
Quality Engineering Magazine.

NUnit Framework, http://nunit.org, online documentation.
Abbot, http://abbot.sourceforge.net, online
documentation

Nyman N., 2006. In Defense of Monkey Testing, Software
Testing and Quality Engineering Magazine.

Qureshi I.A., Nadeem A., 2013. GUI Testing Techniques:
A Survey, International Journal of Future Computer
and Communication, vol. 2, no.2.

Pimenta A., 2006. Phd. Thesis, Automated Specification-
Based Testing of Graphical User Interfaces,
Department of Electrical and Computer Engineering,
FEUP.

Pohlheim H., 2006. Evolutionary Algorithms: Overview,
Methods and Operators.

Prabhu J., Malmurugan N., 2011. A Survey on Automated
GUI Testing Procedures, European Journal of
Scientific Research, no. 3, pp. 456-462.

Rational Robot Framework, http://www-
01.ibm.com/software/awdtools/tester/robot/, online
documentation.

Rauf A., 2010. Coverage Analysis for GUI Testing, Phd.
Thesis, Department of Computer Science, National

University of Computer and Emerging Sciences,
Pakistan.

Rutenbar R., 1989. Simulated Annealing Algorithms: An
Overview, IEEE Circuits and Devices Magazine.

Selenium Framework, http://seleniumhq.org, online
documentation.

Streichert F., 2007. Evolutionary Algorithms in Multi-
Modal and Multi-Objective Environments, Phd.
Thesis, University of Tubingen, Germany.

Valdez-Garcia M. et al., 2013, EvoSpace-Interactive: A
Framework to Develop Distributed Collaborative-
Interactive Evolutionary Algorithms for Artistic
Design, Evolutionary and Biologically Inspired Music,
Design, Sound Art and Design, vol. 7834, pp. 121-
132.

WinRunner Framework, http://mercury.com, online
documentation.

Yang X., 2011. Phd. Thesis, Graphic User Interface
Modelling and Testing Automation, Victoria
University.

IJCCI�2013�-�International�Joint�Conference�on�Computational�Intelligence

82

