HoneydV6: A Low-interaction IPv6 Honeypot

Sven SchindleY, Bettina Schndr, Simon Kiertschér, Thomas Schefflérand Eldad Zack
IDepartment of Computer Science, University of Potsdam, Potsdam, Germany
2Department of Electrical Engineering, Beuth Hochschule, Berlin, Germany

SEANTC AG, Berlin, Germany

Keywords: IPv6, Honeypot, Darknet, IPv6 Traffic Analysis.

Abstract: This paper starts with the presentation of results from an IPv6-darknet experiment that we conducted during
summer 2012. The experiment indicates that attackers are gaining interest in IPv6 networks and appropriate
security tools need to be readied. Therefore, we proplmseydV6 a low-interaction IPv6 honeypot that can
simulate entire IPv6 networks and which may be utilized to detect and analyze IPv6 network attacks. Our
implementation extends the well-known low-interaction honeypmteyd To the best of our knowledge, this
is the first low-interaction honeypot which is able to simulate entire IPv6 networks on a single host. The huge
IPv6 address spaces requires new approaches and concepts in order to enable attackers to find and exploit a
honeypot. We increase the chance for an attacker to find a target host in our IPv6 honeypot by reacting to the
attacker’s requests with the dynamic generation of new IPv6 host instances in the honeynet.

1 INTRODUCTION less Address Autoconfiguration (Thomson et al.,
2007).

In June 2012, the Internet Society arranged the World ~ In order to analyse IPv6-related attacks, IPv6-
IPv6 Launch Day, an event where well-known service enabled security tools like Intrusion Detection Sys-
providers and web companies like Google or Yahoo! tems or virtual honeypots have to be deployed that
started to enable IPv6 support for their customers. allow a deeper analysis of attack patterns. Virtual
With the increasing number of service providers honeypots provide an excellent mechanism to col-
offering IPv6, the number of attackers aiming for lect information about network attacks and vulner-
these networks may increase. In order to get an ideaabilities, because they provide a level of interactiv-
of the current threat level in IPv6 networks, we started ity that cannot be achieved by darknets. A virtual
an IPv6-darknet experiment in March 2012 using a honeypot is a security device that has no production
/48 network. A darknet is an address space that is value (Seifert et al., 2006). This can be something
advertised and routed but does not provide any ser-like a computer or even a mobile phone which only
vices (Ford et al., 2006). All traffic entering a darknet purpose is to attract attackers, so that their attacks can
can be considered malicious. This eases classificationbe analysed. Low-interaction honeypots lik@n-
and subsequent analysis, because we do not have t@yd(Provos, 2003) may even be used to simulate large
separate production traffic from attack traffic. networks with thousands of routers and hosts.

Due to the huge IPv6 address space, brute-force We chose to extend the low-interaction IPv4 hon-
network scanning of IPv6 addresses is not attractive eypotHoneydto HoneydV6 since it is able to simu-
for an attacker and hence the probability to catch at- late entire IPv4 networks on a single computer and
tackers in a darknet is low. Nevertheless, the results provides a lot of components that could be reused
of our darknet experiment show that malicious IPv6 in our IPv6 implementation. Furtheioneydis the
traffic is existent and increasing. fundamental part of a number of honeypot solutions

There may also arise new threats that are aimedlike Tiny Honeypobr the SCADA HoneyNet Project
at specific weaknesses in the IPv6 design. A well- and can be used to improve the capabilities of hon-
known example for this trend is the published THC- eypots like Nephentes (CERT Polska, 2012). There-
IPv6 Attack Toolkit (Heuse, nd) which exploits sev- fore, by implementing IPv6 functionality intblon-
eral protocol-specific features, such as the IPv6 State-eyd the aforementioned honeypots may be adapted so

86 Schindler S., Schnor B., Kiertscher S., Scheffler T. and Zack E..
HoneydV6: A Low-interaction IPv6 Honeypot.
DOI: 10.5220/0004515100860097
In Proceedings of the 10th International Conference on Security and Cryptography (SECRYPT-2013), pages 86-97
ISBN: 978-989-8565-73-0
Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

HoneydV6: A Low-interaction IPv6 Honeypot

that they are able to handle IPv6 connections as well. tunnel broker “Hurricane Electric” and the incoming
Honeydimplements a customized network stack traffic was tunnelled to our machine using a SIT tun-
to handle multiple simulated hosts on a single ma- nel.
chine. The large number of available addresses in a While the probability that an attacker choses an
single IPv6 network requires a new honeynet design IPv6 address from our darknet is about*d, we ob-
approach. The static placement of virtual components served a total number of 1172 packets. The whole
does not work, because an attacker is unlikely to find traffic consists of TCP packets, much to our surprise,
a deployed honeypot within the large IPv6 address we didn’t receive a single UDP or ICMPv6 packet.
space by chance. We therefore developed the concepFigure 1 shows the temporal distribution of the re-
of random IPv6 request processitgallow attackers ceived packets. As predicted, we received most of
to dynamically find and exploit our simulated hosts. the traffic around the World IPv6 Launch day. Even
The next section presents the results from our though the number of received packets has decreased
darknet experiment. Section 3 summarizes relatedsince the World IPv6 Launch, we are still constantly
work. In Section 4 and 5, we present the IPv6 exten- receiving packets.
sion of Honeyd Section 6 shows the results of per- 2y
formance measurements ldbneydVeéand Section 7 180
concludes our work.

Darknet activity ===

[o2]
o

S
o

n
o

- a4 o

o
o

2 'EXAMINING THE THREAT
LEVEL IN IPv6 NETWORKS

@ 0
(==l

Number of received Packets

A couple of years ago, it was hard to find any mali-

40
cious or even unintentional traffic in IPv6 networks. 0
In 2006, Matthew Ford et al. published a traffic]] “ I .
statistic of their IPv6 darknet with a /48 prefix, which Jan Feb Mar Apr May Jun Jul Aug Sep Oct
may have been the world’s first IPv6 darknet (Ford Date (months)

et al., 2006). Within approximately 16 months, they Figure 1: Number of received packets per day, increased
captured about 12 ICMPV6 packets which were most number of packets around the World IPv6 Launch day.
probably caused by misconfiguration and typograph-
ical errors resulting from the long and unwieldy IPv6 2.1 Backscatter
addresses. In comparison, Pang et al. observed in
2004 about 30,000 packets of background radiation Most of the TCP traffic (1157 packets) seems to be
per second in a class A IPv4 network (Pang et al., backscatter. This kind of traffic can be caused by mis-
2004). configuration or by attackers who intentionally use
In 2010, Geoff Huston presented the results of spoofed source addresses when sending packets to a
his darknet experiment where he examined the back-destination. The destination under attack creates a re-
ground radiation in a 2400::/12 network provided by spond packet to the spoofed source address. So in our
APNIC for 9 days (Huston, 2010). The darknet re- case, attackers spoofed addresses that belong to our
ceived about 21,000 packets. However, the used /12darknet address space.
address block was not vacant and about 1.6 percent Incase of TCP itis rather simple to spot backscat-
of the network addresses had already been allocatedter traffic. A TCP handshake is essential to enable the
Therefore, it is hard to compare the results of this ex- connection setup. Normally, this handshake cannot be
periment to earlier darknet results even though traffic completed if the initiating client uses a spoofed source
which was directed to allocated addresses was filteredaddress. If a target receives the initial TCP hand-
before further analysis. Itis assumed that the receivedshake packet, where the SYN flag is set in the TCP
traffic is caused by misconfiguration and probably a header, it tries to complete the handshake by answer-
small number of guess probes. Scans that are defi-ing with a TCP packet where SYN and ACK flags
nitely produced by bots or viruses could not be de- are set. Hence, the reception of TCP darknet traffic,
tected. where SYN and ACK flags are set, is a good indica-
We set up a new /48 IPv6 darknet and monitored tion of backscatter. Of course, it is possible to gen-
the incoming traffic for 9 months including the time erate TCP packets with SYN and ACK flags set and
around the World IPv6 Launch to confirm this as- send it directly to a destination. However, we con-
sumption. The address space was provided by thecluded that the intentional forwarding of such packets

87

SECRYPT 2013 - International Conference on Security and Cryptography

to our darknet is very unlikely, since they would serve He assumes misconfiguration as one possible expla-
no known purpose. nation for receiving these packets in his darknet. In
We continued our attack evaluation with an anal- our case, almost all packets coming from the same

ysis of the attacked ports. Table 1 provides a source source, even packets with different target addresses,

port statistic for the received backscatter traffic. share the same target port and acknowledgment num-

ber. This indicates a deliberate use of spoofed source

Table 1: Source ports of the received backscatter packets. gddresses when connecting to the server. It is possible

Number of packet$ Source port] Description that these packets belong to a denial of service attack.
486 113 auth Because we might have seen only a subset of all pack-
327 22 ssh ets belonging to an attack, we are not able to provide
186 6667 ircd a clearer statement about the attack’s purpose.
158 80 http

: 2.2 ACK Scans
Port 113 belongs to the most occurring source

ports in our backscatter traffic. It is actually used \ye 5150 received 15 packets where only the ACK flag

by the Ident protocol (Johns, 1993) which is able to ot (he TCP header is set without any sign of a prior
identify an owner of a TCP connection on a remote tcp handshake. All 15 packets are coming from the
multi-user system. The protocol is still used, for ex- <2 me /64 subnet, which belongs to the address space
ample by IRC servers _Which connect back via Id_ent of the tunnel broker “Hurricane Electric”. The miss-
to arequesting source in order to ensure a user's iden- 4 hangdshake suggests that these packets are part of
tity (Oikarinen and Reed, 1993). an ACK scan, which is usually used to evaluate filter
The 486 received packets with source port 113 1 a5 of firewalls. The source port of these packets,
came from 8 different source IPs. They are aimed g ever, is Microsofts file sharing port 445, which
for 457 different destination IPs. This indicates that belongs to the most attacked ports in the IPv4 dark-
457 different clien_ts tried to connect to 8 differ(_ent net experiment presented in (Pang et al., 2004). Geoff
servers. A peculiar aspect of all packets received v, qton also received 141 TCP packets without an ini-
on port 113 is an unaltered acknowledgment number 5| handshake and he also concludes that these pack-

for most of the sources with different destination ad- ets belong to a network probe and rules out that these
dresses. Hence, the TCP handshake must have alwayﬁackets may belong to backscatter traffic.

been initiated with the same initial sequence num-
ber with different source addresses. In some cases,
even the sequence number as well as acknowledgmen
number stay unaltered.

g.S Summary

As you can see in Table 1, we received 327 pack- Eve_n though our /48 IPv6 darknet recordec_i only light
traffic, we can say that the IPv6 network is not free
ets from source port 22 (ssh). The packets came from :
of threats anymore. Almost all received packets were

8 different sources and were targeted at 295 differ- caused by spoofed source addresses and mav belon
ent destinations. Two of the source addresses are y sp y 9

also contained in the set of packets coming from port to denial of service attacks and we even recelve:d
113. Similar to the packets coming from port 113, packets that may be network probes. So far, we did

most packets from the same source share the Sam{;ot receive any connection attempts that may be at-

acknowledgment number even though the targets are ibuted to viruses or pOtS' .
different. We conclude_ that, in contrast to earlier d_arknet re-
Furthermore, we received 186 packets targeted atports, the IPv6 internet has become more interesting
port 6667, commonly used by IRC (Kalt, 2000). All for attackers.
packets came from the same source but had a different Our IPv6 darknet has been an excellent tool to as-
destination addresses. The acknowledgment numbe ess thg general network threat-level, howevgr, IS not
of all packets is equal. well _swted to analyse networkjlevel attacks in more
We received further 158 packets coming from one detail. Therefore, the next section looks at IPv6 hon-
source IP using source port 80. Like the packets com- eypots.
ing from port 6667, the acknowledgment number and
the target port always stays the same, with one excep-
tion. The last packet received contains a differentdes-3 RELATED WORK
tination port and a different acknowledgment number.
Geoff Huston also reported a huge amountof TCP The only IPv6-capable general purpose low-
backscatter traffic where ACK and SYN flags are set. interaction honeypot is Dionaea (Dionaea, nd), a

88

HoneydV6: A Low-interaction IPv6 Honeypot

honeypot which emulates well-known services like 4 EXTENDING Honeyd TO
SMB or SIP. It is able to detect remote shellcode Honeyd V6
attacks using the emulation libraljpemu (Baecher

and Koetter, nd). In contrast tHoneyd Dionaea ,nevis a low-interaction honeypot which has been
does not implement a customized network stack and e, 6|0ped by Niels Provos in the C programming lan-
a s!ngle instance of Dionaea is no.t e}ble to $|mulate guage and is currently available in version 1.5c on the
entire IPv6 networks. Although it is p_OSS|bIe to project websité. We choseHoneydas base for our
create honeynets by setting up multiple instances of o6 honeypot since it is able to simulate entire IPv4
Dionaea, it is more challenging to maintain multiple neyorks on a single host. It provides a framework
machines .and Expenses increase as additional pery,at enaples users to write service scripts for the sim-
formance is needed. This approach is not usefully jateq machines, e.g. a script that simulates a telnet

applicable for IPv6 networks if a huge number of s ice and captures all log-in attempts of an attacker.

honeypots needs to be deployed. These service scripts can be bound to addresses which
There already exist different approaches to set up 5,4 managed bifoneyd

honeyfarmgonsisting of thousands of honeypots: In

(Vrable_et al., 2005), the authors preseﬁ_?ediemkim accomplished by a customized network stack imple-
an architecture to create a honeyfarm with thousands ,antation using the network capture librdibypcag?

of virtual machine based honeypots. A gateway dy- t pynass the host's network stack. Even though
namically creates virtual mathnes for incoming re- yhis ‘approach is very flexible, it impedes the 1Pv6
quests and forwards the traffic to the machines. Itis o 4ansjon because the existing IPv6 functionality of
not clear whether the gateway is able to process IPV6 o host's operating system cannot be reused. The

Lrafﬁc. Thehapp'roach needs toh_fllter nelt(\;v?]rk scanbs packet processing has to be modified and essential
ecause otherwise, a new machine would have to bey, s of entirely new protocols such as ICMPV6 or

created for each scanned IP address which would lea he Neighbor Discovery Protocol (NDP) have to be
to performance problems. Of course, Potemkin facesimplemented.

the same performar_lce issues as most high-interaction In this section, we will describe the major IPv6
honeypots do. While Potemkin needs a handful of specific_implementations. A number modifications
servers to simulate 64,000 machines, low-interaction require a deeper understanding-ineyd'sarchitec-
honeypots likeHoneydare able to simulate the same e e will therefore provide a deeper insight into

number of hosts on a single end user machine. the technical background when required.
Recently, HoneyCloudwas proposed (Clemente

et al., 2012), a cloud based honeypot that aims to be : : ;
able to handle thousands of attackers and to utilize 4.1 Ad&%ptmg the Configuration
various log mechanisms and IDS’. HoneyCloud cre- of Virtual Hosts
ates new virtual machine based high-interaction hon-
eypots for each attacker and is deployed in an elasticHoneydcan be configured by defining all hosts to be
compute cloud (EC2) using Eucalyptus. The system simulated in a configuration file. The behaviour of
utilizes different log mechanisms and is even able to @ simulated host can be specified via so-called sys-
capture keystrokes. While the Potemkin honeyfarm tem templates. A template specifies system properties
may assign multiple attackers to the same target ma-such as open ports and their assigned scripts. List-
chine, HoneyCloud assigns each attacker to a separatég 1 shows a configuration file for an IPv4 network
high-interaction honeypot which writes events into containing two system templates callthdowsand
own log files in order to avoid log file mixtures. Hon- linux.
eyCloud accepts SSH connections only and is Cur- . cate windows
rently not able to handle other services or even net- set windows default tcp action reset
work scans. That is a drawback when trying to gather add windows tcp port 21 "scripts/ftp.sh”
valuable information about bots and viruses in IPv6
networks because it is necessary to monitor the whole
range of ports and services. Furthermore, the need for _ .

. . . set linux default tcp action reset
a cloud mfrastructgre makes it hard for smaller busi- _ 4 i ux tcp port 23 "scripts/telnet.pl”
nesses or even private researchers to deploy the honagg finux tcp port 80 "scripts/web.sh”
eypot without falling back on commercial solutions.

The simulation of entire networks iHoneydis

create linux

Lhttp://www.honeyd.org/
2http://www.tcpdump.org/

89

SECRYPT 2013 - International Conference on Security and Cryptography

set windows ethernet "aa:00:04:78:98:76"
set linux ethernet "aa:00:04:78:95:82"

bind 192.168.1.5 windows
bind 192.168.1.6 windows
bind 192.168.1.7 linux

Listing 1: Honeyd example configuration.

A template is created using tleeeate statement
followed by the template name. In this example, the
FTP port 21 of thevindowstemplate is opened and
attached to a script callefp.sh The ftp.sh script
contains just enough functionality to capture all log-
in attempts, an actual log-in is not possible. Het

statement assigns a MAC address to the template. By

using thebind statement, thevindowstemplate is
bound to the addressé92.168.1.5and192.168.1.6

whereas thdinux template is bound to the address .

192.168.1.7

Internally,Honeydcreates a new template for each
IP address binding which are basically copies of the
original defined template. The names of the copied
templates are changed framindowsor linux to their

defined IP addresses so that a template belonging to

an incoming connection can easily be found by its
name.

The different templates are maintained in a splay
tree ordered by their names. A splay tree is a self

balancing binary tree where recently accessed ele-
ments are located close to the root (Sleator and Tarjan,

1985). This allows an efficient search for a connection
belonging to an incoming packet.

In HoneydV6the syntax to define templates and
to assign scripts to configured ports in the configura-
tion file is left unchanged. Our modified configura-
tion parser allows users to bind templates to an IPv6
address in the same way as an IPv4 addresbind
statement with a given IPv6 address followed by the
template name is sufficient to bind a template to an
IPv6 address.

The fact that the honeypot maintains templates in
a splay tree ordered by their names in a string repre-
sentation allows us to store IPv6 and IPv4 templates
in the same tree. It might be possible to improve the
performance by storing IPv4 and IPv6 templates in

two separate trees. However, our performance tests

show that the current performance is sufficient for
most scenarios (see Section 7).

4.2 Modifying Packet Processing

As soon asHoneyd receives an IPv4 packet, it

searches for the corresponding template based on the

target address. If it cannot find a template, the packet
will silently be discarded. If a packet is received for

90

which Honeydis responsible, the packet will be for-
warded to a dispatcher. The dispatcher moves the
packet further to a TCP, UDP or ICMP processor, de-
pending on the IP payload. If the packet is a fragment,
thenHoneydwill wait for all fragments to arrive and
will assemble the fragment before forwarding it to the
dispatcher.

The service scripts, such as tftp.sh script of
the previous example, are connected to the matching
connection via socket pairsloneydforwards incom-
ing traffic to the standard input of the assigned script
while the standard output of a script is sent back to the
attacker. In addition, scripts are able to print logging
information using their standard error output.

Similar to the IPv4 approachjoneydV6assem-
bles and forwards incoming IPv6 packets to a new
IPv6 packet dispatcher. We had to modify the orig-
inal TCP and UDP processor, so that they are able
to process both kinds of connections, IPv4 as well as
IPv6. The IPv6 dispatcher forwards received packets
to the new ICMPV6 or to the extended TCP and UDP
processor based on the payload type.

Fragmented IPv6 packets get reassembled before
they are forwarded to the IPv6 packet dispatcher.
This function required the implementation of an IPv6
packet assembler which evaluates the fragment exten-
sion header, if available, of each incoming packet.
The offset and length of each incoming fragment is
logged so that attacks which are based on packet frag-
mentation can easily be analysed.

Honeyd provides a number of further settings
and mechanisms such as proxy connections to high-
interaction honeypots, conditional templates and fin-
gerprinting. However, these features are out of the
scope of this document.

4.3 TCP and UDP

Honeyds packet dispatcher passes incoming TCP
and UDP packets to the corresponding callbacks.
These callback functions are namedp_recv.cbh
and udprecv.ch respectively. After our modifica-
tions, these functions wrap aroutob_recv.ch46and
udprecv.cb46which are able to handle IPv4 as well
as IPv6 packets.

Fortunately, these callbacks needed only minor
modifications. Depending on the address family, an
incoming packet is now mapped to the corresponding
structure as shown in the following code snippet of
the UDP callback:

if (addr_family == AF_INET) {
ip = (struct iphdr «)pkt;
udp = (struct udghdr)(pkt + (ip—>ip_hl << 2));

telse if (addrfamily == AF_INET6) {

ip6 = (struct ip&hdr *)pkt;
getip6_nexthdr((ucharxx)&udp,ip6,IP.PROTQUDP);

Listing 2: Protocol switches to handle IPv4 and IPv6.

The use of the two different structures in the same
functions had quite an impact on multiple code seg-
ments. However, this way a lot of code fragmentation

HoneydV6: A Low-interaction IPv6 Honeypot

splay tree using the followinffagment6structure:

struct fragment§
SPLAY_ENTRY(fragment6) node;
TAILQ _ENTRY (fragment6) next;
TAILQ _HEAD(frag6q, frag6ent) fraglist;

struct addr sraddr;
struct addr dsaddr;

could be avoided and the packet processing is easier

to understand.

In quite a few sections of the TCP and UDP code,
the IPv4 functionality could not be reused and a pro-
tocol switch had to be implemented. One example is
the checksum and data length calculation, which had
to be updated in both callbacks.

The IPv6 packet processing needs to be aware of
possible extension headers. As shown in the previous

example, the actual payload cannot be retrieved di-
rectly, we first have to parse the chain of possible ex-
tension headers. The functigetip6_nexthdr pro-
vides a pointer to a certain extension header or the
actual payload.

The structures to maintain UDP and TCP connec-
tions (udp.conandtcp_con) include a pointer to a tu-
ple structure which holds address details of a connec-
tion:

struct tuplef{

/lcurrently used to store the ipv4 addresses
ip_addrt ip_src;

ip-addct ip_dst;

/lcurrently used to store the ipv6 addresses
struct addr sraddr;

struct addr dsaddr;

uintl6.t sport;

uintl16.t dport;

h
Listing 3: Excerpt of the modified tuple structure to main-
tain a connection.

Honeyd uses the variablép_src and ip_dst of
type ip_addr.t to store IPv4 addresses of a connec-
tion. This type is too small to store IPv6 addresses,
so we had to add the fieldsc_addr anddstaddr to
store IPv6 addresses.

4.4 Fragmentation

IPv6 fragmentation handling differs from IPv4 inso-
far, as only source nodes may fragment packets. We
implemented the functiongp6_sendfragmentsand
ip6_fragmentthat handle fragmentation of outgoing
IPv6 packets that are larger than the maximum trans-
mission unit (MTU) and reassemble fragmented in-
coming packets. All fragments are maintained in a

uint32.t ip6.id;
uint32_t total len;
uint8_t nxt_hdr;
struct event timeout;

Listing 4: IPv6 fragment structure.

Besides address, length and ID, the structure con-
tains a queue which stores received fragments be-
longing to a packet. When a packet arrives, the
function ip6_fragmentfind is used to search for al-
ready received fragments in the splay tree. If the
received packet is the first received fragment then
ip6_fragmentnewis used to insert a new entry into
the splay tree. If other fragments have already been
received, thenp6_insertfragmentis used to add the
packet to the fragment queue.

Outgoing packets bigger than the Honeyd MTU
are fragmented using6_sendfragments Path MTU
discovery has not yet been implemented and a
fixed defined siz2HONEYDMTU is used instead.
ip6_sendfragmentscomputes the number of frag-
ments needed and prepares the fragments by insert-
ing a fragmentation extension header before using
honeydeliver ethernet@o send each single fragment.

4.5 Implementation of the Neighbor

Discovery Protocol

While IPv4 uses ARP for address resolution, IPv6 is
based on the new so-called Neighbor Discovery Pro-
tocol (NDP). ThereforetloneydVéhas to implement
the essential parts of NDP.

For every IPv4 template that is creatddoneyd
creates an ARP entry which contains the Ethernet ad-
dress in a splay tree that can be used later to handle
ARP requests. For IPv6 templatétoneydVecreates
a further splay tree representing a neighbor cache. It
contains the Ethernet addresses of all IPv6 templates
needed by the NDP.

We implemented the essential parts of NDP that
are required to properly advertise the simulated ma-
chines in the network:

e Send and Process Neighbor Solicitations - If a
machine needs the Ethernet address of a node in

91

SECRYPT 2013 - International Conference on Security and Cryptography

the local network, it sends a neighbor solicita-
tion message to that node. A host receiving a
neighbor solicitation answers with a neighbor ad-
vertisement containing the corresponding Ether-
net address.

Send Router Solicitations and Process Router ad-
vertisements - It is very probable that in practice
HoneydVeéwill run behind a router. In order to
find all routers and their Ethernet addressém-
eydV6sends a router solicitation to the all routers
multicast address and afterwards collects incom-
ing router advertisements.

Because NDP goes hand in hand with ICMPV6,
the core functionality to handle NDP packets is con-
tained inicmp6.c Honeyd’s dispatcher was modified
to forward ICMPV6 packets to the ICMPV6 dispatcher
functionicmp6@recv.ch. The function passes the in-
coming packet to the corresponding handler depend-
ing on the ICMPV6/NDP type.

switch(icmp6->icmp6.type){

case NDNEIGHBOR.SOLICIT:

handleneighborsolicitation(inter,ip6, icmp6);
break;

case NDNEIGHBOR ADVERT:

handleneighboradvertisement(inter,ip6, icmp6);
break;

case NDROUTERADVERT:

handlerouteradvertisement(inter,ip6 ,icmp6);
break;

case ICMPEGECHO.REQUEST:

handleecharequest(inter,ip6, icmp6,
ntohs(ip6->ip6_plen)+IP6HDR_LEN+ETH.HDR_LEN
break;

default:

syslog(LOGDEBUG,"unhandled icmp6 type: %d”",

icmp6—>icmpé.type);
break;

Listing 5: ICMPV6 dispatcher.

4.6 Support for the Monitoring
of Network Scans

One ofHoneyd’'sadvantages is its ability to simulate
entire network topologies containing virtual routers
and virtual low-interaction hosts. This mechanism
allows researchers to analyse the way network scan
are performed and how bots try to find new hosts to
infect. RFC 5157 (Chown, 2008) suggests a num-
ber of possible ways to reveal IPv6 hosts more effi-
ciently than brute-force network scanning. Network
scanning tools likescan6of the SI6 Networks’ IPv6
Toolkit (SI16 Networks, 2012) already started to im-
plement these scanning techniques.

In order to allow researchers to observe new kinds
of scanning methods in IPv6 networks, we adapted

92

S,

latency 100 ms

Router 2
IPv6 addr: 2001:db8:1::15 "= = ==

2001:db8:1::0/48

——
Virtual Host 1
IPv6 addr: 2001:db8:3::10

Router 1
Entry router
IPv6 addr: 2001:db8::99

Router 3
IPv6 addr: 2001:db8:1::16

2001:db8:2::0/48

Router 4
IPv6 addr: 2001:db8:2::16 = ===

AENER.
Virtual Host 3
IPv6 addr: 2001:db8:4::10

-

Virtual Host 2
IPv6 addr: 2001:db8:2::10

latency 800 ms

Figure 2: An example IPv6 network that can be simulated
usingHoneydV6and the configuration presented in Listing
6.

the internal routing mechanismsldbneydto support
IPv6 packet routing.

Listing 6 shows an example configuration for the
network topology presented in Figure 2. In order
to simplify the configuration, the configuration syn-
tax corresponds with the syntax used to define IPv4
network topologies. Our example contains four vir-
tual routers and three virtual low-interaction hosts.
Incoming network packets need to traverse an entry
router, which in this example has the IPv6 address
2001:db8::99. An entry router can be defined using
the route entrystatement followed by the router ad-
dress and the reachable network which in this case is
2001:db8::0/32.

By using theadd netand thelink statement,
the entry router is directly connected Router 2
andRouter 3with the addresses 2001:db8:1::15 and
2001:db8:1::16 respectively.Router 2 covers the
network 2001:db8:3::/48 and has the virtual low-
interactionHost 1 with address 2001:db8:3::10 at-
tached.

Because of the firsadd net statement,Hon-
eydV6 knows that packets targeting the network
2001:d8:3::/48 need to be forwarded Router 2
A link statement defines what addresses are directly
reachable through a router. In caseRduter 2 all
addresses within the network 2001:db8:3::/48 are di-
rectly reachable which includé$ost 1

In order to simulate a realistic network packet
routing, the following ICMPV6 types had to be im-
plemented:

e Time Exceeded - Each time an IPv6 packet tra-
verses a router, its hop limit gets decreased. As
soon as the hop limit reaches zetdpneydV6
sends an ICMPv@ime Exceedethessage back

to the source.

e Destination Unreachable - If a packet is sent to an
address withirHoneyd’saddress space to an un-
defined virtual host or to a closed UDP port then
the honeypot replies with an ICMP\@Bestination
Unreachablanessage.

Both packet types are essential in order to make
network scanning tools likeacerouteéwork and to
allow attackers exploring the virtual network.

The simulation of physical network properties, as
provided by theéHoneydIPv4 version, was adapted to
also work with IPv6 packets. This includes the com-
putation of the hop limit of a packet and functions that
find and compare IPv6 networks.

It is possible to define factors like packet loss or
network latency as shown in Listing 6. In this exam-
ple, a packet transfer frofRouter 1to Virtual Host
1 takes about 100 milliseconds while a packet from
Router 3to Virtual Host 3needs about 800 millisec-
onds. If no latency is set, then a packet is passed to
the next hop without any extra delay except the time
needed for computation.

Of course, the provided example configuration
requires that the covered prefixes are advertised
throughoutthe global IPv6 Internet and attacking traf-
fic is forwarded to the machindoneydVés running
on.

route entry 2001:db8::99 network 2001:db8::0/32

bind
bind
bind
bind

2001:db8::99 routerl

2001:db8:1::15 router2
2001:db8:1::16 router3
2001:db8:2::16 router4d

bind
bind
bind

2001:db8:
2001:db8:
2001:db8:

3::
2::
4::

10
10
10

hostl
host2
host3

route 2001:db8::99
add net 2001:db8:3::0/48
latency 100 ms

2001:db8:1::15

2001:db8::99
net 2001:db8:2::0/48

route

add 2001:db8:1::16
2001:db8::99

net 2001:db8:4::0/48

route

add 2001:db8:1::16
route 2001:db8:1::16
add net 2001:db8:4::0/48

latency 800 ms

2001:db8:2::16

route 2001:db8::99 link 2001:db8:1::0/48

HoneydV6: A Low-interaction IPv6 Honeypot

route 2001:db8:2::16 link 2001:db8:4::0/48

Listing 6: Extract of HoneydV6 configuration to simulate
the network shown in Figure 2.

5 PITFALLS

We faced two major issues when we extendth-
eydto HoneydV6 One problem was that scope IDs,
which were embedded in link-local addresses, com-
plicated address comparisons needed to route packets.
Besides that, we had to deal with memory access vio-
lations caused by dynamic arrays. The following two
subsections explain both issues in more detail.

5.1 Scope IDs Stored in Link-local
Addresses

The link-local interface addresses that we retrieved
using thelibdnet network library functionintf_get
contained scope IDs directly embedded in the ad-
dress. In_order to convert these addresses into
valid link-local addresses, the scope IDs had to
be removed. We wrote a simple function called
addr_removescopeid to remove the scope ID from
link-local addresses.

static void addiremovescopeid(struct adds ip6) {
if (ip6 —>addrdata8[0]==0xfe && ip6->addrdata8[1]==0x80)
/x delete scope id/
ip6—>addrdata8[2]=0;
ip6—>addrdata8[3]=0;
}
}

Listing 7: Function to remove scope IDs.

HoneydVeéretrieves the interface of an incoming
packet by usindgibpcap. Therefore there is no need to
store a removed scope ID. WhEloneydVeénitializes
and inspects an interface, it removes scope IDs of all
it's IPv6 address aliases directly after acquiring the
interface information withintf_get

for(i=0;i <inter— >if _ent.inttaliasnum;i++){

if (inter— >if _ent.intLaliasaddrs|i].addrtype == ADDRTYPE.IP6){
I+ clear the embedded scope id if its a liflocal address/
ip6addr = &inter->if _ent.intf.aliasaddrs]i];
addrremovescopeid(ip6addr);

}
}

Listing 8: Removing the scope IDs of all link-local alias

addresses.

5.2 Use of Dynamic Arrays

The originalHoneydversion maintains information
about an interface in a customterface structure

shown in Listing 9. This structure has a field of type
intf_entryfollowed by other fields.

route 2001:db8:1::15 link 2001:db8:3::0/48
route 2001:db8:1::16 link 2001:db8:2::0/48

93

SECRYPT 2013 - International Conference on Security and Cryptography

struct interface user can enable the so-callfv6 random modéy
TAILQ -ENTRY(interface) next; using therandomipvéstatement followed by the ac-
ceptance probability. In order to define what template
to use for dynamically created machines, the name of
a default template has to be specified right after the

struct inttentry if_ent;
int if _addrbits;
struct event ifrecvev;

pcant +if_pcap; acceptance probability.
etht «if eth; Consider the example configuration in Listing 10
int if _dloff; where we define the templai@ndomdefaulto be the
default template. The default template has the web
char itfilter[1024]; server and the FTP port open and assigned to the cor-
g responding scripts. Besides the configured open ports

Listing 9: Structure used to store interface information. and the matching script assignments, the template has
. . 4 a defined Ethernet addressioneydVé6replaces the
Theintf_entry structure contains a dynamic array |ast three bytes of this Ethernet address with randomly
which may overwrite the following fields. The func- generated bytes for each newly created template. This
tion intf_get which is used ininterface.cto retrieve corresponds tloneyd’sdefault behavior in the IPv4

interface information, fills the dynamic array with ad- yersjon. Currently, we are supporting only one default
dress aliases depending on the amount of reserVGQemplate.

memory. If no further memory is available then no
alias will be returned. This was not a problem in the vl g B —

. ’ . set randomdefault default tcp action reset
IPv4 version because no address aliases needed t0 by randomdefault tcp port 21 "scripts/ftp.sh”
requested. In the IPv6 version, we need to find outthe agd randomdefault tcp port 80 ”scripts/web.sh”
address aliases to get informationabout assigned IPv6set randomdefault-ethernet "aa:00:04:78:98:78"
addresses too. Therefore, we extended the memory _
allocation for the interface and moved thmgf_entry randomipvé 0.5 randomdefault 256

structure to the end of the interface structure. randomexclude 2001:db8::1

randomexclude 2001:db8::2
randomexclude 2001:db8::3

6 COVERING HUGE ADDRESS Listing 10: Honeyd configuration to randomly accept IPv6
SPACES USING RANDOM IPv6 connections.
REQUEST PROCESSING If the honeypot randomly decides to reject a re-

quest and not to create a machine for it, then the tar-

The huge address space of an IPv6 subnet makes iget address will be blacklisted. Future requests to a
hard, if not almostimpossible, for an attacker to find a blacklisted address will always be ignored to keep the
single host on the network by pure chance. While this system state consistent and to avoid revealing the hon-
fact is very welcome in common networks, it impedes eypot.
the behavioral analysis of an actual attacker who may In some cases it may be useful to exclude certain
or may not be able to find a machine. addresses from the automatic template creation, e.g.

We want to observe IPv6 network scan techniques if other nodes are in the same network. This can be
and analyse the attacker’s actions when he actuallydone by using theandomexcludstatement. An ex-
finds a running host. In order to accomplish this, we cluded address is automatically blacklisted &tah-
extendedHoneydV6with a mechanism that dynam- eydVéwill ignore requests to this address.
ically creates simulated hosts on-demand and ran- Itis possible to define an upper bound for the num-
domly accepts IPv6 connections. Hence, after a cer-ber of dynamically created templates by the honey-
tain number of connection attempts, an attacker will pot. This number can be set after the default template
definitely find a machine to exploit. name. In the example above, the maximum number

Furthermore, all connection attempts are logged, of allowed templates is 256. It is important to re-
even to IPv6 addresses that are not defined in the con=strict the number of dynamically created virtual low-
figuration file. It allows us to analyze IPv6 network interaction hosts in order to avoid memory-exhaustion
scans and to find new scan patterns. attacks. Each created machine and each blacklisted

When a packet arrivesjoneydVaries to find the address causes memory consumption until the maxi-
matching virtual low-interaction host. If no host can mum number of allowed machines is reached.
be found, then a new template will be dynamically We recommend to restrict the number of dynami-
created with a specifiedcceptance probability A cally created machines as well as the acceptance prob-

94

HoneydV6: A Low-interaction IPv6 Honeypot

ability to an appropriate low value depending on the 0.09 seconds faster than our modified version. This
use case. A large number of uniformly distributed indicates that the overhead is in the magnitude of
host may easily reveal the honeypot. the measurement error and neglectable. The over-

head is most probably caused by a number of newly

added IPv4/I1Pv6 switches in the source code. Further-

more, the IPv6 transfer is insignificantly slower than
7 PERFORMANCE TESTS the IPv4 transfer of both versionsloneydVéneeded
approximately 0.35 seconds longer than the original
1.5c version to transfer 50 MB and about 0.51 sec-
onds to transfer 100 MB over IPv6.

Our modified version oHoneydstill fully contains

the original IPv4 implementation. Thus it is able to
handle IPv4 and IPv6 packets at the same time. When
we implemented the IPv6 functionality, we tried to
modify the IPv4 code as little as possible in orderto 7.2 Scalability of HoneydV6

avoid new programming errors and negative impact

on the IPv4 performance. Nevertheless, in some casesyhile throughput measurements can help to get an
minor modifications to the IPv4 work flow had to be impression of the performance impact caused by the
done. We conducted some measurements to quantifyipyg modifications, throughput is not a very useful
the performance of the new IPv4 and IPv6 code in criteria to evaluate a honeypot for its suitability in

HoneydV6 a network. A honeypot likédoneydrather needs to
! be able to handle a large number of connections than
7.1 Comparison: IPv4 and IPv6 transferring huge files.
Throughput Provos and Holz measured for example the num-

ber of TCP requests per second tHaneydis able to

In order to evaluate the performance impact of our process (Provos and Holz, 2008). Since we are par-
IPv6 modification, we compared the average appli- ticularly interested in the performance impact on the
cation layer throughput of the original IP\4oneyd application layer, we used the web server benchmark
1.5¢c with HoneydV6 We developed a simplelon- servload(Zinke et al., 2013 to measure the num-
eyd benchmark service script and a corresponding ber of HTTP GET requests thatoneydVés able to
client which allow us to measure the time needed to process per second. Servload is capable of replay-
transfer larger files over the network to the honeypot. ing a previously captured traffic log file based on the
The original honeypot as well as the IPv6 modifica- timestamps of the contained packets. We generated a
tion were installed on a Fujitsu PRIMERGY TX200 log file containing 20,000 HTTP GET requests from
S5 Server with an Intel Xeon processor 5500 series different source addresses with 600 requests per sec-
and 4096 MB of RAM running Ubuntu 12.04. The ond. HoneydV6was configured to simulate a single
benchmark client was installed on a Lenovo ThinkPad machine which was bound to an IPv4 and an IPv6
L520 with an Intel i5-2450M CPU and 4096 MB of address and which delivers theeb.shscript that is
RAM. Both computers were connected via a Brocade shipped with the original Honeyd version 1.5¢ when
FWS648G Fastlron switch using Gigabit Ethernet. getting requests on port 80. Theeb.shscript simu-
Table 2 shows the results for transferring 50 MB lates a Microsoft 1I1S 5.0 and delivers either a direc-
and 100 MB from the client via IPv4 and IPv6 to the tory listing of the server or a 404 NOT FOUND page.
honeypot benchmark service. Our generated requests demanded a non-exisiing
dex.htmbpage so that theveb.shscript responses with

Table 2: Comparison of transmission time in seconds be- an HTTP 404 NOT FOUND error code and a short
tween the original Honeyd version 1.5¢ and HoneydV6. explanation.

| Filesize | 1.5c (IPv4)] V6 (IPv4) | V6 (IPv6) | As with the throughput measurements, we re-

5OMB | 15.98s 16.19s 1633 S peated the test run for the original Honeyd 1.5c and

100 MB | 31.855s 31.045 32365S compared the results with the IPv6 and IPv4 requests
of HoneydV6.

For each experiment, Table 2 shows the median As shown in Table 3, the original Honeyd version
from 5 runs. It takes about 16 seconds to transfer and HoneydV6 were able to process about 212 IPv4
50 MB to the honeypots and about twice as much requests/s. HoneydV6 managed to handle about 205
time to transfer 100 MB. In case of transferring 50 IPv6 request/s without any packet loss which is cur-
MB over IPv4, the original 1.5c version ¢ioneyd rently more than sufficient in an IPv6 network and
is approximately 0.2 seconds faster tHdoneydV6
For sending 100 MB, the original Version was about 3Download avaible from http://www.salbnet.org/

95

SECRYPT 2013 - International Conference on Security and Cryptography

Table 3: Comparison of the number of HTTP GET requests operating system fingerprinting mechanism, which al-
per second that Honeyd 1.5¢ and HoneydV6 is able to han- lowsHoneydio emulate system-specific behavior. We

dle without any packet loss.
| 1.5¢c (IPV4)| V6 (IPv4) | V6 (IPv6) |
| 212.57 | 214.00 | 205.75 |

only slightly less than its IPv4 counterpart is able to
process.

We configured HoneydV6 to simulate just a sin-
gle target for our test runs. Since Honeyd main-

currently investigate how the new nmap IPv6 finger-
print format (Nmap, nd) can be reused to simulate
the network stack parameters of different operating
systems. HoneydVe6is a useful tool to deceive at-
tackers and to analyse how an attacker interacts with
network services. However, the honeypot is not able
to inspect UDP or TCP payload for malicious con-
tent which makes it hard to extract new exploits from

tains one connection entry for each connection in a the received traffic. We are therefore working on a

splay tree, regardless of existing connections with

connection between our IPv6 honeypot and the shell-

the same target address, the performance differencecode detection libraryibemu (Baecher and Koetter,
between benchmarking a single target compared tond) with the aim of simplifying remote exploit detec-

benchmarking multiple targets is insignificant.

8 CONCLUSIONS AND FUTURE
WORK

While the general threat levelin IPv6 networks is still
low compared to IPv4 networks, the results of our

IPv6-darknet experiment show the raising interest of

attackers in IPv6.

The honeypoHoneydVeépresented in this paper
provides an excellent foundation for future IPv6 net-
work security research.
attacks in IPv6 networks and to reveal new network
scan approachesHoneydVe6is based on the well-
known honeypoHoneydwhich is the fundamental
part of a number of honeypot solutions likeny
Honeypotor the SCADA HoneyNet Project These

projects can easily be extended to IPv6 networks us-

ing HoneydV6

HoneydV6is the first low-interaction honeypot
which is able to simulate entire IPv6 networks. Be-
sides IPv6 packet processirtgoneydVamplements

necessary parts of the ICMPv6 and the Neighbor Dis-

covery Protocol. In order to observe new kinds of

scanning methods in IPv6 networks, we adapted the

internal routing mechanisms d¢foneydto support
IPv6 packet routing. In our performance tebtsn-
eydV6 performed comparable téloneydfor both,
IPv4 and IPv6 networks. Further, we developed a

mechanism that randomly and dynamically generatesJohns, M. S. (1993).
low-interaction IPv6 hosts, based on the requests of
an attacker, in order to increase the chances that an

attacker will encounter the honeypot within the huge
IPv6 address space.

We are currently setting up a honeynet based on
HoneydV@&ogether with research partners to observe

how the threat level in IPv6 networks develops.
Honeydstill contains some features that are sup-
ported in IPv4 networks only. One example is the

96

tion.

In order to promote further IPv6 research, we will
make the sources of outoneydV6implementation
publicly available at http://www.idsv6.de.

REFERENCES

Baecher, P. and Koetter, M. (nd).
code Emulation. Available from:
carnivore.it/.

CERT Polska (2012). ENISA Honeypot Study - Proactive
Detection of Security Incidents.

libemu x86 Shell-
http://libemu.

It can be used to observe Chown, T. (2008). IPv6 Implications for Network Scan-

ning. RFC 5157 (Informational).
http://www.ietf.org/rfc/rfc5157.txt.

Clemente, P., Lalande, J.-F., and Rouzaud-Cornabas, J.
(2012). HoneyCloud: Elastic Honeypots - On-attack
Provisioning of High-Interaction Honeypots. linter-
national Conference on Security and Cryptography
pages 434-439, Rome, Italy.

Dionaea (nd). dionaea catches bugs. Available from: http:/
dionaea.carnivore.it/.

Ford, M., Stevens, J., and Ronan, J. (2006). Initial Results
from an IPv6 Darknet. IfCISP '06: Proceedings of
the International Conference on Internet Surveillance
and Protectionpage 13, Washington, DC, USA. IEEE
Computer Society.

Heuse, M. (nd). THC IPv6 attack tool kit. Available from:
http://www.thc.org/thc-ipv6/ [cited 09.05.2011].

Huston, G. (2010). Background Radiation in IPv6. Avail-
able from: https://labs.ripe.net/Members/mirjam/
background-radiation-in-ipv6.

Identification Protocol. RFC

1413 (Proposed Standard). Available from: http://

www.ietf.org/rfc/rfc1413.txt.

Kalt, C. (2000). Internet Relay Chat: Architec-
ture. RFC 2810 (Informational). Available from:
http://www.ietf.org/rfc/rfc2810.txt.

Nmap (nd). Nmap Network Scanning - IPv6 finger-
printing. Available from: http://nmap.org/book/
osdetect-ipv6-methods.html.

Oikarinen, J. and Reed, D. (1993). Internet Relay Chat
Protocol. RFC 1459. Updated by RFCs 2810, 2811,

Available from:

2812, 2813. Available from: http://www.ietf.org/rfc/
rfc1459.txt.

Pang, R., Yegneswaran, V., Barford, P., Paxson, V., and
Peterson, L. (2004). Characteristics of internet back-
ground radiation. IfProceedings of the 4th ACM SIG-
COMM conference on Internet measuremeiiC
‘04, pages 27-40, New York, NY, USA. ACM.

Provos, N. (2003). Honeyd: A Virtual Honeypot Daemon.
Technical report, Center for Information Technology
Integration, University of Michigan.

Provos, N. and Holz, T. (2008)virtual Honeypots - From
Botnet Tracking to Intrusion Detection Addison-
Wesley.

Seifert, C., Welch, I., and Komisarczuk, P. (2006). Taxon-
omy of honeypots. Technical report, Victoria Univer-
sity of Wellington, Wellington.

SI6 Networks (2012). SI6 Networks’ IPv6 Toolkit
- A security assessment and troubleshooting tool
for the IPv6 protocols. Available from: http:/
www.siénetworks.com/tools/ipv6toolkit.

Sleator, D. D. and Tarjan, R. E. (1985). Self-adjusting bi-
nary search treesl. ACM 32(3):652—686. Available
from: http://doi.acm.org/10.1145/3828.3835.

Thomson, S., Narten, T., and Jinmei, T. (2007). IPv6
Stateless Address Autoconfiguration. RFC 4862,
Internet Engineering Task Force. Available from:
http://tools.ietf.org/html/rfc4862.

Vrable, M., Ma, J., Chen, J., Moore, D., Vandekieft, E.,
Snoeren, A. C., Voelker, G. M., and Savage, S. (2005).
Scalability, Fidelity, and Containment in the Potemkin
Virtual Honeyfarm. InProceedings of the twenti-
eth ACM symposium on Operating systems princi-
ples SOSP '05, pages 148-162, New York, NY, USA.
ACM.

Zinke, J., HabenschuR3, J., and Schnor, B. (2012). servload:

Generating Representative Workloads for Web Server
Benchmarking. Irinternational Symposium on Per-
formance Evaluation of Computer and Telecommuni-
cation Systems (SPECTGenoa.

HoneydV6: A Low-interaction IPv6 Honeypot

97

