
An Industrial Standard to Assure Dependability in Software Reuse

Fevzi Belli
Faculty of Computer Science, Electrical Engineering and Mathematics

University of Paderborn, Paderborn, Germany

Keywords: Software Reuse, Dependability, Test, Industrial Standardization.

Abstract: Whereas a software component may be perfectly suited to one application, it may prove to cause severe
faults in other applications. The pre-standard IEC/PAS 62814 (Dependability of Software Products Con-
taining Reusable Components – Guidance for Functionality and Tests), which has recently been released,
addresses the functionality, testing, and dependability of software components to be reused and products
that contain software to be used in more than one application. This paper introduces into this pre-standard
and give hints how to use it. The author, who chaired its realization that started in 2006, briefly summarizes
the difficult process to bring the industrial partners with controversial interests to a consensus.

1 INTRODUCTION

Software reuse is the process of creating software
systems from existing software rather than building
software systems from scratch. The vision of soft-
ware reuse is as old as software itself – it was intro-
duced already in 1968, in the year as the term
“Software Engineering” was coined during the con-
stitutional NATO conference in Germany (Naur and
Randell, 1968).

Many efforts to reuse software have succeeded;
there is an increasingly overwhelming number of
success stories available in literature. Almost all
major companies and institutions that deal with
information & communication technology practice
software reuse and report about their success, e.g.,
Nippon Electronic Company, GTE Corporation,
Raytheon, DEC, HP, NASA, and many more
(Mathur, 2008); (Mohagheghi, 2008); (Orrego and
Mundy, 2007).

Nevertheless, the promises of decreased cost and
increased dependability, and thus decreased risks,
are not always realized. The frightening news about
recent disasters definitely caused by careless soft-
ware reuse are still being warningly associated with
and attributed to all software reuse. The failure of
Therac-25 system, in which a software component
was carried over from a previous version of an X-ray
system, caused the machine to malfunction, resulting
in the loss of several lives in a terrible way; patients
were actually burned (Leveson, 1995).

In the Ariane project, failure of a reused software
component caused the loss of a rocket costing
around half a billion dollars (Lions, 1996).

These recent disasters as a consequence of bad
reuse on the one side and success stories as a conse-
quence of good reuse on the other side are the key
factors in deciding whether or not to enhance and
sustain continued provision of reuse from a lucrative
business perspective.

To sum up, before reusing a software compo-
nent, the context and domain it was built for should
be carefully compared with the context and domain
it is intended to be built in, including the hardware
and physical and organizational aspects (Mohammad
and Alagar, 2010). Figure 1 depicts the elements of
the reuse process which is the subject of this paper.

Standardization is the most efficient means to
bring research, industrial, commercial, and con-
suming parties with different roles, but participating
on the same objects and ethic objectives, e.g., to
protect environment, to save resources, etc. Stand-
ardization helps with understanding and unifying the
quality notion, also for reusing previously used
products. Standardization helps also prevent legal
problems that arise because reuse will be already
practiced tentatively and insecurely.

This paper is on standardization of software re-
use concerning its quality, test criteria etc., depend-
ing on the purpose of the software that will be re-
used.

The publicly available specification (PAS)

58 Belli F..
An Industrial Standard to Assure Dependability in Software Reuse.
DOI: 10.5220/0004510600580063
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-EA-2013), pages 58-63
ISBN: 978-989-8565-68-6
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

IEC/PAS 62814 / Ed. 1: Dependability of Software
Products Containing Reusable Components – Guid-
ance for Functionality and Tests is a pre-standard
and addresses the functionality, testing, and
dependability of software components to be reused
and products that contain software to be used in
more than one application; that is, reused by the
same or by another development organization, re-
gardless of whether it belongs to the same or another
legal entity than the one that has developed this
software. IEC is the acronym of “International Elec-
trotechnical Commission” that is the world’s leading
organization that prepares and publishes Interna-
tional Standards for all electrical, electronic and
related technologies.

The present paper gives an introduction into the
PAS, which has been released in December 2012.
The author chaired its realization that started in 2006
62814, and will give hint how to use it.

Next section clarifies terminology and discusses
notions used in the practice. Section 3 introduces
one of the most notable aspects of the PAS, that is,
Reusability- & Dependability-Driven Software De-
velopment Technique. Recommended methods of
validation, re-validation, and reliability of software
reuse are summarizes in Section 4. Section 5
sketches the structure of the PAS, and explains and
discusses its scope, objectives, and usage. Conclud-
ing remarks and future work are included in Section
6.

Figure 1: Elements of the reuse process.

2 NOTIONS AND PRACTICES
OF REUSE

Not each “copy and paste” action, which program-
mers do daily when they construct their programs,
forms a software reuse that PAS 62814 has in mind.
Also calling an internal or external function and
even a remote-procedure call is not necessarily a
reuse this PAS would regulate. All these examples
suggest that the context and domain of the called
software does not change. Therefore, there is no
need for them to consider this PAS and, for example,
perform pre-store and pre-use activities that are
described in PAS 62814 in detail.

2.1 What Reuse Really Is

Using a service in a service-oriented (SO) landscape
or in “Common Object Request Broker Architecture
(CORBA)” is of more interest to this PAS because
the context and domain of the software that delivers
a service might change. Indeed, SO and CORBA are
typical reuse constellations concerning constructing,
offering, selecting, and validating services repeat-
edly. A service has to be registered and “published”
before it will be offered. Infrastructural services are
offered to realize a broker, etc. (Belli and Linschulte,
2010).

2.2 Where Reuse Will Be Practiced

Examples given above clarify that software reuse is
not limited to the source or object code; it has,
moreover, to consider all of the information that is
related to the product generating processes, includ-
ing also requirements, analysis, design, documents,
and test cases apart from the code. Examples of
well-known, widely accepted practices of software
reuse are (Sommerville, 2007):
 Component-based development (CBD): Building

systems by integrating components that conform to
system’s specification.
 COTS integration: CBD using commercial compo-

nents.
 Service-oriented systems: Building systems by

linking shared services.
 Program generators: Embedding knowledge of a

particular type of application to produce compo-
nent(s) in that domain.
 Application product lines: Generalization of an

application around a common architecture so that
it can be used to produce different applications in
different domains for different customers.

An�Industrial�Standard�to�Assure�Dependability�in�Software�Reuse

59

 Object-oriented programming: Implementing
applications using "objects" that consist of data
structures, methods (algorithms) and their interac-
tions and computer programs.
 Aspect-oriented software development: Weaving

shared components into an application at different
places when the program is compiled, if separation
of concerns is feasible.

2.3 Software Reuse Has Many Faces

There is a great variety of reusing software, from ad-
hoc, unplanned to systematic. Following list at-
tempts to structure this variety.
1) Accidental (ad hoc or opportunistic) reuse de-

notes reuse without strategy, typically reusing
software components not designed for reuse.

2) Systematic (planned) reuse requires developing
software components intended for reuse and/or
building new applications from those reusable
components, following a formal plan of product
line.

3) Adaptive reuse uses previously developed
software that is modified only for portability,
e.g., a new application on a different operating
system.

4) Black-box reuse uses unmodified software
components, incorporating existing software
components into a new application without
modification.

5) White-box reuse modifies and integrates software
(function) blocks into new applications.

6) Vertical reuse uses components in the same
domain.

7) Horizontal reuse uses components in different
domains.

8) Internal (in-house) reuse uses components
developed within the company, or government
unit.

9) External reuse uses components of another
company, or government unit.

2.4 Software Reuse Has Also Many
Facets

The above discussion has identified practical and
relevant kinds of reuse. A general taxonomy of
software reuse is included in Table 1, which uses the
following six aspects for a thorough, exemplary
classification (Frakes and Terry, 1996), (Frakes and
Kang, 2005). Numbers in parentheses refer to the
numbering used in the listing in Section 2.3.
 Reuse assets and entities can be product-oriented

and, thus, concrete, such as components; they can
also be ideal, such as concepts, ideas, algorithms,
etc.
 Domain scope refers to application area (6 and 7).
 Development scope refers to origin of the compo-

nent (8 and 9).
 Additional work required prior to reuse is referred

to by modification (3, 4, and 5).
 Whether and which kind of work is to be done in

performing reuse is a managerial aspect (1 and 2).
 Reuse approach is compositional if existing

components are reused (such as the UnixTM shell);
generative reuse requires application or code
generators (such as Refine and Meta tool).
 Direct reuse approach requires no "glue code" that

intermediates between the reusable component and
the receiving system, indirect reuse necessitates an
intermediate entity.

Note that Table 1 shows the summary of the
classification. It is possible to add further issues, for

Table 1: Summary of reuse classification.

Reuse Asset Reuse Entity
Domain
Scope

Development
Scope

Modification Management Approach

Ideas, concepts Architectures Vertical Internal
Adaptive

Accidental Compositional

Artefacts, com-
ponents

Requirements Horizontal External Black Box Systematic Generative

Procedures, skills Designs White Box Indirect

 Specifications Direct

 Source Code

 Object Code

 Test Cases

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

60

example, the issue of “Information to Reuse.” It
means that reused-based software development can
be required for the complete specification of the
reusable component.

3 SOFTWARE DEVELOPMENT
DRIVEN BY REUSABILITY
& DEPENDABILITY ASPECTS

Architecture is the key to software reuse. The ar-
chitecture of a system commits its structure to com-
bine the elements it is comprised of and their fea-
tures, and relations among those elements.

Typical structures are hierarchical, centralized
(star-form), or decentralized (network-form);
relations are defined as consists-of or neighboured.
Architectural elements can be event, state, or
service-oriented.

It is important for reuse that the software
architecture should allow a precise design and
specification of interfaces and their dependability-
critical features so that it enables evaluation,
selection, acquisition, and integration of reusable
components into the receiving system.

While planning substantial reuse of their soft-
ware components, software engineers are often
overly optimistic concerning how much reusable
functionality can be achieved. Reuse is not a ulti-
mate saver of costs, schedule, or dependability. Even
COTS deployment often satisfies only less than
40 % of the functionality of an industrial application.

Also important is the addressing of the critical
non-functional requirements, that is, dependability
and quality, which certainly result in schedule and
cost impacts, and, caused by poor dependability and
reliability, maybe invoke severe safety and security
risks.

Note that if the functional and interface re-
quirements are not fulfilled, glue code and wrappers
are to be planned, specified, designed, implemented,
and carefully tested.

Dependability methodologies include application
aspects and the organization of the reuse. Pre-store
and pre-use characteristics should be met and the
cases build-for reuse or build-by-reuse should be
distinguished.

Another point covers validation and reliability
aspects of the software. Also the assumptions and
rules to improve software dependability are de-
scribed and the hardware/software interaction is
taken into account.

 “Software-by-reuse” is the use of existing appli-
cations or their components to build new applica-
tions.

It is widely accepted and convenient to consider
software reusability from the following viewpoints.
 Build-for-reuse enables planned production of

reusable components.
 Build-by-reuse attempts planned production of sys-

tems using reusable components.

Both of these viewpoints focus on characteristics
of reusability that are to be checked before storing
the component and before reusing it in a new prod-
uct.

Following recommendations do not address only
internal reuse; they can easily be adopted also for
external reuse.

4 VALIDATION,
REVALIDATION,
AND RELIABILITY
OF SOFTWARE REUSE

Software reuse involves redesign, reimplemen-
tation, and re-testing. Redesign arises if the existing
functionality does not fulfil the requirements of the
new task because it requires reworking to realize the
new function, and, prior to this, necessitates reverse
engineering to understand its current functionality.

The design change leads to reimplementation.
Exhaustive re-testing (as a kind of regression
testing) is necessary to validate the functionality of
the reused software in the new domain to determine
whether or not redesign and reimplementation are
needed.

Following undesirable events/situations, mostly
caused by managerial misjudgement, negatively
influence the dependability of software reuse:
 Failing to select the right component, or to favour

the wrong selection criteria;
 Failing to justify and adjust the need for and/or ex-

tent of the modification of the selected component
to fulfil operational or application requirements;
 Failing to justify and adjust the need for and/or ex-

tent of the maintenance of the selected component
during operational stage.

To avoid such events/situations, redesign, re-
implementation, and re-testing activities can be clus-
tered in following groups:
 Redesign

– Architectural design modification: Detection of
architectural design part(s) to be modified,

An�Industrial�Standard�to�Assure�Dependability�in�Software�Reuse

61

realization of the modification, re-validation of
the entire architectural design;

– Detailed redesign: Detection of design part(s) to
be modified, realization of the modification, re-
validation of the entire design;

– Reverse engineering: Detection of the part(s) to
be modified, which are not familiar to devel-
opers; understanding, modification, re-validation
of the entire component;

– Re-documentation: Detection of the part(s) to be
modified, modification, re-validation of the entire
document;

– Re-implementation requires re-coding, code re-
view, and unit testing (IEC 62628).

 Re-testing activities can be clustered in following
groups:
– Test re-planning
– Test procedures to be altered
– Re-integration testing
– Re-release and re-acceptance testing
– Test drivers/simulators to be altered
– Test reports to be rewritten

Fundamental facts influence dependability, espe-
cially reliability when using commercially available
components, e.g., COTS components for software
development.

 Very often no source code is available, thus there
is no way to correct a detected fault.
 This is a great restriction that prohibits application

of the most widely used reliability models that
require perfect correction of detected faults
(“reliability growth models”; see, for example,
AIAA R-013-1992, IEEE 1633-2008).
 If source code is available: Note that COTS soft-

ware is no longer COTS after its source code is
modified to correct a fault detected because the
COTS supplier no longer maintains the docu-
mentation and source code (just as electronics
equipment warranties are no longer valid after a
seal is broken).
 Furthermore, the modifications can violate the

original software design. From then on, modified
COTS software is to be handled as an accidental
reuse.

5 STRUCTURE OF IEC/PAS 62814
AND HOW TO USE IT

The international PAS 62814 introduces the concept
of assuring reused components and their usage
within new products. It provides information and
criteria about the tests and analysis required for

products containing such reused parts. The objective
is to support the engineering requirements for func-
tionality and tests of reusable software components
and composite systems containing such components
in evaluating and assuring reuse dependability
(Figure 2).

NORMATIVE PART
1 Scope
2 Normative references
3 Terms and definitions and abbreviations
4 Dependability of software reuse methodol-

ogy– reusability-driven software development
5 Software reuse dependability methodology

applications
6 Software reuse assurance
7 Warranty and documentation

INFORMATIVE PART- ANNEXES
A General remarks on software reuse
B Qualification and integration of reusable

software components
C Testing and integration of reusable software

components – Issues for industrial best prac-
tice

D Example of software pre-use
E Influence of reused software to hardware

components and products

Figure 2: Structure of IEC/PAS 62814.

Focus is on the dependability of software reuse and,
thus, this document complements IEC 62309:2005-
02 (Dependability of products containing reused
parts – requirements for functionality and test),
which exclusively considers hardware reuse. In
addition to this previous, hardware-related IEC
standard, the present PAS also crosses further, ap-
propriate software-related standards to be applied in
the development and qualification of software com-
ponents that are intended to be reused and products
that reuse existing components. In other words, this
present standard encompasses the features of soft-
ware components for reuse, their integration into the
receiving system, and related tests. Their perfor-
mance and qualification and the qualification of the
receiving system is subject to existing standards, for
example ISO/IEC 25000 and IEC 61508-3. The
process framework of ISO/IEC 12207 on systems
and software engineering and ISO/IEC 25000 on
system aspects of dependability on software engi-
neering apply to this present document.

The purpose of IEC/PAS 62814 is to ensure
through analysis and tests that the functionality,
dependability and eco-friendliness of a new product

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

62

containing reused software components is
comparable to a product with only new components.
This would justify the manufacturer providing the
next customer with a warranty for the functionality
and dependability of a product with reused
components. As each set of hardware/software has a
unique relationship and is governed by its
operational scenario, the dependability determi-
nation has to consider the underlying operational
background. Dependability also influences safety.
Therefore, wherever it seems necessary, safety
aspects have to be considered the way IEC 60300-1
addresses safety issues. This PAS can also be
applied in producing product-specific standards by
technical committees responsible for an application
sector.

This paper could give only a brief introduction to
the major aspects of IEC/PAS 62814. Due to lack of
space nothing could be said about the informal part
that comprehensively explains the methods and
techniques for systematic reuse and its validation to
assure dependability, and includes numerous exam-
ples from the practice and for the practice.

6 CONCLUDING REMARKS,
FUTURE WORK

The most common form of reuse is using software
developed for one-use in a new application, which
is, accidental reuse. One of the major objectives of
the present PAS 62814 is to warn the managers that
this kind of unplanned reuse can be a potential
minefield because it can cause the inheritance of all
the problems of the pre-existing software in the
reaping of only a few of its benefits. Many
managers, while planning for software reuse, forget
that both the reused component and composite
system are to be tested in the new domain.
Experience reports say that reusable software can
cost 60 % more than one-use software, whereby a
good portion of additional costs goes to testing.

This paper gave a brief introduction into
IEC/PAS 62814 and which is a pre-standard, that is,
it is not yet a standard. Further work and much
energy are necessary to complete the work and
produce a standard.

REFERENCES

Belli, F., Linschulte, M., 2010. Event-Driven Modeling
and Testing of Real-Time Web Services, J. of Service

Oriented Computing and Applications, Vol. 4, No. 1,
pp. 3-15, Springer, Heidelberg.

Frakes, W.B., Terry, C., 1996. Software Reuse: Metrics
and Models, ACM Computing Surveys, Volume 28,
Issue 2, pp. 415-435, Available from http://dl.acm.org/
ft_gateway.cfm?id=234531&type=pdf&CFID=651787
75&CFTOKEN=89447410.

Frakes, W.B., Kang, K., 2005. Software Reuse research:
Status and Future, IEEE Transactions on Software
Engineering, Volume 31, Issue 7, pp. 529-536, Avail-
able from http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=1492369.

Leveson, N., 1995. Medical Devices: The Therac-25,
Appendix A in Safeware: System Safety and Comput-
ers, pp. 1-49, Addison-Wesley,Boston, Available from
http://citeseerx.ist.psu.edu/viewdoc/download;jsession
id=84A18B532CF53C4AEA6F64AA6038BFEF?doi=
10.1.1.39.704&rep=rep1&type=pdf.

Lions, J.L., 1996. Ariane 5 Flight 501 Failure, Available
from http://www.ima.umn.edu/~arnold/disasters/ariane
5rep.html.

Mathur, A.P., 2008. Foundations of software Testing.
Addison-Wesley Professional, Boston.

Mohagheghi, P., 2008. Ict, S., Conradi, R., An Empirical
Investigation of Software Reuse Benefits in a Large
Telecom Product, ACM Transactions on Software En-
gineering and Methodology, Volume 17, Issue 3, pp.
13:1-13:31, Available from http://dl.acm.org/
ft_gateway.cfm?id=1363104&type=pdf&CFID=82907
429& CFTOKEN=24134248.

Mohammad, M., Alagar, V., 2010. A component-based
development process for trustworthy systems, J. of
Software Maintenance and Evolution: Research and
Practice, Wiley InterScience, published online:
DOI: 10.1002/smr.472. Available from http:// online
library. wiley.com/doi/10.1002/smr.472/pdf.

Naur, P., Randell, B. (eds.), 1968. Software Engineering,
Report on a conference sponsored by the NATO Sci-
ence Committee, Garmisch, Germany, Available from
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/
nato1968.PDF.

Orrego, A., Mundy, G., , 2007. SRAE: An Integrated
Framework for Aiding in the Verification and Valida-
tion of Legacy Artifacts in NASA Flight Control Sys-
tems”, Proc. 31st Ann. Intertnat’l. Comp. Softw. &
Applications Conf., IEEE Comp. Press, New York

Sommerville. I., 2007. Software engineering, Addison
Wesley Longman, Boston.

An�Industrial�Standard�to�Assure�Dependability�in�Software�Reuse

63

