
analyzing values such as, for example, classification 
of AI and AF feeders, as C5 and C7 values in AI 
area higher than in AF, which could indicate a lower 
quality in AI compared to AF but, as C8 has a lower 
value for AI, the techniques applied indicated that 
AF has lower quality than the AI feeder.  
 
 
Figure 10: Quality label with feeder classification. 
Thus, the methodology developed and applied in 
this study revealed non-explicit knowledge in the 
concessionaire’s data bases to an unprecedented real 
problem: the PQ considering voltage sags.
 
ACKNOWLEDGEMENTS 
This study is an integral part of the P & D project 
number 2866-019/2007 – Event Classification for 
Power Quality, approved by ANEEL and developed 
in partnership with COPEL and the UFPR. 
REFERENCES 
Adepoju, G. A.; Ogunjuyigbe, S. O. A.; Alawode, K. O. 
Application of Neural Network to Load Forecasting in 
Nigerian Electrical Power System.  The Pacific 
JouANNl of Science and Technology. Spring. v. 8, p. 
68-72, 2007. 
ANEEL Agência Nacional de Energia Elétrica. 
Procedimentos de Distribuição de Energia Elétrica no 
Sistema Elétrico Nacional – PRODIST: Módulo 8 – 
Qualidade da Energia Elétrica. 2008. 
Burges, C. J. C. A Tutorial on Support Vector Machines 
for Pattern Recognition. Data Mining and Knowledge 
Discovery, v. 2, p. 121-168, 1998. 
Caciotta, M.; Giarnetti, S.; Leccese, F. Hybrid Neural 
Network System for Electric Load Forecasting of 
Telecomunication Station. XIX IMEKO World 
Congress - Fundamental and Applied Metrology. 
Lisboa, Portugal, p. 657-661, 2009. 
Casteren, J. F. L. Van.; Enslin, L. H. R.; Hulshorst, W. T. 
J.; Kilng, W.L.; Hamoen, M. D.; Cobben, J. F. G. 
Acustomer oriented approach to the classification of 
voltage dips. In: The18th International Conference 
and exhibition on Electricity Distribuion – CIRED, 
2005. 
Cobben, J. F. G.; Casteren, J. F. L. Classification 
Methodologies for Power Quality. Electrical Power 
Quality & Utilization Magazine. v. 2, no 1, p. 11-17, 
2006. 
Dash, P. K.; Padhee, M.; Barik, S. K. Estimation of power 
quality indices in distributed generation systems 
during power islanding conditions.  Electrical Power 
and Energy Systems, v. 36, p. 18-30, 2012. 
Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P.; 
Uthurusamy, R. Advances in Knowledge Discovery & 
Data Mining. 1 ed. American Association for Artificial 
Intelligence, Menlo Park, Califórnia, 1996. 
Gencer, O.; Ozturk, S.; Erfidan, T. A new approach to 
voltage sag detection based on wavelet transform. 
Electrical Power and Energy Systems, v. 32, p. 133-
140, 2010. 
Góes, A. R. T. Uma metodologia para a criação de 
etiqueta de qualidade no contexto de Descoberta de 
Conhecimento em Bases de Dados: aplicação nas 
áreas elétrica e educacional. 145 f. Tese (Doutorado 
em Métodos Numéricos em Engenharia) - Setor 
Tecnologia e Setor de Ciências Exatas, Universidade 
Federal do Paraná, Curitiba, 2012. 
Goldberg, D. E. Genetic algorithms in search, optmization, 
and machines learning.  Addison-Wesley Publishing 
Company, Inc. Massachusetts, 1989. 
Haykin, S. Neural Networks – A Comprehensive 
Foundation. 2.nd., Prentice Hall, New Jersey, 1999. 
Kaewarsa, S.; Attakitmongcol, K.; 
Kulworawanichpong, T. Recognition of power quality 
events by using multiwavelet-based neural networks. 
Electrical Power and Energy Systems, v. 30, p. 245-
260, 2008. 
Kappor, R.; Saini, M. K. Hybrid demodulation concept 
and harmonic analysis for single/multiple power 
quality events detection and classification.  Electrical 
Power and Energy Systems, v. 33, p. 1608-1622, 2011. 
Oleskovicz, M.; Coury, D. V.; Carneiro, A. A. F. M.; 
Arruda, E. F.; Delmont, O.; Souza, S. A.  Estudo 
comparativo de ferramentas modeANNs de análise 
aplicadas à qualidade da energia elétrica. Revista 
Controle & Automação, v. 17, n. 3. Julho, agosto e 
setembro 2006. 
Trindade, R. M. Sistema Digital de Detecção e 
Classification de Eventos de Qualidade de Energia. 
114 f. Dissertação (Mestrado em Engenharia Elétrica) 
– Faculdade de Engenharia da Universidade Federal 
de Juiz de Fora, Juiz de Fora, 2005.  
Vapnik, V. The nature of statistical learning theory. 
Springer-Verlag, New Yourk, 1995. 
IJCCI2013-InternationalJointConferenceonComputationalIntelligence
442